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ABSTRACT
Recent research in multi-robot exploration and mapping has
focused on sampling environmental fields, which are typi-
cally modeled using the Gaussian process (GP). Existing
information-theoretic exploration strategies for learning GP-
based environmental field maps adopt the non-Markovian
problem structure and consequently scale poorly with the
length of history of observations. Hence, it becomes compu-
tationally impractical to use these strategies for in situ, real-
time active sampling. To ease this computational burden,
this paper presents a Markov-based approach to efficient
information-theoretic path planning for active sampling of
GP-based fields. We analyze the time complexity of solving
the Markov-based path planning problem, and demonstrate
analytically that it scales better than that of deriving the
non-Markovian strategies with increasing length of planning
horizon. For a class of exploration tasks called the transect
sampling task, we provide theoretical guarantees on the ac-
tive sampling performance of our Markov-based policy, from
which ideal environmental field conditions and sampling task
settings can be established to limit its performance degrada-
tion due to violation of the Markov assumption. Empirical
evaluation on real-world temperature and plankton density
field data shows that our Markov-based policy can generally
achieve active sampling performance comparable to that of
the widely-used non-Markovian greedy policies under less
favorable realistic field conditions and task settings while
enjoying significant computational gain over them.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, stochas-
tic processes; I.2.8 [Problem Solving, Control Methods,
and Search]: Dynamic programming; I.2.9 [Robotics]:
Autonomous vehicles

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-robot exploration and mapping, adaptive sampling,
active learning, Gaussian process, non-myopic path planning

Cite as: Active Markov Information-Theoretic Path Planning for
Robotic Environmental Sensing, Kian Hsiang Low, John M. Dolan, and
Pradeep Khosla, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonen-
berg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Research in multi-robot exploration and mapping has re-

cently progressed from building occupancy grids [14] to sam-
pling spatially varying environmental phenomena [6, 7], in
particular, environmental fields (e.g., plankton density, pol-
lutant concentration, temperature fields) that are charac-
terized by continuous-valued, spatially correlated measure-
ments (see Fig. 1). Exploration strategies for building occu-
pancy grid maps usually operate under the assumptions of
(a) discrete, (b) independent cell occupancies, which impose,
respectively, the following limitations for learning environ-
mental field maps: these strategies (a) cannot be fully in-
formed by the continuous field measurements and (b) cannot
exploit the spatial correlation structure of an environmental
field for selecting observation paths. As a result, occupancy
grid mapping strategies are not capable of selecting the most
informative observation paths for learning an environmental
field map.

Furthermore, occupancy grid mapping strategies typically
assume that range sensing is available. In contrast, many in
situ environmental and ecological sensing applications (e.g.,
monitoring of ocean phenomena, forest ecosystems, or pollu-
tion) permit only point-based sensing, thus making a high-
resolution sampling of the entire field impractical in terms
of resource costs (e.g., energy consumption, mission time).
In practice, the resource cost constraints restrict the spatial
coverage of the observation paths. Fortunately, the spatial
correlation structure of an environmental field enables a map
of the field (in particular, its unobserved areas) to be learned
using the point-based observations taken along the resource-
constrained paths. To learn this map, a commonly-used
approach in spatial statistics [15] is to assume that the envi-
ronmental field is realized from a probabilistic model called
the Gaussian process (GP) (Section 3.2). More importantly,
the GP model allows an environmental field to be formally
characterized and consequently provides formal measures of
mapping uncertainty (e.g., based on mean-squared error [6]
or entropy criterion [7]) for directing a robot team to explore
highly uncertain areas of the field. In this paper, we focus on
using the entropy criterion to measure mapping uncertainty.

