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Abstract

Closed form solutions for open and closed loop error propagation are available in
the form of the convolution integrals and factorization solutions to the Riccati
equation respectively. However, these are often not very illuminating unless the
integrals and sums are actually carried out and simplified.

This report sets out to formulate and validate explicit models of systematic and
stochastic error propagation in “accelerometry” - the author’s term for inertial
navigation when the influence of gravity can be neglected. Under the assumption
that the trajectory is a straight line, it turns out that the solution can be computed
in closed form. Furthermore, when terrain relative velocity indications and mea-
surements of heading (derived perhaps from a magnetometer) are available and
integrated with a Kalman filter, it is possible to show in closed form their dra-
matic effect on overall system performance.
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1. Introduction

This document provides a rudimentary analysis of the error propagation for a simplified inertial
navigation system consisting of a single forward accelerometer and a single vertical gyro. Such a
system could be used to compute the position of a rolling wheel, for example, that operates in a
horizontal plane. It was used to approximate the behavior of a Kalman filter estimating the motion
of a foot walking on level ground.

The term accelerometry is used by analogy to odometry because the system will be assumed to be
gravity compensated and hence not subject to Schuler dynamics. In other words, it will be assumed
that the accelerometer readings have gravity removed. This is of course, straightforward if the
system operates in a perfectly horizontal plane as is assumed here. In practice, the influence of
gravity can be removed by frequent zero velocity updates which permit the explicit measurement
and removal of the gravity indication in addition to the biases which would normally be computed

anyway.
2. The Discrete-Time Linear System

Often, a system needs to be expressed in a discrete-time form in order to represent it in a computer.
Sometimes the state equations are given in discrete form and other times they are generated by
discretizing a continuous system.

2.1 Linear State Equations

If we are interested in a discrete-time representation, then the values of the vectors and matrices
are known only at discrete times and the state equations take the form.

X1 = FiXict Gl (1)
2 = Hixe + My
Here, the equations have similar form and similar meaning to the continuous case - with one
exception. Note that F(t) maps a state onto a state derivative while Flﬁ]maps a state onto a state.
t

Also, whereas the continuous-time equations are differential equations, the discrete-time equations
are recurrence equations.

2.1.1 Solution to the Linear State Equations

The solution to the state recurrence equations can be easily discovered by inspection by writing out
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the terms as k increases from 0 to some general value n and noticing the pattern.
X1 = FoXp+ GoYg
Xy = FiX + Gy

X3 = FoX; +Gou,

X4 = F3X3+G3uy

Unwinding the recursion:
X; = FoXo + Golyp

Xy = Fy[FgXy + Gougl + G1uy
X3 = FolF1[FoXg + GoUgl + G1Us 1+ Gyu,

X, = F3lF,[Fy[FoXp + Gougl + Gyuy ]+ Gyu, ] + Gaug

The result of this tedious but straightforward exercise is:

n-1 n-1 n-1
X = [TRXo* 2| T1 Fo[CuU
k=0 k=0Lp=k+1

By analogy to continuous-time, the discrete-time transition matrix is:

n-1
_ 3
P,k = HFIO ©)
p=k

n-1
The product H Fp is understood to mean? Fn_1Fn_o---Fy:
p=n
* Both extremes of the indices appear in the product.

1. This convention is taken from Brogan page 220.
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k
» When the high and low indices are the same, ITFp = Fk-

n-1 p=k

* When the interval is null, then TT F, = 1.
p=n
So the solution to the discrete differential equation can be written as:
n-1
_ (4)
Xn = ch, %ot Z ch, K+ 1Gkuk
k=0

2.1.2  Solution for Commutable Dynamics

It is always possible to rewrite the system dynamics matrix as follows:

Fk = |+Rk (5)

by simply solving for R, .
Suppose that Rk can be partitioned as follows:

0 M,

Rk: [nxn] [nxm] (6)
0 0

L[mxn] [mxm]]

or such matrices, it is easy to show that all cross products of Rk vanish. In particular:.

RkRk+ 1~ 0
Under these conditions®:
n-1 n-1
Oy = J]+Rp = A+RIU+R g =1+ R, ()
p= k p = k

and we have converted a product into a sum as a result. Let this special transition matrix and sum

n-1
1. By convention Z Rp = 0 hence Q)= I as expected.
p=n
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be denoted as follows:
n-1

— 8
Tn’k—I+Rnk—I+ZR (8)

2.1.3 Solution with an Observer and Estimator

Consider now the case where there are measurements and an estimation system is used to refine
estimates of the state. Let the aiding measurements be of the simple linear form:

= Hyx ©)

Z Xy

-k

These measurements may disagree with those computed from the dynamics so some mechanism
to combine the two is necessary. In anticipation of later results, consider the use of a linear
combination of the residual difference between the predicted measurements and the measurements:

N ) ] )
X = Xt Kz —Hexp) = [T=-KH DX, + Kz,

Substituting this into the dynamics leads to:
X+ 1 = Pl =KeHIx, + Kz ) + Gy
Or

Xes1 = Frll =K H X, + F K 2, + Gu (10)

This is now of the same form as the original system where the new system dynamics matrix is
F [l - K, H,] and the new inputs are both F, K Wk and G, u, . The solution to the state recurrence
equatlons can be easily discovered by mspectlon by ertlng out the terms as k increases from 0 to
some general value n and noticing the pattern:

Xy = Foll =KgHglxy + FgKgzy + Goug

Xy = Fq[l=KyH Ix, +F K2y +Gquy

be
w
1

Foll = KoHyIx, + FoKyz, + Gou,
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Unwinding the recursion for the last result:

Xy = Fill=KyH IRl = KoHglXo + Fy[1 = K H 1[FgKZ + Goug]
*+[FK 2, +Guq]

X3 = Foll = KoH,IF, [1 = Ky Hy TFo[l = KoHolxo + Foll = KoH,IF [T = Ky H T[FoK 2o + Golg]
+Foll = KoH, I[F K 20 + Gug ] + FoKyz, + Gyuy

