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Abstract

Closed form solutions for open and closed loop error propagation are available in
the form of the convolution integrals and factorization solutions to the Riccati
equation respectively. However, these are often not very illuminating unless the
integrals and sums are actually carried out and simplified.

This report sets out to formulate and validate explicit models of systematic and
stochastic error propagation in “accelerometry” - the author’s term for inertial
navigation when the influence of gravity can be neglected. Under the assumption
that the trajectory is a straight line, it turns out that the solution can be computed
in closed form. Furthermore, when terrain relative velocity indications and mea-
surements of heading (derived perhaps from a magnetometer) are available and
integrated with a Kalman filter, it is possible to show in closed form their dra-
matic effect on overall system performance.
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1. Introduction

This document provides a rudimentary analysis of the error propagation for a simplified inertial
navigation system consisting of a single forward accelerometer and a single vertical gyro. Such a
system could be used to compute the position of a rolling wheel, for example, that operates in a
horizontal plane. It was used to approximate the behavior of a Kalman filter estimating the motion
of a foot walking on level ground.

The term accelerometry is used by analogy to odometry because the system will be assumed to be
gravity compensated and hence not subject to Schuler dynamics. In other words, it will be assumed
that the accelerometer readings have gravity removed. This is of course, straightforward if the
system operates in a perfectly horizontal plane as is assumed here. In practice, the influence of
gravity can be removed by frequent zero velocity updates which permit the explicit measurement
and removal of the gravity indication in addition to the biases which would normally be computed
anyway.

2. The Discrete-Time Linear System

Often, a system needs to be expressed in a discrete-time form in order to represent it in a computer.
Sometimes the state equations are given in discrete form and other times they are generated by
discretizing a continuous system.

2.1 Linear State Equations

If we are interested in a discrete-time representation, then the values of the vectors and matrices
are known only at discrete times and the state equations take the form.

Here, the equations have similar form and similar meaning to the continuous case - with one
exception. Note that  maps a state onto a state derivative while  maps a state onto a state.
Also, whereas the continuous-time equations are differential equations, the discrete-time equations
are recurrence equations.

2.1.1 Solution to the Linear State Equations

The solution to the state recurrence equations can be easily discovered by inspection by writing out

xk 1+ Fkxk Gkuk+=

zk Hkxk Mkuk+=

(1)

F t  Fk
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the terms as k increases from 0 to some general value n and noticing the pattern.

Unwinding the recursion:

The result of this tedious but straightforward exercise is:

By analogy to continuous-time, the discrete-time transition matrix is:

The product is understood to mean1 :

• Both extremes of the indices appear in the product. 

1. This convention is taken from Brogan page 220. 

x1 F0x0 G0u0+=

x2 F1x1 G1u1+=

x3 F2x2 G2u2+=

x4 F3x3 G3u3+=

x4 F3 F2 F1 F0x0 G0u0+  G1u1+  G2u2+  G3u3+=

x3 F2 F1 F0x0 G0u0+  G1u1+  G2u2+=

x2 F1 F0x0 G0u0+  G1u1+=

x1 F0x0 G0u0+=

xn Fk

k 0=

n 1–


 
 
 
 

x0 Fp

p k 1+=

n 1–

 Gkuk

k 0=

n 1–

+= (2)

n k Fp

p k=

n 1–

= (3)

Fp

p n=

n 1–

 Fn 1– Fn 2– Fk
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• When the high and low indices are the same, . 

• When the interval is null, then . 

So the solution to the discrete differential equation can be written as:

2.1.2 Solution for Commutable Dynamics

It is always possible to rewrite the system dynamics matrix as follows:

by simply solving for . 

Suppose that  can be partitioned as follows:

or such matrices, it is easy to show that all cross products of  vanish. In particular:.

