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ABSTRACT

Automated visual-tracking systems of stem cell populations

in vitro allow for high-throughput analysis of time-lapse

phase-contrast microscopy. In these systems, detection of

mitosis, or cell division, is critical to tracking performance

as mitosis causes branching of the trajectory of a mother cell

into the two trajectories of its daughter cells. Recently, one

mitosis detection algorithm showed its success in detecting

the time and location that two daughter cells first clearly ap-

pear as a result of mitosis. This detection result can therefore

helps trajectories to correctly bifurcate and the relations be-

tween mother and daughter cells to be revealed. In this paper,

we demonstrate that the functionality of this recent mitosis

detection algorithm significantly improves state-of-the-art

cell tracking systems through extensive experiments on 48

C2C12 myoblastic stem cell populations under four different

conditions.

Index Terms— Mitosis detection, Stem cell tracking,

Cell image analysis, Cell lineage construction

1. INTRODUCTION

Automated systems for visual-tracking of cell populations

in vitro have enormous potential for stem cell biology and

stem cell engineering because these systems allow for high-

throughput analysis of time-lapse microscopy images [1, 2,

3], whereas manual analysis is often intractable. In particular,

cell tracking systems adopting phase-contrast microscopy are

attractive due to its non-destructivity so that such systems

enable continuous monitoring of live and intact cells. These

tracking systems can provide quantitative analysis of stem

cell behavior such as proliferation and migration, discovery

of optimal conditions for stem cell expansion, as well as

quality assurance/control measures of stem cell expansions.

Mitosis is the process whereby the genetic material of a

eukaryotic cell is equally distributed between daughter cells

through nuclear division. In automated cell tracking systems,

mitosis detection is critical for tracking performance because

cell division, which leads to the branching of tracking trajec-

tories, is a major cause of tracking failure. Mitosis detection

compensates for the failure of cell region segmentation due to

the changes in cell shape, size, and brightness during mitosis

as well. With precise mitosis detection, quality cell lineage

construction can also be achieved since the spatio-temporal

information on cell birth helps to reveal the relation between

mother and daughter cells.

Existing mitosis detection methods based on computer vi-

sion techniques that adopt phase-contrast microscopy time-

lapse microscopy images can be categorized into two groups:

tracking-based methods [4, 5, 6, 7] and tracking-free meth-

ods [8, 9, 10, 11]. Tracking-based methods typically first

track cells in the field of view; their morphological changes

are then examined along the trajectories to detect mitosis [4,

5]. In other tracking-based methods, mother and daughter

cell regions or their trajectories are first obtained; while they

are linked to each other, mitotic events are implicitly or ex-

plicitly detected [6, 7]. Tracking-free methods often involve

the learning of visual characteristics of mitotic cells based on

human-annotated samples [8, 10, 11]. To reduce search space

without tracking from large-sized original image sequences

to small-sized patch sequences, several patch sequence con-

struction schemes were also developed [9, 10, 11].

Recently, Huh et al. [11] proposed a mitosis detection

approach for stem cell populations in phase-contrast mi-

croscopy images and demonstrated success in detecting birth
event, which is defined as the time and location at which two

daughter cells first clearly appear as a result of mitosis. After

constructing candidate patch sequences based on brightness,

a probabilistic model named Event Detection Conditional

Random Field (EDCRF) was applied to determine whether

and at which patch each candidate sequence contains a birth

event. Experimental results on C3H10T1/2 and C2C12 stem

cell populations showed that the effectiveness and efficiency

of this approach.

In this paper, we present a cell tracking algorithm that

incorporates the functionality of this mitosis detection algo-

rithm. The birth event information provided by the mitosis

detection can significantly improve the performance of cell

tracking, resulting in more quality cell lineage construction.

In experiments, we compare the systems involving and not

involving the mitosis detection on 48 C2C12 myoblastic stem

cell populations under four different conditions. These exten-

sive experiments show that the precise birth event detection
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Fig. 1. Summary of the mitosis detection procedure [11]. (a) Candidate patch sequence extraction from consecutive phase-

contrast microscopy image frames based on brightness. (The original images are much larger than these examples.) (b) Exam-

ples of candidate patch sequences. (c) Unique scale gradient histograms computed for each patch in candidate patch sequences.

(d) Identification of mitosis occurrence and temporal localization of a birth event using Event Detection Conditional Random

Field (EDCRF) [11].

considerably reduces false branching as well as more accu-

rately identifies mother-daughter relations.