The result of this tedious but straightforward exercise is:
n-1 n-17 n-1
X, = {H Fk[I—Kka]JxO+ > [ I Fp[l_KpHp]]{FkKk§k+GkUk}
k=0 k=0lp=k+1

This is a dynamic system driven with two inputs. One is G, u, and the other is FkKkzk. By
analogy to continuous-time, the discrete-time transition matrix is:

n-1 n-1
= - = (11)
P H Fpll =KpHp H Vo
p=Kk p=Kk
Inspiring from equation (4), the solution to the discrete differential equation can be written as:
n-1
— 12
X = P X0t Y P s 1Pz Gyl 12
k=0

2.1.4 Solution of Observed System with Special® Dynamics

Consider the case when the factors Vp in equation (11) are of the form:

Vp = (I +Rp)Dp = Dp+Rpr

Where R has the same form as equation (6) and D is a diagonal matrix with the special structure
below:

I 0 0 My
D, = [nxn] [nxm] Ry = |[nxnl [nxm] (13)
0 U, 0 0
L[mxn] {mxm]| [[mxn] [mxm]|

1. I’ll use “special” until I can figure out a better name.
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Note that under these conditions:

RIR, = 0 forall Lk DRy = Ry for all 1,k

This also means that:

But:
R,D;R,D, = RR,D, = 0
And:
DR, Dy = R D
So:

V|V, = RD,D; +R,D, + DD,

For such matrices, the transition matrix can be simplified. Consider the first few products:
Vk+1vk = Rk+1Dk+1Dk + Rka + I:)k+1D|(

Vics 2Vik+ 1V = (R 2Dy 2+ Dy ) (Ry s 1Dy 1Dy + Ry Dy + Dy, D) =
R+ 2D+ 2Dy 4 1By + Ry 1Dy 1Dy # RDy + Dy, oD, 4 D

k+1 7k k+17k
Vicr Vs oVies 1Yy =
(Ri+3Di+ 3+ Ds ) (Ric 1 2Dy 42Dy 1 Dy # Ry 1Dy 1 Dy # R Dy + DBy, oDy 4 D)) =
Rk+3Dk+3Dk+2Dk+1Dk+Rk+2Dk+2Dk+1Dk+Rk+1Dk+1Dk+Rka+Dk+3Dk+2Dk+1Dk
The general pattern is therefore:
n-1 n-1 n-1 p n-1
= + = |+ (14)
[1Ve= I1+RDy = > Ryl [T1Di* [1D5p
p=k p=k p=Kk i=k p=k
Define:
n-1
Wik = T1 Dp
p=k

Then the transition matrix is:

2.2 The Discrete-Time Nonlinear System and its Linear Perturbation
Nonlinear discrete-time systems are similar to their continuous-time counterparts.
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(15)

2.2.1 Nonlinear State Equations

The nonlinear form of the state equations is:
Xpr1 = F(Xp Uy K)

Even though a closed-form result for the nonlinear case may not be available, numerical solutions
are available by direct recurrence on the first equation:.

)_(1 = f()_(09 an O)
)_(2 = f()_(la L_Jl, 1)
)_(3 = f()_(29 uz: 2)

2.2.2 Perturbation Theory

We can also model the behavior of a small “perturbation” about a known solution to the discrete-
time state equations. Assume that a nominal input Uy and the associated nominal solution X are
known. That is, they satisfy:

— (16)
Xp+1 = F(Xp Uy K)
Suppose now that solution is desired for a slightly different input.

Uy = U +0Uy

Designate the solution associated with this input as follows:

X\ = X+ 0%y

The state perturbation is again the difference between the perturbed and nominal state. This slightly
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different solution, by definition, also satisfies the original state equation, so we can write:
Xppr1 = )—(k+1+6)—(k+l = f()—(k+8)—(k9 L_Jk+5l:|ks K)

An approximation for 6X, will generate an approximation for >_('k . We can get this approximation
from the Taylor series expansion as follows:

Xy + 8%y Uy + 08Uy, K) = T(X,., Uy, K) + Fi 8y + G 8uy

where the two new matrices are the Jacobians of T with respect to the state and input - evaluated
on the nominal trajectory:

0
=0
k a)_('
X

At this point, we have:
Xr1 ¥ ¥y q = Xy Uy K) +F 0%, + 6oy,

Finally, by cancelling out the original state equation (16), there results a linear system which
approximates the behavior of the perturbation.

Oy +1 = Fid%y + Gydy,

All of the solution techniques for linear systems can now be applied to determine the behavior of
this perturbation. Similar transformations can be used to linearize a nonlinear measurement
equation to produce:

82 11 = Hidx + Mdu,
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3. Error Propagation

This applies the results of the last one to produce general solutions for deterministic and stochastic
error dynamics of linear and nonlinear dynamic systems.

3.1 Systematic Error Propagation for the Discrete-Time NonLinear System

Since equation (4) provides the solution for a linear system and a linearized (perturbed) system is
linear. If the perturbations are interpreted as errors, we immediately have the solution for
systematic error propagation:

n-1 n-1

_ _ 17

8%y = @ o8%g+ 3 Py, 1G Uy = B X+ Y Dnk+dy, (D)
k=0 k=0

Where we have defined the “input transition matrix”:

~

CDn,k = ch ka (18)
And the transition matrix is:
n-1
® = [[Fp (19)
p=Kk

3.2 Stochastic Error Propagation for the Discrete-Time NonL.inear System

Since the above error propagation formula is linear in the variables of interest and since the state
covariance is

_ T
P, = Exp[8x,0X,] (20)
we have immediately:
n-1
_ T I - (21)
Py = @, oPo®Pp ot D Pnk+1Q, P k+1
k=0
where, by definition:
Q) = EXp[du,3u,] (22)
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3.3 Systematic Error Propagation With an Observer/Estimator
In the case of an observed system, we have from equation (12):

n-1
OXp = P 8%+ 3, P s 1[FKZi + Gydu]
k=0
n-1_ n-1
0X,, = d)n,06x0+ Z ®n, k+18z) + Z ®n, k+13U,
k=0 k=0