Under these conditions1:

and we have converted a product into a sum as a result. Let this special transition matrix and sum

1. By convention  hence  as expected.

Fp

p k=

k

 Fk=

Fp

p n=

n 1–

 1=

xn n 0 x0 n k 1+ Gkuk

k 0=

n 1–

+= (4)

Fk I Rk+= (5)

Rk
Rk

Rk

0 Mk
n n  n m 

0 0
m n  m m 

= (6)

Rk

RkRk 1+ 0=

n k I Rp+ 

p k=

n 1–

 I Rk+  I Rk 1++  I Rp

p k=

n 1–

+= = = (7)

Rp

p n=

n 1–

 0= n n I=
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be denoted as follows:

2.1.3 Solution with an Observer and Estimator

Consider now the case where there are measurements and an estimation system is used to refine
estimates of the state. Let the aiding measurements be of the simple linear form:

These measurements may disagree with those computed from the dynamics so some mechanism
to combine the two is necessary. In anticipation of later results, consider the use of a linear
combination of the residual difference between the predicted measurements and the measurements:

Substituting this into the dynamics leads to:

Or

This is now of the same form as the original system where the new system dynamics matrix is
 and the new inputs are both  and . The solution to the state recurrence

equations can be easily discovered by inspection by writing out the terms as k increases from 0 to
some general value n and noticing the pattern:

Tn k I Rn k+ I Rp

p k=

n 1–

+= = (8)

zk Hkx
k

= (9)

xk
+

xk
-

Kk zk Hkx
k
-

– + I KkHk– x
k
-

Kkzk+= =

xk 1+ Fk I KkHk– x
k

Kkzk+  Gkuk+=

xk 1+ Fk I KkHk– x
k

FkK
k
zk+ Gkuk+= (10)

Fk I KkHk–  FkK
k
zk Gkuk

x1 F0 I K0H0– x
0

F0K0z0 G0u0+ +=

x2 F1 I K1H1– x
1

F1K1z1 G1u1+ +=

x3 F2 I K2H2– x
2

F2K2z2 G2u2+ +=
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Unwinding the recursion for the last result:

The result of this tedious but straightforward exercise is:

This is a dynamic system driven with two inputs. One is  and the other is . By
analogy to continuous-time, the discrete-time transition matrix is:

Inspiring from equation (4), the solution to the discrete differential equation can be written as:

2.1.4 Solution of Observed System with Special1 Dynamics

Consider the case when the factors  in equation (11) are of the form:

Where  has the same form as equation (6) and D is a diagonal matrix with the special structure
below:

1. I’ll use “special” until I can figure out a better name.

x3 F2 I K2H2– F
1

I K1H1– F0 I K0H0– x0 F2 I K2H2– F
1

I K1H1–  F0K
0
z0 G0u0+ 

F2 I K2H2–  F1K
1
z1 G1u1+  F2K2z2 G2u2

+

+ + +

=

x2 F1 I K1H1– F0 I K0H0– x0 F1 I K1H1–  F0K
0
z0 G0u0+ 

F1K
1
z1 G1u1+ 

+

+

=

xn Fk I KkHk– 

k 0=

n 1–


 
 
 
 

x0 Fp I KpHp– 

p k 1+=

n 1–

 FkKkz
k

Gkuk+ 

k 0=

n 1–

+=

Gkuk FkKkz
k

n k Fp I KpHp– 

p k=

n 1–

 Vp

p k=

n 1–

= = (11)

xn n 0 x0 n k 1+ FkKkzk Gkuk+ 

k 0=

n 1–

+= (12)

Vp

Vp I Rp+ Dp Dp RpDp+= =

R

Rk

0 Mk
n n  n m 

0 0
m n  m m 

= (13)Dk

I 0
n n  n m 

0 Uk
m n  m m 

=
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Note that under these conditions:

This also means that:

But:

And:

So:

For such matrices, the transition matrix can be simplified. Consider the first few products:

The general pattern is therefore:

Define:

Then the transition matrix is:

2.2 The Discrete-Time Nonlinear System and its Linear Perturbation

Nonlinear discrete-time systems are similar to their continuous-time counterparts. 