How then does a robot team plan the most informative
resource-constrained observation paths to minimize the map-
ping uncertainty of an environmental field? To address this,
the work of [7] has proposed an information-theoretic multi-
robot exploration strategy that selects non-myopic observa-
tion paths with maximum entropy. Interestingly, this work
has established an equivalence result that the maximum-
entropy paths selected by such a strategy can achieve the



dual objective of minimizing the mapping uncertainty de-
fined using the entropy criterion. When this strategy is ap-
plied to sampling a GP-based environmental field, it can be
reduced to solving a non-Markovian, deterministic planning
problem called the information-theoretic multi-robot adap-
tive sampling problem (iMASP) (Section 3). Due to the
non-Markovian problem structure of iMASP, its state size
grows exponentially with the length of planning horizon. To
alleviate this computational difficulty, an anytime heuristic
search algorithm called Learning Real-Time A∗ [2] is used to
solve iMASP approximately. However, this algorithm does
not guarantee the performance of its induced exploration
policy. We have also observed through experiments that
when the joint action space of the robot team is large or the
planning horizon is long, it no longer produces a good pol-
icy fast enough. Even after incurring a huge amount of time
and space to improve the search, its resulting policy still
performs worse than the widely-used non-Markovian greedy
policy, the latter of which can be derived efficiently by solv-
ing the myopic formulation of iMASP (Section 3.3).

Though the anytime and greedy algorithms provide some
computational relief to solving iMASP (albeit approximately),
they inherit iMASP’s non-Markovian problem structure and
consequently scale poorly with the length of history of ob-
servations. Hence, it becomes computationally impractical
to use these non-Markovian path planning algorithms for in
situ, real-time active sampling performed (a) at high resolu-
tion (e.g., due to high sensor sampling rate or large sampling
region), (b) over dynamic features of interest (e.g., algal
blooms, oil spills), (c) with resource cost constraints (e.g.,
energy consumption, mission time), or (d) in the presence of
dynamically changing external forces translating the robots
(e.g., ocean drift on autonomous boats), thus requiring fast
replanning. For example, the deployment of autonomous
underwater vehicles (AUVs) and boats for ocean sampling
poses the above challenges/issues among others [4].

To ease this computational burden, this paper proposes a
principled Markov-based approach to efficient information-
theoretic path planning for active sampling of GP-based en-
vironmental fields (Section 4), which we develop by assum-
ing the Markov property in iMASP planning. To the proba-
bilistic robotics community, such a move to achieve time effi-
ciency is probably anticipated. However, the Markov prop-
erty is often imposed without carefully considering or for-
mally analyzing its consequence on the performance degra-
dation while operating in non-Markovian environments. In
particular, to what extent does the environmental structure
affect the performance degradation due to violation of the
Markov assumption? Motivated by this lack of treatment,
our work in this paper is novel in demonstrating both theo-
retically and empirically the extent of which the degradation
of active sampling performance depends on the spatial cor-
relation structure of an environmental field. An important
practical consequence is that of establishing environmen-
tal field conditions under which the Markov-based approach
performs well relative to the non-Markovian iMASP-based
policy while enjoying significant computational gain over it.
The specific contributions of our work include:
• analyzing the time complexity of solving the Markov-based

information-theoretic path planning problem, and show-
ing analytically that it scales better than that of deriv-
ing the non-Markovian strategies with increasing length
of planning horizon (Section 4.1);

• providing theoretical guarantees on the active sampling
performance of our Markov-based policy (Section 4.2) for
a class of exploration tasks called the transect sampling
task (Section 2), from which various ideal environmental
field conditions and sampling task settings can be estab-
lished to limit its performance degradation;
• empirically evaluating the active sampling performance

and time efficiency of our Markov-based policy on real-
world temperature and plankton density field data under
less favorable realistic environmental field conditions and
sampling task settings (Section 5).