Where for the extra term, we have defined the “measurement transition matrix™:

A

On k = O, F K,
And the transition matrix is:
n-1
U H Fp[I—KpHp]
p=k
3.4 Stochastic Error Propagation With an Observer/Estimator
Again since the above relationship is linear, we have immediately:
n-1 _ R n-1 5
_ T T T
Pp = @n oPo®Pnot D Pnk+15Pnk+1+ > Onk+1Q, P k+1

Also, by definition:

Error Propagation in Discrete 2D Accelerometry
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4. Single Wheel Accelerometry

Consider the problem of “accelerometry” in the plane where acceleration is integrated twice and
angular velocity is integrated once. Let the state vector include position and orientation and linear
velocity. The system is driven by measurements of angular velocity about the vertical and
acceleration in the forward direction.

The state equations are:
X 10 0 cOAt| |X 00
y _ |010s6At] |y| |0 Of|lw (28)
0 001 O 0 At 0|[a|k
Vik+1 000 1 |klVk 0 At

4.1 Linearization
This is a nonlinear system, so we linearize it as follows:

X+ 1 = Fid¥+ Gy oy

OX 1 0 —VsOAt cOAt| |dX 00 (29)
oy — |01 VcOAt sOAt] |dy| . |0 0|6
o0 00 1 0 00 At 0||dalk

OV k+1 00 0 1 |kloV]k [0 At

4.2 Transition Matrix
The transition matrix is:

o= I1F (30)

Note that:

1000 |00-VsOAt cOAL
0100/, |00 VcOAt sOAt (31)
P P loo10/ |00 0 0

0001 |00 O 0 |y

Error Propagation in Discrete 2D Accelerometry page 11



And especially note that RpR = 0. Hence, we have based on equation (7):

p+1
n-1
_ (32)
(Dn,k = |+ z RIO
p=KkK
Now, define:
- 1_1/0 0 =VsOAt cOAt 00 -Ay, k Cpk
R, | = Z Rp _ Z 00 VcoOAt sBAt| _ |00 Axn’k Sn’k (33)
’ o= k . 00 0 0 00 0 0
000 04 Joo 0o 0]
Where:
n-1 n-1
Axn,k = z VCOAL = Z COAs = Xp = Xy
p=Kk p=k
n-1 n-1
A = VSOAt = SOAS = -
yn,k z yn yk (34)
p=k p=k
n-1 n-1
Chk = D coat Spk = Y, SOAt
p=k p=k
The transition matrix therefore is:
10 —Ayn, K Cn) K
CDn K = 01 AXn,k Sn,k (35)
00 1 0
00 0 1 |
Define the “input transition matrix”:
10 _Ayn,k Cn, k|10 O _Ayn, k Cn, k
Pk = O, G, = 01 AXy k Snk|| 0 O = at| AXnk Snk (36)
00 1 o ||At O 1 0
00 0 1 |LOAt 0 1]
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4.3 Systematic Error Propagation

The solution for systematic error propagation is:

n-1
8)—(n = ch,OS)—(O"' z q)n,k+
— k = 0 -—
5x 10-AYn 0 Cpk+1
dy| - (01 AXp o Spk+1
60 00 1 0
SVin o0 o0 1]
For vanishing initial error, this is:
X n-1
oy| _
= At
30 Eo
SV|, B

n-1
168Uy = @ o8xq t Z ®n, k+ 18U,

k=0
dw
da |k

_Ayn,k+1 Cn,k+1
AXn,k+1 Sn,k+1

_Ayn,k+1 Cn,k+1

AXn,k+1 Sn,k+1
1 0

)

0 1

For constant At and constant error magnitudes, this is:

X n-1
dy| —
= At
00 z
k=0
oV,

4.3.1 Straight Line Trajectory

On a straight trajectory along the x axis, we have Ay, .1 =0, C_ .1 = (n=(k+1))At,

_SwAyn, k+1 ™ 861Cn, k+1
SWAXy 41 +03S, 4

oM
oa

AXp k+1 = Xp=Xk+1 Sy k+1 = 0. Hence, we have:

X N1 Atda(n—-(k +1))
SY| = At Z 00Xy =X 4+ 1)
00 K=0 IO

oV, oa

The first line is:

n-1

5x = At’Sa([n-1]+[n-2]+...+[n-n]) = At°5a ¥ k

k=0

Error Propagation in Discrete 2D Accelerometry



The sum can be simplified using the identity:
n

Z i=n(n+1)/2
k=0

Therefore, the first line simplifies to:

Sx At2€,a[n(n2—1)]zAtZSZI[nZ] (37)

The second line is:

Oy = AtSo([X,—Xq] + [X,=Xo] + ... + [X, =X, _1])

For constant velocity, we have:

X = kAx = kVAt

Giving:
n-1
Sy = AtPVSo([N=1]+[n=2]+...+[n=(n=1)]) = At*V5w 3k
k=0
Using our finite sum identity again leads to:
2
Sy = AtZVBm[MnZ;leAtZVSm[nZ—] (38)
Hence, the complete result is:
5X 1 |Atda(n-1-k) Atsa[n?]/2 sat/2
W o=aty 00Xy _1 =X = at|atvsen? 2| = Veott/2| | 9
50 k=0 50 Sdw[n] Swt
V] oa da[n] | | dat |

Of course, nAt = t so systematic position error becomes quadratic in time whereas heading and
velocity error are linear.
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4.4 Stochastic Error Propagation
Once again, the systematic error propagation formula is:
n-1 n-1 _
OX, = (Dn,OS)—(O + Z CDn,k+1Gk8uk = Z Dn, k + 18Uy
k=0 k=0

Since this is linear in the variables of interest and since the state covariance is
_ T
P, = EXp[8x,5X,]
we have immediately:
n-1
T ~ T
k=0

where, by definition:

T
Qx = Exp[du,du,]

This is:
T

Oxx Oxy Oxo Oxv 10 -Ayp, o Cp o||Fxx Oxy Oxo Oxv| [10-Ay, 4 C,
Oyx Oyy Oyp Oyv| _ |01 AX, o Sp.o Oyx Oyy Syp Oyv| |01 AXp g Sn,O
Cox oy %00 Cov 00 1 0 ||%x oy %66 Cov| |00 1 0
Svx Ovy Ove Ovy|, 00 O 1 ||oyy Svy Ove Oy, 00 O 1

n-1 _Ayn,k+1Cn,k+1 _Ayn,k+1cn,k+1
+ z At Axn,k+1 Sn,k+1 GU)(D c5(,03 At Axn,k+1 sn’k+1

k=0 1 0 Caw Caaly 1 0

0 1 0 1

For vanishing initial error, this is:

Oxx Oxy Oxo Oxv n-1 “AYp k+1 Cn,k+1 “AYp k+1 Cn,k+1 !
Oyx Oyy Oyp Oyv| _ At AXn7 K+l Sn, K+1 [Gmm Go)ei At AXm K+1 Sn, K+l
Gox Spy %06 Opv k=0 1 0 ao Caaly 1 0

Svx Ovy Ove Ovv|, 0 1 0 1
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For constant At and constant error magnitudes, this is:

19vx Ovy Ove Ovv|

Oxx ny Ox6 Oxv
%yx Oyy %yo %yv

Oox Coy %00 Cov

4.4.1 Straight Line Trajectory

On a straight trajectory along the x axis, we have Ay | , ¢
that the accelerometer and gyro errors are decorrelated so that Can

()

XXG

Xy

Oyy

Cp

Oxp Oxv

(&)

yX Syv

y Cov

Ovy Svv

(&) GXV

Xy

Oyy

Cp

Gyv

y Cov

Ovy Ove Ovv

(&) GXV

Xy

Oyy

Op

Oxo

Gye GyV

y %00 Cov

Ovy Ovo

Ovv

n-1
At 5
K

=0

_Ayn,k+1Cn,k+1 _Ayn,k+lcn,k+1
AXn,k+1 Sn,k+1 Coo %wa AXn,k+1 Sn,k+1
1 0 Caow Caalk 1 0
i 0 1 i 0 1

= 0,5, = 0.Letusalso assume
="c,, = 0.Hence, we have:
r . B T
0 Cn, k+1 0 Cn, k+1
0
AXn’ k + 1 0 cY(,O(,O AXn, k + 1 O
1 0 0 0 K 1 0
. 0 1 ] 0 1 ]
0 C’aacn, k+1
CpolXny k+1 0 0 AXpks+110
Sue 0 Cn, K+ 1 0 01
0 Caa
_ , _
GaaCn, k+1 0 0 Gaacn, k+1
2
0 G(o(oAxn, k+1 Go)o)AXn, k+1 0
0 GmmAXn, k+1 Swm 0
_Gaacn, k+1 0 0 Caa

Concentrating on the diagonal (variances) of this expression, we have:

On a straight trajectory along the x axis, we also have C, ,,; = (n—(k+1))At,
AXpk+1 = Xp=Xks1-

GXX

2
GaaCn,k+1
n-1 )
2 o, AX
= At Z oo="n k+1
k=0 60)0)
(o]
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The first line is:

n-1

Oy = Moy (In-11"+[n-21"+ ..+ [n-n]) = At's,, T K’

The sum can be simplified using the identity:
n-1 n-1

Y= ¥ if=nn-1)2n-1)/6
k=1 k=0

Therefore, the first line simplifies to:

k=0

4  [n(n=1)(2n-1)]

4 3
4 n[2n2—3n+1]~At Gaqln’]

Oyy = At 0,4, 5 = At o, 5 3
The second line is:
2 2 2 2

Oyy = At o (X=X ]+ [X, =X, + .o+ [X = X,]0)

For constant velocity, we have:
X, = kAx = kVAt
Giving:
n-1

oy = MVio, (=117 +[n-21" + ..+ [n-n]") = AL'VG, | 3 K

Using our finite sum identity again leads to:

n[2n2—3n +1]
© 6

a2 b2
ny—AtVG(D ~AtVGm

0]

© 3

Error Propagation in Discrete 2D Accelerometry
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Hence, the final result for variance is:

— L] — e
P At [0 L
Oy aa 3 Caa3
c 2 31 _ ’ 3 40
yy = At Atzvzc@@m = Aty wat_ (40)
Soo 3 3
Ny ) wa[n] G(D(Dt
Gaalhn] ] i O, t |

Of course, nAt = t so stochastic position error (variance) becomes cubic in time whereas heading
and velocity error (variance) are linear.
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5. Aided Single Wheel Accelerometry

Consider now the case where the accelerometry system is aided by measurements of heading and
velocity.

The state equations are:

X 10 0 cOAt] |x 00
y _ |010s06At |y| |0 O||o
0 001 O 0 At 0] |a]k
Vik+1 000 1 ||V 0 At
The measurement relationship is:
2 = HiXye
x (41)
Zg| _ [o 01 o} y
Aip 000 1k|6
Vik
Let the estimator relationship be as follows:
+ - -
X = X+ Kz = Hiexy)
. o -
X X 00 X (42)
y| _ 1yl 419 9fJ|%]| _[oo1o0| |y
0 o |k Ol||z,| [0001)]6
V] Vik |0 ky V|
We would normally choose both k, and k,, to be less than unity.
5.1 Linearization
The linearized system dynamics is as before:
0%+ 1 = Fid% * Gdu,
OX 1 0 -VsSOAt cOAt| |dx 00
oy — |01 VcOAt sbAt] |oy| |0 0]|dm
30 00 1 0 36 At 0||da]k

OV|k+1 00 0 1 |k[OV]k 0 At
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5.2 Transition Matrix
The transition matrix is:

n-1 n-1
Onk = [T Fpll-KpHpl = TT Vp
p=k p=k

Note that:

1000 [00-VsHAt cOAL
F —1+Rr = (0100, |00 VcoAt soAt
P P loo10/ |00 0O 0
0001/ (00 O 0 Jp

0 0] 000 0]
i =00 foozg _[000 0
pp keO 0001 OOkeO
0 Ky, 000k,

Notice that because KpHp is diagonal, [I — KpHp] has special diagonal structure:

Fp[I—KpHp] = Fpr = (I+Rp)Dp

Where:
0 0 —VVsSOAt cOAt 10 O 0
R = [00 VcOAt sOAt N 0
P loo o o0 PT]00(1-ky) O
00 O 0 00 0 (1-ky

And, in this case, Vp is structured as in equation (13):

0 My 10
Rk = |[nxn] [nxm] Dk — | [nxn] [nxm]
0 0 0 U,
L[mxn] [mxm]] [mxn] [mxm]

Error Propagation in Discrete 2D Accelerometry
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So, the transition matrix is given by equation (15):

n-1 n-1 n-1
- = - 44
Po = [T Ve = TTU+RID, = > RoWpiq i v Wiy (44)
p:k p:k p:k
Where:
n-1
Wk = 1Py
p=k
The second part of equation (44) reduces to:
-k
oo o 0 10 0 o | 100 0
W 00 0 0 01 0 0 01 0 :
= = = —k
nk pE[kOO(l—ke) 0 00(1-kg) O 00 (1-ky" 0
00 0 (1-ky) 00 0 (1-ky) 00 0 (1-ky)" "
The second part of equation (44) reduces to:
10 0 0
n-1 n—1|0 0 =VsOAt cOAt 01 0 0
00 VcOAt sOAt
R,W = 1)-k
Z_:kp p+1k Z_:koo 0 o0 |[00@-KkyP*V 0
P "Moo 0 0 lgy 0 1ok )Pk
_ kAP -K NGRS SRS
o 1|00 -Vs0AL(1-k) cOAt(1-ky)
S RW, 1= Y [00 Veaatd-ky)® P soata -k, PP E
p=k p=k(00 0 0

00 0 0
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Hence, the transition matrix is:

n-1
CDn,k: ZRpr+1,k+Wn,k
p=k
0 0 —Vs0At(1—kg) P P  coat1-k )PV 1O 0 0
N (p+1-k e+n-k 01 0 0
@, = 3 |00 VeOA(L-ky) sOAt(1-ky) 00 (1_ke)n—k 0
p=k[00 0 0 y
00 0 0 00 0  (1-kp"
- .= 1T 1 |10-aAy . C
00 -AF, | Cn i 10 0 O yn,k~n,k
OOAN’é 01 0 0 01 AX,  Snk
= X = ? ’
@n,k n,k nak + 0 0 kgzk O n’k
00 0 0 00 kg 0
n, k
00 O 0 | _00 0 kv_ 00 0 kC/,k
Where, analogously to the unobserved case:
n-1 n-1
A%y = 3 Veoatd-k)P Y TH = 5 coaskh "
-k =k nk _ n-k
ho1 n_1 Ko = (k)
Mk = S Vsoatl-kg PV = 5 seaskh K (45)
p:k p:k
n-1 n-1 Kk k
- S p+1k kG = (1-ky)"
p=k p=k

The coefficients kg’ k and k{',’ k decrease rapidly toward zero as the exponent n — k increases and
as the gains approach unity.

Define the “input transition matrix”:

10 _Ayn, k Cn, k 00 _Ayn’ k Cn, k
- 01 A%, , S A% . S
_ _ nk °nkllo 0ol _ n k °=nk
q)n,k - (Dﬂ,ka - n k - At n k
00 kg~ 0 [|ALD kg. O
0 At
00 0 KK 0 Kl
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In this case:

10 -VsoAt coat| [0 O

_ |01 Vcoat soat| [0 O
Fpr -

00 1 0]k O

00 O 1 Jp|0 ky

|~k VSOAL ky,COAL
kcheAt kvseAt

p 0 Ky

Using this, define the “measurement transition matrix”:

10 -AY, i Cnk

- 01 A%, Snk
®nk = O Ky = ’

00 kI o0
n, k
00 0 K

. koVCOAL + KgAK, | KySBAL+kySn k

®n, k = 0 K
Kokg’

0

5.3 Systematic Error Propagation

—koVSOAt—KgAY, | kyCOAL+kyCh i

—koVsOAL ky,COAL
KgVCOAL ky,SOAt
Ko 0

0 ky

0

kyky

The solution for systematic error propagation for vanishing initial error is by equation (23):

OX
9%
50
3V,

n-1 _
D @n k+18Uy

n-1_
0X, = Z On, k + 10z +
k=0
—kgVSOAt— KA |, 1/kyCOAL+kyCp ks 1
”5 koVCOAL + KgAK 1y 1 | kySOAL+KySp k+1
nk+1
k=0 Kokg \ 0
0 ‘ kVk(]/,k+ 1

Error Propagation in Discrete 2D Accelerometry

~AYy k+1 Cnk+1

_1 ~ ~
829 N nz At AXn,k+1 Sn,k+1 |:6(Dj|
82y, kg,k” 0 3a ]y
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This can be written as:

Sx —VsbAt- Ayn, k+1 COAt+ E:n, k+1
"t VCOAL + AX -1 OAt + S
d _ nk+1 S Jk+1
82)/ = 2 o070 nk+1 " 2 k) o |
k=0 Ko k=0 el
V|, 0 k& +
~AYq ka1 Cnk+1
n-1 AR n-1 é
Y Ato) | MY Atsa), ”"0“1
k=0 0 k=0
nk+1
0 Ky
Which simplifies to:
“AY C
SX no1 A)~(n,k+1 no1 én,k+1
k
gg = 3 {kg(82p), + At(30), } nn’k++1l + Y {ky(82y), + At(3a), } ”’(';” +
k=0 Ko k=0 ol
3V|, 0 k& +
not -VsOAt 4 COAt
VCOAL OAL
> Ko(82¢), Co + 3 ky(8z), |°
k=0 0 k=0 0