RlRk 0     for all l,k= DlRk Rk     for all l,k=

VlVk
RlDl Dl+  RkDk Dk+  RlDlRkDk RlDlDk DlRk

Dk DlDk
+ + += =

RlDlRkDk RlRkDk 0= =

DlRk
Dk RkDk=

VlVk
RlDlDk RkDk DlDk

+ +=

Vk 1+ V
k

Rk 1+ Dk 1+ Dk RkDk Dk 1+ D
k

+ +=

Vk 2+ Vk 1+ V
k

Rk 2+ Dk 2+ Dk 2++  Rk 1+ Dk 1+ Dk RkDk Dk 1+ D
k

+ + 
Rk 2+ Dk 2+ D

k 1+
D

k
Rk 1+ Dk 1+ Dk RkDk Dk 2+ D

k 1+
D

k
+ + +

= =

Vk 3+ V
k 2+

Vk 1+ V
k

Rk 3+ Dk 3+ Dk 3++  Rk 2+ Dk 2+ D
k 1+

D
k

Rk 1+ Dk 1+ Dk RkDk Dk 2+ D
k 1+

D
k

+ + + 
Rk 3+ Dk 3+ D

k 2+
D

k 1+
D

k
Rk 2+ Dk 2+ D

k 1+
D

k
Rk 1+ Dk 1+ Dk RkDk Dk 3+ D

k 2+
D

k 1+
D

k
+ + + +

=

=

Vp

p k=

n 1–

 I Rp+ Dp

p k=

n 1–

 Rp Di

i k=

p


 
 
 
 

p k=

n 1–

 Dp

p k=

n 1–

+= = (14)

Wn k Dp

p k=

n 1–

=
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2.2.1 Nonlinear State Equations

The nonlinear form of the state equations is:

Even though a closed-form result for the nonlinear case may not be available, numerical solutions
are available by direct recurrence on the first equation:. 

2.2.2 Perturbation Theory

We can also model the behavior of a small “perturbation” about a known solution to the discrete-
time state equations. Assume that a nominal input  and the associated nominal solution  are
known. That is, they satisfy:

Suppose now that solution is desired for a slightly different input.

Designate the solution associated with this input as follows:

The state perturbation is again the difference between the perturbed and nominal state. This slightly

n k RpWp 1+ k
p k=

n 1–

 Wn k+= (15)

xk 1+ f xk uk k  =

zk h xk k =

x1 f x0 u0 0  =

x2 f x1 u1 1  =

x3 f x2 u2 2  =



uk xk

xk 1+ f xk uk k  = (16)

u'k uk uk+=

x'k xk xk+=
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different solution, by definition, also satisfies the original state equation, so we can write:

An approximation for  will generate an approximation for . We can get this approximation
from the Taylor series expansion as follows:

where the two new matrices are the Jacobians of  with respect to the state and input - evaluated
on the nominal trajectory:

At this point, we have:

Finally, by cancelling out the original state equation (16), there results a linear system which
approximates the behavior of the perturbation.

All of the solution techniques for linear systems can now be applied to determine the behavior of
this perturbation. Similar transformations can be used to linearize a nonlinear measurement
equation to produce:

x'k 1+ xk 1+ xk 1++ f xk xk+ uk uk+ k  = =

xk x'k

f xk xk+ uk uk+ k   f xk uk k   Fkxk Gkuk+ +

f

Fk x
 f

x

= Gk u
 f

x

=

xk 1+ xk 1++ f xk uk k   Fkxk Gkuk+ +=

xk 1+ Fkxk Gkuk+=

zk 1+ Hkxk Mkuk+=
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3. Error Propagation

This applies the results of the last one to produce general solutions for deterministic and stochastic
error dynamics of linear and nonlinear dynamic systems.

3.1 Systematic Error Propagation for the Discrete-Time NonLinear System

Since equation (4) provides the solution for a linear system and a linearized (perturbed) system is
linear. If the perturbations are interpreted as errors, we immediately have the solution for
systematic error propagation:

Where we have defined the “input transition matrix”:

And the transition matrix is:

3.2 Stochastic Error Propagation for the Discrete-Time NonLinear System

Since the above error propagation formula is linear in the variables of interest and since the state
covariance is

we have immediately:

where, by definition:

xn n 0 x0 n k 1+ Gkuk

k 0=

n 1–

+ n 0 x0 
˜

n k 1+ uk

k 0=

n 1–

+= = (17)


˜

n k n k Gk= (18)

n k Fp

p k=

n 1–

= (19)

Pn Exp xnxn
T = (20)

Pn n 0 P0n 0
T 

˜
n k 1+ Qk

˜
n k 1+
T

k 0=

n 1–

+= (21)

Qk Exp ukuk
T = (22)
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3.3 Systematic Error Propagation With an Observer/Estimator

In the case of an observed system, we have from equation (12):

Where for the extra term, we have defined the “measurement transition matrix”:

And the transition matrix is:

3.4 Stochastic Error Propagation With an Observer/Estimator

Again since the above relationship is linear, we have immediately:

Also, by definition:

xn n 0 x0 n k 1+ FkKkzk Gkuk+ 

k 0=

n 1–

+= (23)

xn n 0 x0 
ˆ

n k 1+ zk

k 0=

n 1–

 
˜

n k 1+ uk

k 0=

n 1–

+ +=


ˆ

n k n k FkKk= (24)

n k Fp I KpHp– 

p k=

n 1–

= (25)

Pn n 0 P0n 0
T 

ˆ
n k 1+ Sk

ˆ
n k 1+
T

k 0=

n 1–

 
˜

n k 1+ Qk
˜

n k 1+
T

k 0=

n 1–

+ += (26)

Sk Exp zkzk
T = (27)
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4. Single Wheel Accelerometry

Consider the problem of “accelerometry” in the plane where acceleration is integrated twice and
angular velocity is integrated once. Let the state vector include position and orientation and linear
velocity. The system is driven by measurements of angular velocity about the vertical and
acceleration in the forward direction.

The state equations are:

4.1 Linearization

This is a nonlinear system, so we linearize it as follows:

4.2 Transition Matrix

The transition matrix is:

Note that:

x

y


V k 1+

1 0 0 ct

0 1 0 st

0 0 1 0

0 0 0 1 k

x

y


V k

0 0

0 0

t 0

0 t


a k

+= (28)

x

y


V k 1+

1 0 Vst– ct

0 1 Vct st

0 0 1 0

0 0 0 1 k

x

y


V k

0 0

0 0

t 0

0 t


a k

+=

xk 1+ Fkxk Gkuk+=

(29)

n k Fp

p k=

n 1–

= (30)

Fp I Rp+

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 Vst– ct

0 0 Vct st

0 0 0 0

0 0 0 0 p

+= = (31)
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And especially note that . Hence, we have based on equation (7):

Now, define:

Where:

The transition matrix therefore is:

Define the “input transition matrix”:

RpRp 1+ 0=

n k I Rp

p k=

n 1–

+=
(32)

Rn k Rp

p k=

n 1–


0 0 Vst– ct

0 0 Vct st

0 0 0 0

0 0 0 0 p
p k=

n 1–



0 0 y– n k Cn k

0 0 xn k Sn k

0 0 0 0

0 0 0 0

= = = (33)

Cn k ct

p k=

n 1–

= Sn k st

p k=

n 1–

=

xn k Vct

p k=

n 1–

 cs

p k=

n 1–

 xn xk–= = =

yn k Vst

p k=

n 1–

 ss

p k=

n 1–

 yn yk–= = =
(34)

n k

1 0 y– n k Cn k

0 1 xn k Sn k

0 0 1 0

0 0 0 1

= (35)


˜

n k n k Gk

1 0 y– n k Cn k

0 1 xn k Sn k

0 0 1 0

0 0 0 1

0 0

0 0

t 0

0 t

t

y– n k Cn k

xn k Sn k

1 0

0 1

= = =
(36)
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4.3 Systematic Error Propagation

The solution for systematic error propagation is:

For vanishing initial error, this is:

For constant  and constant error magnitudes, this is:

4.3.1 Straight Line Trajectory

On a straight trajectory along the x axis, we have , ,
, . Hence, we have:

The first line is:

xn n 0 x0 n k 1+ Gkuk

k 0=

n 1–

+ n 0 x0 
˜

n k 1+ uk

k 0=

n 1–

+= =

x

y


V n

1 0 y– n 0 Cn k 1+

0 1 xn 0 Sn k 1+

0 0 1 0

0 0 0 1

x

y


V 0

t

y– n k 1+ Cn k 1+

xn k 1+ Sn k 1+

1 0

0 1


a kk 0=

n 1–

+=

x

y


V n

t

y– n k 1+ Cn k 1+

xn k 1+ Sn k 1+

1 0

0 1


a kk 0=

n 1–

=

t

x

y


V n

t

y– n k 1+ aCn k 1++
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The sum can be simplified using the identity:

Therefore, the first line simplifies to:

The second line is:

For constant velocity, we have:

Giving:

Using our finite sum identity again leads to:

Hence, the complete result is:

Of course,  so systematic position error becomes quadratic in time whereas heading and
velocity error are linear.
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4.4 Stochastic Error Propagation

Once again, the systematic error propagation formula is:

Since this is linear in the variables of interest and since the state covariance is

we have immediately:

where, by definition:

This is:

For vanishing initial error, this is:
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For constant  and constant error magnitudes, this is:

4.4.1 Straight Line Trajectory

On a straight trajectory along the x axis, we have , . Let us also assume
that the accelerometer and gyro errors are decorrelated so that . Hence, we have:

Concentrating on the diagonal (variances) of this expression, we have:

On a straight trajectory along the x axis, we also have ,
.
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The first line is:

The sum can be simplified using the identity:

Therefore, the first line simplifies to:

The second line is:

For constant velocity, we have:

Giving:

Using our finite sum identity again leads to:
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Hence, the final result for variance is:

Of course,  so stochastic position error (variance) becomes cubic in time whereas heading
and velocity error (variance) are linear.
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5. Aided Single Wheel Accelerometry

Consider now the case where the accelerometry system is aided by measurements of heading and
velocity.

The state equations are:

The measurement relationship is:

Let the estimator relationship be as follows:

We would normally choose both  and  to be less than unity. 

5.1 Linearization

The linearized system dynamics is as before:
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5.2 Transition Matrix

The transition matrix is:

Note that:

Notice that because  is diagonal,  has special diagonal structure:

Where:

And, in this case,  is structured as in equation (13):
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So, the transition matrix is given by equation (15):

Where:

The second part of equation (44) reduces to:

The second part of equation (44) reduces to:
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Hence, the transition matrix is:

Where, analogously to the unobserved case:

The coefficients  and  decrease rapidly toward zero as the exponent  increases and
as the gains approach unity.

Define the “input transition matrix”:
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1 0 ỹ– n k C̃n k

0 1 x̃n k S̃n k

0 0 k
n k

0

0 0 0 kV
n k

0 0

0 0

t 0

0 t

t
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In this case:

Using this, define the “measurement transition matrix”:

5.3 Systematic Error Propagation

The solution for systematic error propagation for vanishing initial error is by equation (23):
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This can be written as:

Which simplifies to:

5.3.1 Straight Line trajectory

On a straight trajectory along the x axis, we have  and .

Also:

Where, we have defined:

And, for constant velocity on a straight line:
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Where we have defined:

For constant error magnitudes on a straight line, the above result is:

Define  as the first line inside the second sum in equation (50):

Then  is:

The rising powers of  quickly cause  to converge. When  is large relative to k, 
is related to an essentially infinite geometric series which converges to:

Some values are tabulated below:
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After only a few cycles  will be large enough that the following formula holds:

The summation of all these is:

Define  as the second line inside the first sum in equation (50):

Then  is

Proceeding as for 

After only a few cycles  is large enough that the following formula holds:

The summation of all these is:
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Define  as the third line of the first sum in equation (50):

This is essentially the same sum as for  only longer and the unity term is present. Hence for large
:

Define  as the fourth line of the second sum:

This is essentially the same sum as for  only longer and the unity term is present. Hence for large
:

Consider the first line of the third sum in equation (50):
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The total solution is therefore:
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Which simplifies to:

5.4 Tolerable Error Magnitudes

Systematic position error is linear in time and distance whereas heading and velocity error are
constants (because they are being measured directly on a regular basis).

If we allocate 1/4 of a position error budget to each sensor along its sensitive axis, we can write
relationships for computing the sensor errors from the specifications.

Solving leads to:

5.5 Stochastic Error Propagation

Once again, the systematic error propagation formula is by (26):

Where the state covariance is

And the input and state covariances are definition:

Lets assume vanishing initial error and simplify the other two terms.
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5.5.1 Measurement Contribution

The contribution of the measurements is:

For assumed decorrelated measurements ( ) and concentrating on the diagonal
(variances) in this expression we have:

5.5.2 Measurement Contribution on a Straight Line Trajectory

On a straight trajectory along the x axis, we have  and  etc.

Hence, this simplifies to:
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kVst– kỹn k 1+– 2 zVzV

kVct kVC̃n k 1++ 
2

+

zz
kVct kx̃n k 1++ 2 zVzV

kVst kVS̃n k 1++ 
2

+

zz
kk

n k 1+ 2

zVzV
kVkV

n k 1+ 2

k 0=

n 1–

=
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Also, by equations (46) (47) (48) (49) on this trajectory for constant velocity:

So the result is:

Assuming n is large, we can simplify the first two lines using equations (51) and (52):

Now, we must define two new sums for the third and fourth lines. First, for the third line:

The rising powers of  quickly cause  to converge. When  is large relative to k,
 is related to an essentially infinite geometric series. The same formula applies after

reinterpreting the common factor, so this converges to:
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Similiarly we have:

So the result is:

This simplifies to:

5.5.3 Input Contribution

The contribution of the inputs is:

For assumed decorrelated measurements ( ) and concentrating on the diagonal (variances)

(62)
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in this expression we have:

5.5.4 Input Contribution on a Straight Line Trajectory

On a straight trajectory along the x axis, we have  and .