The remainder of this paper is organized as follows. We

summarize the process of the mitosis detection algorithm [11]

in Section 2. We then present a cell tracking system incorpo-

rating the functionality of this mitosis detection algorithm in

Section 3. The experimental setup and results with discus-

sions are presented in Sections 4 and 5, followed by conclu-

sions in Section 6.

2. MITOSIS DETECTION

In this section, we briefly review the mitosis detection

method [11], the functionality of which is adopted for our

cell tracking system. For more details, we refer to [11].

Given a phase-contrast microscopy image sequence, the

background of the images, which is simply computed as the

average image of all images in the sequence, is subtracted

from each image in order to correct intrinsic illumination

variation in phase-contrast microscopy images. After back-

ground subtraction, candidate patch sequences, which may

contain birth events, are extracted from the images as shown

in Figures 1(a) and (b); as a result, mitotic events are spatially

localized as well as the search space is significantly reduced.

Specifically, bright square patches are first extracted from

each image since mitotic cells are typically much brighter

than non-mitotic cells. Candidate patch sequences are then

constructed by linking spatially overlapped bright patches in

consecutive frames. The threshold of brightness for candidate

patches is empirically set not to miss actual mitotic events.

After patch sequence construction, unique scale gradient

histograms are computed as visual features for each candi-

date patch in the sequences as shown in Figure 1(c). Unique

scale gradient histograms reflect the characteristics of phase-

contrast microscopy images, resulting in good performance

of mitosis detection. In detail, after dividing each patch into

4×4 subregions, gradient magnitudes weighted by a Gaussian

function are accumulated into 4 bins along the orientations at

each subregion. After 4×4×4=64 features are computed for

each patch, L2 normalization is applied to the feature vectors.

Now, the problem reduces to determining whether each

candidate contains a birth event and which frame the birth

event is located in. For these two decision tasks, a probabilis-

tic model named Event Detection Conditional Random Field

(EDCRF) was proposed. The graphical representation of ED-

CRF is illustrated in Figure 1(d).

Suppose that x = (x1, x2, · · · , xm) is a candidate patch

sequence that consists of m patches where xj denotes the j-th

patch (m can be varied for different sequences.). y is defined

as the label of x:

y =

{
p if the p-th patch of x contains a birth event

0 if there exists no birth event in x
(1)

We assume hidden variables h = (h1, h2, · · · , hm) and

sub-labels s = (s1, s2, · · · , sm) where hj and sj correspond

to xj . When a sequence label y is given, the sub-labels
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s1, s2, · · · , sm are defined as

sj =

⎧⎪⎨
⎪⎩

N if y = 0 · · · no event
B if y > 0 and j < y · · · before event
A if y > 0 and j ≥ y · · · after event

(2)

Under these definitions, we define a latent conditional

model for sequence x:

P (y|x, θ) = P (s|x, θ) =
∑
h

P (s|h,x, θ)P (h|x, θ) (3)

where θ is a set of parameters of the model. This model can

be further simplified by restricting that each sub-class label s
is associated only with hidden states in a disjoint set Hs as

follows:

P (y|x, θ) =
∑

h:∀hj∈Hsj

P (h|x, θ) (4)

where P (h|x, θ) is defined using the typical conditional ran-

dom field (CRF) formulation [12] with state and transition

functions. We refer to [11] for the details.

Given n candidate patch sequence and label pairs {(x1, y1)
, (x2, y2), · · · , (xn, yn)} as training samples, the following

regularized log-likelihood function is maximized for learning

parameters,

L(θ) =
n∑

i=1

log P (yi|xi, θ) − 1
2σ2

||θ||2 (5)

where θ is a set of model parameters and σ is the variance of

a Gaussian prior.

Given a new patch sequence x consisting of m patches,

conditional probabilities with all possible y, i.e., P (y =
0|x, θ∗), · · · , and P (y = m|x, θ∗), can be computed as

P (y = 0|x, θ∗) = P (s1 = N |x, θ∗) =
∑

h1∈HN

P (h1|x, θ∗),

P (y = 1|x, θ∗) = P (s1 = A|x, θ∗) =
∑

h1∈HA

P (h1|x, θ∗),

P (y = j|x, θ∗) for j = 2, ...,m,

= P (s1 = B, · · · , sj−1 = B, sj = A, · · · , sm = A|x, θ∗)

=
∑

hj−1∈HB

P (hj−1|x, θ∗) −
∑

hj∈HB

P (hj |x, θ∗) (6)

where θ∗ is the optimal model parameter obtained from the

training samples. Based on these probabilities, EDCRF si-

multaneously determines the occurrence of mitosis and the

temporal location of the birth event as follows:

y∗ =

{
0 if P (y = 0|x, θ∗) > 0.5
arg maxy=1,··· ,m P (y|x, θ∗) otherwise

(7)

3. CELL TRACKING SYSTEM

In this section, we present a tracking system that incorporates

the functionality of the mitosis detection algorithm described

in the previous section1. For each phase-contrast microscopy

image, blobs that are likely to correspond to cells are first seg-

mented by a recently developed cell segmentation algorithm

for phase-contrast microscopy [13].