5.3.1 Straight Line trajectory
On a straight trajectory along the x axis, we have Af/n ke, = Oand én’ k+1 = 0.
Also:

n-1 n-1
CN:n,k+1 = Z C@Atk€/+1’k+1 = At z kg/+1,k+1 _ Atr((]/,k+1 (46)
p=k+1 p=k+1
Where, we have defined:
n-1 n-1
" = S = v -k 47)
p=Kk p=kK

And, for constant velocity on a straight line:
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n-1 n-1
Y - p+l,k+1 _ p+1,k+1 _ . ~nk+1
AXok+1 = > cBAsky =As Y kg = Askg (48)
p=k+1 p=k+1
Where we have defined:
n-1 n-1
~n, k Lk -k
ko' = T K= 3 (1-k” (49)
p:k p:k

For constant error magnitudes on a straight line, the above result is:

0 ~n, k+1
OX n-1 En, K+l no1 Atkv N1 SZVkVAt ( )
Syl _ Askg 0 dz,k VAL (50
= (8z,k, + SoAt + (8z/ky, + 5aAt + "o
so| | (0%l ‘2 (kL G2l D - 0
k=0 0 k=0 k=0
dV], 0 kQ/,k+1 0

Define B, = n,At as the first line inside the second sum in equation (50):

n-1 n-1
~ ~nk+1 _
By = Coker = Atky =4t Y KM =AY (@-k)P
p=k+1 p=k+1
Then n, is:
n-1 n-k-2
-k +1 -k-1 -k-2
= > (A-k)’ = T 1A=k’ = 1-k" +(1-ky)" +o+(1-ky)

p=k+1 p=0

The rising powers of (1 -k,,) « 1 quickly cause n, to converge. When n is large relative to k, n,,
is related to an essentially infinite geometric series which converges to:

o0

1 1-ky (51)
n, ~ (1-ky,)P -1:—-1:( ]
X 2: V kV kV
p=0
Some values are tabulated below:

Table 1:

kV 1/kV N,

0.9 1.11 0.11

0.8 1.25 0.25

0.7 1.43 0.43
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Table 1:

kV 1/kV n,
0.6 1.67 0.67
0.5 2.0 1.00

After only a few cycles n will be large enough that the following formula holds:

1-k
— _ \
By = n At = At[ " J
\Y

The summation of all these is:

1 1
Tx = ch,k+l_ ZAt kV t kV
Define By = nyAs as the second line inside the first sum in equation (50):
n-1 n-1
By = ARy a1 = Asky = as) 3 KT = asl > (2-ky)P K
p=k+1 p=k+1
Then ny is
n-1 n-k-2
= Y Aok’ = Y Aok’ = (k) T T k)" TR L (k)
p=k+1 p=0
Proceeding as for n,
e}
1-k
- kWPl oL 2 0e (52)
ny~1 > (1-kg) 1_ke 1_( kej
p=0

After only a few cycles n is large enough that the following formula holds:

By = nyAs = AS Ky

The summation of all these is:

n-1 ) n-1 1—ke 1—k9
Ty = Z Axn’k = Z AS ke = X, ke
k=0 k=0
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Define ny as the third line of the first sum in equation (50):

L+l

(53)

n-1 n-1
nk+1 n-(k+1 n-1 n-—
ne= Y kgt = Y (A-kg)" Y = @-k) T+ (1K)
k=0 k=0
This is essentially the same sum as for ny only longer and the unity term is present. Hence for large
n:
n-1
n-k 1
k=0

Define ny as the fourth line of the second sum:

L+l

(54)

n-1 n-1
nk+1 _ n-(k+1) _ n-1 n-
ny= SR Y -k T Y = k)" T e a-ky)
k=0 k=0
This is essentially the same sum as for n, only longer and the unity term is present. Hence for large
n:
n-1
_ n-k 1
ny = 3 (1-ky) N(@)
k=0

Consider the first line of the third sum in equation (50):
n-1 n-1

Ky = Z oz, kAt = dz,/k,, Z At = éSz\/kVtn
k=0 k=0
Consider the second line of the third sum in equation (50):
n-1 n-1
Ky = z 8zgkg VAL = 524k, z VAt = éSzekexn
k=0 k=0

The total solution is therefore:

0 1-k
dX t ( V) 82Vkvtn
(1 - ke) "\ "k
2; = (5z4ky + 50AD |\ Ky |+ (2 ky +8aat)| o |+ |9%KeXn
1/Kk, 0 0
sV, 0
0 1/ky,

Error Propagation in Discrete 2D Accelerometry
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Which simplifies to:

5x ozt +daAtt (1 -k, k)
sy| - 0ZgX, + S0AtX (1 -Kky/Kg) (56)
o0 0Zy + SwAt/ky
V
6Vin I dzy, + BaAt/kV |

5.4 Tolerable Error Magnitudes

Systematic position error is linear in time and distance whereas heading and velocity error are
constants (because they are being measured directly on a regular basis).

If we allocate 1/4 of a position error budget to each sensor along its sensitive axis, we can write
relationships for computing the sensor errors from the specifications.