2. TRANSECT SAMPLING TASK
Fig. 1 illustrates the transect sampling task introduced

in [11, 13] previously. A temperature field is spatially dis-
tributed over a 25 m × 150 m transect that is discretized into
a 5 × 30 grid of sampling locations comprising 30 columns,
each of which has 5 sampling locations. It can be observed
that the number of columns is much greater than the number
of sampling locations in each column; this observed prop-
erty is assumed to be consistent with every other transect.
The robots are constrained to simultaneously explore for-
ward one column at a time from the leftmost to the right-
most column of the transect such that each robot samples
one location per column for a total of 30 locations. So, each
robot’s action space given its current location consists of
moving to any of the 5 locations in the adjacent column on
its right. The number of robots is assumed not to be larger
than the number of sampling locations per column. We as-
sume that an adversary chooses the starting robot locations
in the leftmost column and the robots will only know them
at the time of deployment; such an adversary can be the
dynamically changing external forces translating the robots
(e.g., ocean drift on autonomous boats) or the unknown ob-
stacles occupying potential starting locations. The robots
are allowed to end at any location in the rightmost column.

In practice, the constraint on exploring forward in a tran-
sect sampling task permits the planning of less complex ob-
servation paths that can be achieved more reliably, using
less sophisticated control algorithms, and by robots with
limited maneuverability (e.g., unmanned aerial vehicles, au-
tonomous boats and AUVs [9]). For practical applications,
while the robot is in transit from its current location to a
distant planned waypoint [4, 13], this task can be performed
to collect the most informative observations during transit.
In monitoring of ocean phenomena and freshwater quality
along rivers, the transect can span a plankton density or
temperature field drifting at a constant rate from right to
left and the autonomous boats are tasked to explore within
a line perpendicular to the drift. As another example, the
transect can be the bottom surface of ship hull or other mar-
itime structure to be inspected and mapped by AUVs.

3. NON-MARKOVIAN PATH PLANNING

3.1 Notations and Preliminaries
Let U be the domain of the environmental field represent-

ing a set of sampling locations in the transect such that each
location u ∈ U yields a measurement zu. The columns of the
transect are indexed in an increasing order from left to right
with the leftmost column being indexed ‘0’. Each planning
stage is associated with a column from which every robot in
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Figure 1: Transect sampling task on a temperature
field (measured in ◦C) spatially distributed over a
25 m × 150 m transect that is discretized into a 5×30
grid of sampling locations (white dots).

the team selects and takes an observation (i.e., comprising
a pair of location and its measurement). Let k denote the
number of robots in the team. In each stage i, the team of k
robots then collects from column i a total of k observations,
which are denoted by a pair of vectors xi of k locations and
zxi of the corresponding measurements. Let x0:i and zx0:i

denote vectors comprising the histories of robots’ sampling
locations and corresponding measurements over stages 0 to
i (i.e., concatenations of x0, x1, . . . , xi and zx0 , zx1 , . . . , zxi),
respectively. Let Zu, Zxi , and Zx0:i be random measure-
ments that are associated with the realizations zu, zxi , and
zx0:i , respectively.

3.2 Gaussian Process-Based Environmental Field
The GP model can be used to formally characterize an

environmental field as follows: the environmental field is de-
fined to vary as a realization of a GP. Let {Zu}u∈U denote
a GP, i.e., every finite subset of {Zu}u∈U has a multivariate
Gaussian distribution [8]. The GP is fully specified by its

mean µu
4
= E[Zu] and covariance σuv

4
= cov[Zu, Zv] for all

u, v ∈ U . We assume that the GP is second-order station-
ary, i.e., it has a constant mean and a stationary covariance
structure (i.e., σuv is a function of u− v for all u, v ∈ U). In
particular, its covariance structure is defined by the widely-
used squared exponential covariance function [8]

σuv
4
= σ2

s exp


−1

2
(u− v)>M−2(u− v)

ff
+ σ2

nδuv (1)

where σ2
s is the signal variance, σ2

n is the noise variance,
M is a diagonal matrix with length-scale components `1
and `2 in the horizontal and vertical directions of a tran-
sect, respectively, and δuv is a Kronecker delta of value 1
if u = v, and 0 otherwise. Intuitively, the signal and noise
variances describe, respectively, the intensity and noise of
the field measurements while the length-scale can be in-
terpreted as the approximate distance to be traversed in
a transect for the field measurement to change considerably
[8]; it therefore controls the degree of spatial correlation or
“similarity” between field measurements. In this paper, the
mean and covariance structure of the GP are assumed to be
known. Given that the robot team has collected observa-
tions x0, zx0 , x1, zx1 , . . . , xi, zxi over stages 0 to i, the distri-
bution of Zu remains Gaussian with the following posterior
mean and covariance