Based on the segmented blobs, frame-by-frame data as-

sociation is performed by considering hypotheses reflecting

stem cell behaviors: migration, exit, entrance, clustering, and

mitosis. More formally, let ai be the i-th detected cell in the

previous frame and bj be the j-th blob in the current frame.

Then, likelihoods of the five cases are computed as follows:

• one-to-one: a cell migrates in the field of view.

�1→1(ai, bj) = e−
||f(ai)−f(bj)||

σ (8)

• one-to-none: a cell exits from the field of view.

�1→0(ai) = e−
d(ai)

λ (9)

• none-to-one: a cell enters the field of view.

�0→1(bj) = e−
d(bj)

λ (10)

• many-to-one: multiple cells overlap.

�n→1(ai1 ,· · ·, aiK
, bj) = e−

||f(
⋃K

k=1 aik
)−f(bj)||

σ (11)

• one-to-two: a cell divides into two cells.

�1→2(ai, bj1 , bj2) = e−
||f(ai)−f(bj1

∪bj2
)||

σ (12)

where f(a) is a feature vector extracted from blob a, which

consists of the center position of the blob, the Fourier de-

scriptors of the blob contour, and the intensity histogram of

the blob region; d(a) is the distance between the center of

blob a and the image boundary; and σ and λ are free parame-

ters. In order to reduce the number of hypotheses considered

in frame-by-frame data association, we compute the likeli-

hoods between the cells in the previous and current frames

only when their distance is less than a certain threshold. Sim-

ilarly, the hypotheses regarding cell exit and entrance are con-

sidered only for the cells which are located closely to the im-

age boundary.

The birth event information detected by the mitosis detec-

tion algorithm [11] is used to establish hypotheses as follows.

1It is worth mentioning that this system is an improved version of the cell

tracking system developed by our group, which was recently introduced in

[14], in that birth events are more accurately detected using EDCRF. In this

paper, we describe our tracking system focusing on how mitosis detection

contributes to cell tracking, which was not sufficiently analyzed nor discussed

in [14].
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The last hypothesis regarding mitosis often produces a high

likelihood of cell division although no mitosis occurs, e.g.,

when a lost cell from cell detection/tracking appears closely

to another cell or more than one blob region are detected

within one cell during segmentation. On the other hand, the

likelihood may sometimes be too low even though mitosis oc-

curs, e.g., when cell region segmentation fails during mitosis

due to the changes in cell shape, size, and brightness and de-

tects daughter cell regions after the cells move away from the

birth event location. To resolve these confusions, we first ex-

plicitly detect birth events using the mitosis detection algo-

rithm. For each birth event, we then find the nearest cell from

the birth location and change its status as potentially mitotic
in several following frames. The mitosis hypothesis is consid-

ered only for these potentially mitotic cells. The several frame

delay is allowed because daughter cells are often attached to

each other in several frames right after the birth event; auto-

mated detection and segmentation methods can hardly sepa-

rate individual cells in such a case.

After obtaining all hypotheses between two consecutive

frames, we find the best combination of hypotheses as fol-

lows. Suppose that there are N1 cells and N2 blobs in the

previous and current frames, respectively, and M hypotheses

are established between the two frames. We build a matrix

C = [Cij ], which is an M × (N1 + N2) binary matrix where

Cij = 1 if and only if the i-th hypothesis is involved with the

j-th element of the union of N1 cells and N2 blobs. We then

solve the following integer programming problem.

arg max
x

pT x (13)

s.t. (CT x)i ≤ 1 for i = 1, · · · , N1 + N2

xj ∈ {0, 1} for j = 1, · · · , M

where p is an M × 1 vector containing all the likelihoods and

(CT x)i is the i-th element of CT x. Solving this optimization

problem yields an M × 1 binary vector x where xi = 1 indi-

cates that the i-th hypothesis is selected as an element of the

best combination. Note that each cell or blob can be selected

at most once due to the constraint (CT x)i ≤ 1.