FX/ﬂ _ |9zt sx/4| _ |daAtt,(1-ky/ky)
dy/4 dZgX, dy/4 SOALX, (1 -Ky/Kg)
Solving leads to:

_526_ 8y/X,

8z - 1 OX/1, (57)
50 418y /(Atx,(1-Kkq/Kg))

 da | 8%/ (At (1 —ky/ky))

5.5 Stochastic Error Propagation
Once again, the systematic error propagation formula is by (26):

n-1 n-1
T - T - T
P, = <I>n,OPO(Dn,0+ z ®n, k + 1S, Pn, k+1 + z On, k+1Q Pn, k+1 (58)
k=0 k=0

Where the state covariance is
_ T
Py, = EXp[3X,0X,]

And the input and state covariances are definition:
-
S = EXp[52,57,] Q = Exp[du,du, ]

Lets assume vanishing initial error and simplify the other two terms.
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5.5.1 Measurement Contribution

The contribution of the measurements is:
n-1_ "
T
PZn = Z d)n,k+18k<l>n,k+1 =
k=0

—kgVsOAt—kgAY, 141 kyCOAt+kyCh k+1

n-1 ~ it

z kOVCGAt + keAXn’ K+1 kVSGAt + kVSn’ k+1 GZSZG GZSZV
nk+1

k=0 keke 0 szze GZVZV
0 k kG

For assumed decorrelated measurements (GZeZv = 0) and concentrating on the diagonal
(variances) in this expression we have:
~ 2 ~
GZQZQ(_ kOVSGAt - keAyﬂ, Kk + 1) + szzv(kvceAt + kVCn, K+ 1)
XX
2

n-1 ~ 2 ~
Syy| - 3 czeze(kcheAt +KoAXy k1)t czvzv(kvsem +KySn k+1)
o nk+1,2
00 k=0 Gzeze(keke )
oWz, nk+12

szzv(kvkv )

5.5.2 Measurement Contribution on a Straight Line Trajectory
On a straight trajectory along the x axis, we have A§/n k+1 = 0 and én, k+1 = O etc.

Hence, this simplifies to:

- ) 2_
C 0,7, (KyAt+kyCh i+ 1)
Oxx
n-1 ~ 2
Syy| - Z Gzeze(keVAt + keAXn, K+1)
o nk+1.2
06 k=0 Gzeze(keke )
o
|~ VV]z, nk+1.2
L szzv(kaV ) ]
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Also, by equations (46) (47) (48) (49) on this trajectory for constant velocity:

n-1 n-1 n-1
~ +1,k+1 ~n k+1 ~n, k -
Coks1 = At Y K = Atky Ky = ka"‘: Z(l—kv)p k
- "t p+1,k+1 ~nk+1 ~n, k "~ K "~ K
AXjgke1 = AS 3 Ky = Askg kg = ka - Z(l—ke)p_
=k+1 —

So the result is:

_ - _
~nk+12
zvz (kVAt) z (1+ky )
i g k=0
~nk+12
5 64,2, (KyAt+kyAtky = ) 2”‘1 kel 2
XX n-1 ~n, kK+1 2 szzv(keAs) (1+k6 )
Oyy _ z z Z, (k VAt +k Aske ) _ K =
n-
06 k=0 o, , (kok " 12 nk+12
o 076 Gy.7.( Z
VV]z, nk+1.2 070 _
Zva(k k ) k—
L - n-
nk+1 2
ZVZV(kV) z (k
L k=0 J

Assuming n is large, we can simplify the first two lines using equations (51) and (52):

pnk+1 ~n k+1

_kV %/—1 —ke kie_]_ (60)

Now, we must define two new sums for the third and fourth lines. First, for the third line:

n-1
z (kn k+1 - z (1_k9)2n 2(k+1) _ (1 K )2(n—1)+(1_ke)2(n—2)+ 41
k=0 k=0
n-1 n-1
z (kn k+1 z (1 I(V)Zn 2(k+1) _ (1 K )2(n—1)+(1_kv)2(n—2)+ 41
k=0 k=0

The rising powers of (1 -k,) « 1 quickly cause ny,4 to converge. When n is large relative to k,
Nge Is related to an essentially infinite geometric series. The same formula applies after
reinterpreting the common factor, so this converges to:

n, k+1 1 _ 1 _ 1 (61)

kg 1-ky)" ~ = =
zo( Eo( o 1-(1-kg)?2 1-(1-2kg+k3) Ko(2-Kp)
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Similiarly we have:

n-1 0
nk+1.2 2p 1 1 1 (62)
nyy = Y (kg ) = 3 (1-ky) P~ = =
1-(1-ky)2 1-(1-2k, +k3 ky(2-k
K=0 p=0 ( V) ( \V V) V( V)
So the result is:
[ n-1 ;
2 1
GZVZV(kVAt) (K)
k=0
Oxx n-1 N2
2
Oyy = szzv(keAS) Z(k_e)
Cpo k=1°
2 E
Wz, | Oz, K0 G
1
21
Oz (kV) ky(Z2-ky)

This simplifies to:

B 7 2
Gy nGZVZVAt
2
Oyy _ nGZVZVAS
699 Gzeze(ke/(z_ke))
1°vV|z, _szzv(kv/(Z - kV))_

5.5.3 Input Contribution

The contribution of the inputs is:

r ~ h r ~ 1T
“AYn k+1 Cnk+1 “AYn k+1 Cnk+1
n-1 n-1 ~ = ~ =
- T AXpk+1 Snk+1|lo. o AXq k+1 Snk+1
Pu. = 3 Onk+1S,Pnk+1 = Y At " oo Toal Al "
U, ’ ’ nk+1 nk+1
, 6. G ,
k=0 k=0 | Ko 0 aw “aa K :
nk+1 nk+1
| 0 ky/ | | 0 ky/ |

For assumed decorrelated measurements (o, , = 0)and concentrating on the diagonal (variances)
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in this expression we have:

~ 2 jod 2
Oyx Soo("AYn k+1) * OaalCnk+1)
n-1 . 2 ~ 2
Oyy| = 3 NG Opo(BXn k+1) T 052(Sn k+1)
(¢ nk+1.2
00 k=0 wa(ke )
c
VV]u nk+1.2
" Gaalky )

5.5.4 Input Contribution on a Straight Line Trajectory
On a straight trajectory along the x axis, we have Ayn k+1 = 0 and Sn k+1 = 0.