µu|x0:i = µu + Σux0:iΣ
−1
x0:ix0:i{zx0:i − µx0:i}

> (2)

σuv|x0:i = σuv − Σux0:iΣ
−1
x0:ix0:iΣx0:iv (3)

where µx0:i is a row vector with mean components µw for
every location w of x0:i, Σux0:i is a row vector with covari-
ance components σuw for every location w of x0:i, Σx0:iv is
a column vector with covariance components σwv for every
location w of x0:i, and Σx0:ix0:i is a covariance matrix with
components σwy for every pair of locations w, y of x0:i. Note
that the posterior mean µu|x0:i (2) is the best unbiased pre-
dictor of the measurement zu at unobserved location u. An

important property of GP is that the posterior covariance
σuv|x0:i (3) is independent of the observed measurements
zx0:i ; this property is used to reduce iMASP to a determin-
istic planning problem as shown later.

3.3 Deterministic iMASP Planning
Supposing the robot team starts in locations x0 of leftmost

column 0, an exploration policy is responsible for direct-
ing it to sample locations x1, x2, . . . , xt+1 of the respective
columns 1, 2, . . . , t + 1 to form the observation paths. For-

mally, a non-Markovian policy is denoted by π
4
= 〈π0(x0:0 =

x0), π1(x0:1), . . . , πt(x0:t)〉 where πi(x0:i) maps the history
x0:i of robots’ sampling locations to a vector ai ∈ A(xi) of
robots’ actions in stage i (i.e., ai ← πi(x0:i)), and A(xi) is
the joint action space of the robots given their current lo-
cations xi. We assume that the transition function τ(xi, ai)
deterministically (i.e., no localization uncertainty) moves
the robots to their next locations xi+1 in stage i + 1 (i.e.,
xi+1 ← τ(xi, ai)). Putting πi and τ together yields the as-
signment xi+1 ← τ(xi, πi(x0:i)).

The work of [7] has proposed a non-Markovian policy π∗

that selects non-myopic observation paths with maximum
entropy for sampling a GP-based field. To know how π∗

is derived, we first define the value under a policy π to be
the entropy of observation paths when starting in x0 and
following π thereafter:

V π0 (x0)
4
= H[Zx1:t+1 |Zx0 , π]

= −
Z
f(zx0:t+1 |π) log f(zx1:t+1 |zx0 , π) dzx0:t+1

(4)
where f denotes a Gaussian probability density function.
When a non-Markovian policy π is plugged into (4), the
following (t+1)-stage recursive formulation results from the
chain rule for entropy and xi+1 ← τ(xi, πi(x0:i)):

V πi (x0:i) = H[Zxi+1 |Zx0:i , πi] + V πi+1(x0:i+1)

= H[Zτ(xi,πi(x0:i))|Zx0:i ] + V πi+1((x0:i, τ(xi, πi(x0:i))))

V πt (x0:t) = H[Zxt+1 |Zx0:t , πt]

= H[Zτ(xt,πt(x0:t))|Zx0:t ]
(5)

for stage i = 0, . . . , t− 1 such that each stagewise posterior
entropy (i.e., of the measurements Zxi+1 to be observed in
stage i+1 given the history of measurements Zx0:i observed
from stages 0 to i) reduces to

H[Zxi+1 |Zx0:i ] =
1

2
log (2πe)k|Σxi+1|x0:i | (6)

where Σxi+1|x0:i is a covariance matrix with components
σuv|x0:i for every pair of locations u, v of xi+1, each of which
is independent of observed measurements zx0:i by (3), as dis-
cussed above. So, H[Zxi+1 |Zx0:i ] can be evaluated in closed
form, and the value functions (5) only require the history
of robots’ sampling locations x0:i as inputs but not that of
corresponding measurements zx0:i .