After the best association is found, if there are remaining

cells in the previous frame, the cells are considered again for

the association between the next two frames. In other words,

the cells are assumed to be undetected in the current frame

and expected to be detected in the following frame. If a track

is continuously not linked with a cell for 10 frames, the track

is eliminated. As to each of the remaining cells in the current

frame, we investigate its neighboring cells. If there is a poten-

tially mitotic cell nearby, the remaining cell is linked with the

potentially mitotic cell as a daughter cell; otherwise, a tempo-

rary track initiates from the remaining cell. Each temporary

track is confirmed as a real track after 10 frames if the track

is linked with cells in most of the 10 frames.

4. EXPERIMENTS

4.1. Data and Ground truth

During the growth of stem cells, phase-contrast microscopy

cell images were acquired every 5min using a Zeiss Axiovert

T135V microscope (Carl Zeiss Microimaging, Thornwood,

NY) equipped with a 5X, 0.15 N.A. phase-contrast objective,

a custom-stage incubator, and the InVitro software (Media

Cybernetics Inc., Bethesda, MD).

In order to obtain training samples of birth events, one

phase-contrast microscopy image sequence of C2C12 cells

consisting of 1013 images (approx. 84.4hrs) was acquired

under control condition. For evaluation of tracking per-

formance, twelve image sequences of C2C12 cells were

acquired under each of four different conditions: control,

FGF2, BMP2, and FGF2+BMP2; as a result, total 48 image

sequences, each of which consists of 600 images (50hrs),

were acquired. Each of these images contains 1392×1040

pixels with a resolution of 1.3μm/pixel.

Manual annotation of birth events was performed on the

first long C2C12 image sequence; as a result, total 673 birth

event samples were obtained. For each birth event, the center

of the boundary between the two daughter cells was marked

when the boundary is first clearly observed. In order to evalu-

ate tracking performance, for each of 48 sequences, three cells

are randomly selected in the initial frame and the cells and

their progeny cells are manually tracked. For manual track-

ing, the center of each cell is marked.

4.2. Evaluation

To measure the contribution of the mitosis detection to cell

tracking, we compare the performances of two tracking sys-

tems: tracking systems without and with the mitosis detec-

tion. For the tracking system without mitosis detection, the

hypothesis regarding mitosis is considered for every cell and

a temporary track initiates from every remaining cell in the

current frame after association due to the absence of informa-

tion on mitosis occurrence and location.

To evaluate the performance of tracking systems, we mea-

sure how much effort is required to obtain the perfect cell lin-

eage tree from the lineage tree constructed by tracking algo-

rithms; lineage tree construction is one of the most important

goals of cell tracking. To quantitatively calculate this effort,

we consider four types of errors: missed mother-daughter re-

lations, switched tracks, untracked frames, and mistracked

frames. Figure 2 illustrates these four types of errors. To ob-

tain the perfect cell lineage from tracking results, all of these

errors are required to be fixed.

Among these errors, we count the occurrences of the first

two errors, missed mother-daughter relations and switched

tracks, since they are related to mitosis detection. If actual mi-

tosis is not detected, the trajectory of the mother cell does not

branch and thus the relation between mother-daughter cells
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Fig. 2. Illustration of four types of errors that need to be fixed

to obtain the perfect lineage tree from tracking results: (a)

missed mother-daughter relations (1-2 and 1-4), (b) switched

track (from 2 to 3), (c) untracked frames (between two 4s),

and (d) mistracked frames. The lineage tree consisting of

black thin lines represents ground truth. The red thick lines

above the ground truth lineage tree represent tracking results.

The numbers above tracks indicate track IDs. Among these

errors, the errors (a) and (b) are related to mitosis detection.

is not captured. On the other hand, if mitosis is incorrectly

detected when no mitosis occurs, the trajectory of the cell

wrongly branches and thus the track of the cell is switched.

When considering mother-daughter relations, we allow ten

frame delay because the regions of two daughter cells are hard

to be separately identified right after cell division. In other

words, mother-daughter relations are considered to be missed

if they are not discovered within ten frames after the daughter

cells are born. The other two errors, untracked frames and

mistracked frames, are not relevant to mitosis detection, but

to cell region detection and segmentation; thus, these errors

remain regardless of mitosis detection. Since the objective of

this paper is to show the contribution of mitosis detection to

cell tracking systems, we do not report these errors.

5. RESULTS AND DISCUSSIONS

Cell tracking accuracy significantly increased after incorpo-

rating the birth event information provided by the mitosis

detection algorithm [11]; the numbers of missed mother-

daughter relations and switched tracks were considerably

reduced as shown in Figure 3 and Table 1. Compared to

the tracking system without mitosis detection, the system

with mitosis detection achieved on average 39%, 28%, 51%,

and 46% improvements in detecting mother-daughter cell

relations and 16%, 11%, 30%, and 26% improvements in

reducing switched tracks for control, FGF2, BMB2, and

FGF2+BMP2 conditions, respectively. In total, 42% and

21% improvements were achieved in terms of these two mea-

sures. The p-values obtained by ratio paired t-tests confirm

that these improvements are statistically significant. The per-

formance improvement in terms of missed mother-daughter

relations is greater than that of switched tracks because track-

ing switching is only partially related to mitosis detection in

that it can occur in other situations, such as cell overlapping.