Hence, this simplifies to:

_GXX_ Gaa(cn, k + 1)
n-1 - 2
W =y add|Ceol kD)
Spo kn,k+1 2
k=0 G(,)(,)( 0 )
e}
VV|u nk+1.2
- aa(Ky )

We can reuse the simplifications from (59) and (60) above which are:

~n, k+1 1 ~n,k+1
Cn k+1 = Atky ~At(E\‘/—1) Axn k+1 = AS kg NAS(k_le_l)

Also from (61) and (62):

k+1 1 n, k+1 1
(kn s Ky =
Z kg2 -Ky) Z ( “k(2-ky)
The result is now:
_ R
_ _ (SaaAtz(ki - ) i 5 2_
Oy 1 v G, A (L= ky)/ky)
c " 2|lo Asz(l— ) 2 2 2
yy = Z AtT| P oo Kg = nAt"|o,,AS ((1-kg)/kg)
(¢}
00 k=0 - (kg’k+1)2 G o1/ (Kg(2-ky)))
(e (QI0]
OVV]u, Lke12 | 021/ (ky(2=ky))
cSaa(kv ) ]
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5.5.5 Total Error

The total error for vanishing initial conditions is the sum of the measurement and input
contributions:

_ , _ ;
2
Oy Oy Oy NGz,2,At N6, At ((1-ky)/ky)
2 2

Oyy| = |Oyy + Oyy = nGZeZeAS + Atz ncmmASZ((l ~kg)/Kq) (63)
Ogg Ogg ST GZeZe(ke/(z -kg)) 01/ (Kg(2-kg)))
(e} o (e}

vV Wz, [Wu o, o (ky/(2-ky)) | 01/ (ky(2-ky))) |

5.6 Tolerable Error Magnitudes

Stochastic position error (variance) becomes linear in time whereas heading and velocity error are
constants (because they are being measured directly on a regular basis).

If we allocate 1/4 of a position error budget to each sensor along its sensitive axis, we can write
relationships for computing the sensor errors from the specifications.

2
Sxx/4 _ |%2,2,Atn Oxx/4| _ y2| Caatta((1—ky)ky)

ny/4 GzezeAsxn ny/4

2

Solving leads to:

_GZeZe_ Gyy/ ASX,

Sy _ 1 O/ Atty, (64)
6y, 2 ny/(AtzAsxn/((l —kg)/Kg)2)

Gaa] | o /(AP /(1-ky)/kS) |

5.7 Validation

Equations (56) and (63) are the main results for this section. They can be used in the forms in
equations (57) and (64) in order to design a system to meet a specification. Due to the “large n”
approximations used, it seems prudent to validate these models against some real data. Two effects
can be expected from the assumptions used to simplify the models. First, when n is not large -
namely at the start of the system - the behavior may not be predicted exactly. Second, a small gains
assumption was used in summing many geometric series, so the formulas are not valid as the gain
approaches unity. Nor are they valid at zero gains due to division by zero. This latter zero gain
(unaided) case was modelled independently in earlier chapters. Both of these limitations can be
removed, at the cost of incerased complexity, by refining the formulas used for the coefficients n,
etc. which are used throughout the derivations.
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By way of validation, a Kalman filter was constructed and provided with corrupted data according
to a set of error specifications to compare how the error that occurs in practice compares with the
error that is predicted by the models.

The results only apply to a straight line trajectory so such a trajectory was used. The distance
between updates As is set to 1 meter. For an assumed velocity of 5 km/hr, this corresponds to a
time period of 0.72 seconds between readings. The goal terminal position error was 10 meters over
a period of 0.5 hours. Kalman gains k, and k,, were setto 0.1. This setting weights inertial sensing
roughly ten times as highly as heading and velocity sensing in order to reduce requirements on
velocity sensing. The following error magnitudes were used.

Table 2: Required Sensor Residual Biases And Standard Deviations

Residual Residual Standard Standard
Bias 6 Bias 6 Deviation Deviation o
Phase | Phase Il c Phase | Phase 11
Heading z, 0.052 deg 0.0033 deg 5.2 deg 0.9 deg
Velocity z,, 1.3 mm/s 0.1 mm/s 126 mm/s 22 mm/s
Angular Velocity o 0.008 deg/ | 0.0005 deg/ | 0.8 deg/sec | 0.15 deg/sec
sec sec
Acceleration a 0.02mg’s | 0.001 mg’s 2mg’s 0.35mg’s

5.7.1 Systematic Error

The simulation of systematic errors is straightforward. The heading, velocity, gyro, and
accelerometer inputs are corrupted by constant biases of the magnitudes given in Table 2 and the
resulting trajectory is compared to the nominal one. Figure 1 provides the result for the systematic
error model.

50 50

45— PositionError X 454 PositionEmorY

4.0 40 =

35 4 |— — & = 35 |

3.0

25 = 25

rror (m)
\
A\

wao =

15 15

10 1.0

05 e 0.5 >

0.0 v v
1000 1500
Time in Secs (iteration)

T T T
1000 1500 500

Time in Secs (Iteration)

0 500 2000 0 2000

Figure 1 Systematic Error Propagation Model Accuracy. The systematic error model is a
slight overestimate but it correctly models the linear growth of error with time.

The error model correctly captures the linear behavior with excellent precision.
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5.7.2 Random Error

The simulation of random errors is not so straightforward. The heading, velocity, gyro, and
accelerometer inputs were corrupted by (Gaussian) random perturbations of the magnitudes
(variances) given in Table 2 for every cycle of the filter and the resulting trajectory is compared to
the nominal one. This comparison was performed for 250 different simulations each comprised of

4 corrupted sensor signals provided every second for 1800 seconds. Figure 2 provides the result for
the random error model.
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Figure 2 Random Error Propagation Model Accuracy. The random error model is a slight
overestimate but it correctly models the square root growth of error with time.

Once again, the model correctly captures the square root growth of standard deviation with time.
The agreement is excellent in the short term and slight deviations in the long term are likely due to
insufficient (and computationally expensive to generate) Monte Carlo data.

Overall, however, both models are clearly more than adequate for predicting system performance
and deriving sensor specification on systematic and random errors.
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