Solving iMASP involves choosing π to maximize V π0 (x0)
(5), which yields the optimal policy π∗. Plugging π∗ into
(5) gives the (t+ 1)-stage dynamic programming equations:

V π
∗

i (x0:i) = max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] + V π
∗

i+1((x0:i, τ(xi, ai)))

V π
∗

t (x0:t) = max
at∈A(xt)

H[Zτ(xt,at)|Zx0:t ]

(7)



for stage i = 0, . . . , t− 1. Since each stagewise posterior en-
tropy H[Zτ(xi,ai)|Zx0:i ] (6) can be evaluated in closed form
as explained above, iMASP for sampling the GP-based field
(7) reduces to a deterministic planning problem. Further-
more, it turns out to be the well-known maximum entropy
sampling problem [10] as demonstrated in [7]. Policy π∗ =
〈π∗0(x0:0), . . . , π∗t (x0:t)〉 can be determined by

π∗i (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] + V π
∗

i+1((x0:i, τ(xi, ai)))

π∗t (x0:t) = arg max
at∈A(xt)

H[Zτ(xt,at)|Zx0:t ]

(8)
for stage i = 0, . . . , t− 1. Similar to the optimal value func-
tions (7), π∗ only requires the history of robots’ sampling lo-
cations as inputs. So, π∗ can generate the maximum-entropy
paths prior to exploration.

Solving the myopic formulation of iMASP (7) is often con-
sidered to ease computation (Section 4.1), which entails de-
riving the non-Markovian greedy policy πG = 〈πG0 (x0:0), . . . ,
πGt (x0:t)〉 where, for stage i = 0, . . . , t,

πGi (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ] . (9)

The work of [3] has proposed a non-Markovian greedy policy
πM = 〈πM0 (x0:0), . . . , πMt (x0:t)〉 to approximately maximize
the closely related mutual information criterion:

πMi (x0:i) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zx0:i ]−H[Zτ(xi,ai)|Zx0:i+1 ]

(10)
for stage i = 0, . . . , t where x0:i+1 denotes the vector com-
prising locations of domain U not found in (x0:i, τ(xi, ai)).
It is shown in [3] that πM greedily selects new sampling lo-
cations that maximize the increase in mutual information.
As noted in [7], this strategy is deficient in that it may not
necessarily minimize the mapping uncertainty defined using
the entropy criterion. More importantly, it suffers a huge
computational drawback: the time needed to derive πM de-
pends on the map resolution (i.e., |U|) (Section 4.1).

4. MARKOV-BASED PATH PLANNING
The Markov property assumes that the measurements Zxi+1

to be observed next in stage i+ 1 depends only on the cur-
rent measurements Zxi observed in stage i and is condition-
ally independent of the past measurements Zx0:i−1 observed
from stages 0 to i− 1. That is, f(zxi+1 |zx0:i) = f(zxi+1 |zxi)
for all zx0 , zx1 , . . . , zxi+1 . As a result, H[Zxi+1 |Zx0:i ] (6) can
be approximated by H[Zxi+1 |Zxi ]. It is therefore straight-
forward to impose the Markov assumption on iMASP (7),
which yields the following dynamic programming equations
for the Markov-based path planning problem:eVi(xi) = max

ai∈A(xi)
H[Zτ(xi,ai)|Zxi ] + eVi+1(τ(xi, ai))eVt(xt) = max

at∈A(xt)
H[Zτ(xt,at)|Zxt ] .

(11)
for stage i = 0, . . . , t − 1. Consequently, the Markov-based
policy eπ = 〈eπ0(x0), . . . , eπt(xt)〉 can be determined by

eπi(xi) = arg max
ai∈A(xi)

H[Zτ(xi,ai)|Zxi ] + eVi+1(τ(xi, ai))eπi(xt) = arg max
at∈A(xt)

H[Zτ(xt,at)|Zxt ] .