The advantages of precise mitosis detection in cell track-

ing systems can be summarized as follows. First, precise mi-

tosis detection reduces the numbers of undetected mitosis as

well as mitosis candidates. Without mitosis detection, much

more hypotheses regarding mitosis may be established, which

degrades the efficiency of cell tracking systems, particularly

when cells are clustered together. In addition, mitosis which

is not captured by the association with the mitosis hypothe-

sis can be detected in the track maintenance step if mitosis

detection is involved. Second, mitosis detection is helpful to

correctly identify a mitotic cell and the mother-daughter re-

lations. Without mitosis detection, a neighboring cell is of-

ten determined as a mother cell particularly when the cell is

in contact with one of the daughter cells; on the other hand,

precise information on birth location identifies a real mitotic

cell. Lastly, mitosis detection makes cell tracking more robust

to incorrect segmentation. In segmentation, artifacts or parts

of background are often detected as cell regions; in addition,

one cell is sometimes detected by more than one cell region.

If either case lasts for several frames, a mitosis hypothesis is

generally considered with a high likelihood to handle addi-

tional cell regions. Mitosis detection avoids track switching

by excluding the mitosis hypothesis in such situations.

The lineage tree in Figure 4(a) clearly demonstrates that

undetected and incorrectly detected mitosis are major causes

of tracking failure. The precise birth event detection reduces

missed mother-daughter relations due to undetected mitosis

as well as false branching due to incorrectly detected mitosis,

resulting in more accurate tracking and lineage construction

as shown in Figure 4(b). Figure 5 shows sample images il-

lustrating the tracking results of the systems without and with

mitosis detection. As shown in the figure, the tracking system

with mitosis detection correctly reveals mother-daughter rela-

tions when another cell is located nearby and cell segmenta-

tion is incorrectly performed while the tracking system with-

out mitosis detection fails.

6. CONCLUSIONS

In this paper, we show that cell tracking systems can be con-

siderably improved by the mitosis detection that precisely lo-

calizes the time and location of cell birth. Extensive experi-

ments on 48 C2C12 stem cell populations clearly demonstrate

that mitosis detection helps to avoid false branching of cell

tracking as well as more accurately reveal mother-daughter

relations, significantly improving tracking performance and

reducing human effort to construct quality stem cell lineages.
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Fig. 3. Tracking performance comparison between tracking systems without (x-axis) and with (y-axis) mitosis detection in

terms of the numbers of missed mother-daughter relations (left) and switched tracks (right). The points below the diagonal lines

indicate that tracking is improved through the mitosis detection. After the mitosis detection is incorporated, missed mother-

daughter cell relations and switched tracks were reduced in 47 out of 48 sequences and in 37 out of 48 sequences, respectively.

Error (a): missed mother-daughter relation

Control FGF2 BMP2 FGF2+BMP2 Total

Geometric mean of error ratios (B/A) 0.61 0.72 0.49 0.54 0.58

Geometric STD of error ratios (B/A) 1.37 1.23 1.87 1.60 1.58

p-value 0.0002 0.0001 0.0014 0.0006 <0.0000

Error (b): switched track

Control FGF2 BMP2 FGF2+BMP2 Total

Geometric mean of error ratios (B/A) 0.84 0.89 0.70 0.74 0.79

Geometric STD of error ratios (B/A) 1.41 1.19 1.28 1.35 1.33

p-value 0.0560 0.0209 0.0003 0.0035 <0.0000

A: number of errors without mitosis detection, B: number of errors with mitosis detection

Table 1. Tracking performance comparison between tracking systems without and with mitosis detection in terms of the

geometric mean and STD of the error ratios. When the mitosis detection is incorporated, the number of missed mother-daughter

relations was reduced on average by 39%, 28%, 51%, and 46%; the number of switched tracks by 16%, 11%, 30%, and 26%

in control, FGF2, BMP2, and FGF2+BMP2 conditions, respectively; in total, 42% and 21% performance improvements were

achieved in terms of the numbers of errors (a) and (b), respectively. The p-values obtained by ratio paired t-tests show that these

performance improvements due to the mitosis detection is statistically significant.
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