Hence, this simplifies to:

We can reuse the simplifications from (59) and (60) above which are:

Also from (61) and (62):

The result is now:
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5.5.5 Total Error

The total error for vanishing initial conditions is the sum of the measurement and input
contributions:

5.6 Tolerable Error Magnitudes

Stochastic position error (variance) becomes linear in time whereas heading and velocity error are
constants (because they are being measured directly on a regular basis).

If we allocate 1/4 of a position error budget to each sensor along its sensitive axis, we can write
relationships for computing the sensor errors from the specifications.

Solving leads to:

5.7 Validation

Equations (56) and (63) are the main results for this section. They can be used in the forms in
equations (57) and (64) in order to design a system to meet a specification. Due to the “large n”
approximations used, it seems prudent to validate these models against some real data. Two effects
can be expected from the assumptions used to simplify the models. First, when n is not large -
namely at the start of the system - the behavior may not be predicted exactly. Second, a small gains
assumption was used in summing many geometric series, so the formulas are not valid as the gain
approaches unity. Nor are they valid at zero gains due to division by zero. This latter zero gain
(unaided) case was modelled independently in earlier chapters. Both of these limitations can be
removed, at the cost of incerased complexity, by refining the formulas used for the coefficients 
etc. which are used throughout the derivations.
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By way of validation, a Kalman filter was constructed and provided with corrupted data according
to a set of error specifications to compare how the error that occurs in practice compares with the
error that is predicted by the models.

The results only apply to a straight line trajectory so such a trajectory was used. The distance
between updates  is set to 1 meter. For an assumed velocity of 5 km/hr, this corresponds to a
time period of 0.72 seconds between readings. The goal terminal position error was 10 meters over
a period of 0.5 hours. Kalman gains  and  were set to 0.1. This setting weights inertial sensing
roughly ten times as highly as heading and velocity sensing in order to reduce requirements on
velocity sensing. The following error magnitudes were used. 

5.7.1 Systematic Error

The simulation of systematic errors is straightforward. The heading, velocity, gyro, and
accelerometer inputs are corrupted by constant biases of the magnitudes given in Table 2 and the
resulting trajectory is compared to the nominal one. Figure 1 provides the result for the systematic
error model.

The error model correctly captures the linear behavior with excellent precision.

Table 2: Required Sensor Residual Biases And Standard Deviations

Residual 
Bias 
Phase I

Residual 
Bias 
Phase II

Standard 
Deviation 

 Phase I

Standard 
Deviation  

Phase II

Heading 0.052 deg 0.0033 deg 5.2 deg 0.9 deg

Velocity 1.3 mm/s 0.1 mm/s 126 mm/s 22 mm/s

Angular Velocity 0.008 deg/
sec

0.0005 deg/
sec

0.8 deg/sec 0.15 deg/sec

Acceleration 0.02 mg’s 0.001 mg’s 2 mg’s 0.35 mg’s

s

k kV

 




z

zV



a

 Figure 1 Systematic Error Propagation Model Accuracy. The systematic error model is a 
slight overestimate but it correctly models the linear growth of error with time.
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5.7.2 Random Error

The simulation of random errors is not so straightforward. The heading, velocity, gyro, and
accelerometer inputs were corrupted by (Gaussian) random perturbations of the magnitudes
(variances) given in Table 2 for every cycle of the filter and the resulting trajectory is compared to
the nominal one. This comparison was performed for 250 different simulations each comprised of
4 corrupted sensor signals provided every second for 1800 seconds. Figure 2 provides the result for
the random error model.

Once again, the model correctly captures the square root growth of standard deviation with time.
The agreement is excellent in the short term and slight deviations in the long term are likely due to
insufficient (and computationally expensive to generate) Monte Carlo data.

Overall, however, both models are clearly more than adequate for predicting system performance
and deriving sensor specification on systematic and random errors.

 Figure 2 Random Error Propagation Model Accuracy. The random error model is a slight 
overestimate but it correctly models the square root growth of error with time.