(12)

4.1 Time Complexity: Analysis & Comparison
Theorem 1. Let A 4

= A(x0) = . . . = A(xt). Deriving
the Markov-based policy eπ (12) for the transect sampling task
requires O(|A|2(t+ k4)) time.

Note that |A| = rCk = O(rk) where r is the number of
sampling locations per column and k ≤ r as assumed in
Section 2. Though |A| is exponential in the number k of
robots, r is expected to be small in a transect, which pre-
vents |A| from growing too large.

In contrast, deriving iMASP-based policy π∗ (8) requires
O(|A|tt2k4) time. Deriving greedy policies πG (9) and πM

(10) incur, respectively, O(|A|t4k3+|A|2tk4) andO(|A|t|U|3+
|A|2tk4) = O(|A|t4r3 + |A|2tk4) time to compute the obser-
vation paths over all |A| possible choices of starting robot
locations. Clearly, all the non-Markovian strategies do not
scale as well as our Markov-based approach with increasing
length t+ 1 of planning horizon or number t+ 2 of columns,
which is expected to be large. As demonstrated empiri-
cally (Section 5), the Markov-based policy eπ can be derived
faster than πG and πM by more than an order of magnitude;
this computational advantage is boosted further for transect
sampling tasks with unknown starting robot locations.

4.2 Performance Guarantees
We will first provide a theoretical guarantee on how the

Markov-based policy eπ (12) performs relative to the non-
Markovian iMASP-based policy π∗ (8) for the case of 1
robot. This key result follows from our intuition that when
the horizontal spatial correlation becomes small, exploiting
the past measurements for path planning should hardly im-
prove the active sampling performance in a transect sam-
pling task, thus favoring the Markov-based policy. Though
this intuition is simple, supporting it with formal theoretical
results and their corresponding proofs (Appendix A) turns
out to be non-trivial as shown below.

Recall the Markov assumption that H[Zxi+1 |Zx0:i ] (6) is to
be approximated by H[Zxi+1 |Zxi ]. This prompts us to first
consider bounding the difference of these posterior entropies
that ensues from the Markov property:

H[Zxi+1 |Zxi ]−H[Zxi+1 |Zx0:i ] =
1

2
log

σ2
xi+1|xi

σ2
xi+1|x0:i

=
1

2
log

 
1−

σ2
xi+1|xi − σ

2
xi+1|x0:i

σ2
xi+1|xi

!−1

≥ 0 .

(13)

This difference can be interpreted as the reduction in un-
certainty of the measurements Zxi+1 to be observed next
in stage i + 1 by observing the past measurements Zx0:i−1

from stages 0 to i − 1 given the current measurements Zxi
observed in stage i. This difference is small if Zx0:i−1 does
not contribute much to the reduction in uncertainty of Zxi+1

given Zxi . It (13) is often known as the conditional mutual
information of Zxi+1 and Zx0:i−1 given Zxi denoted by

I[Zxi+1 ;Zx0:i−1 |Zxi ]
4
= H[Zxi+1 |Zxi ]−H[Zxi+1 |Zx0:i ] ,

which is of value 0 if the Markov property holds.
The results to follow assume that the transect is discretized

into a grid of sampling locations. Let ω1 and ω2 denote the
horizontal and vertical grid discretization widths (i.e., sep-
arations between adjacent sampling locations), respectively.

Let `′1
4
= `1/ω1 and `′2

4
= `2/ω2 represent the normalized hor-

izontal and vertical length-scale components, respectively.



The following lemma bounds the variance reduction term
σ2
xi+1|xi − σ

2
xi+1|x0:i

in (13):

Lemma 2. Let ξ
4
= exp


− 1

2`′21

ff
and ρ

4
= 1 +

σ2
n

σ2
s

. If

ξ <
ρ

i
, then 0 ≤ σ2

xi+1|xi − σ2
xi+1|x0:i ≤

σ2
sξ

4

ρ
i
− ξ .

The next lemma is fundamental to the subsequent results
on the active sampling performance of Markov-based policyeπ. It provides bounds on I[Zxi+1 ;Zx0:i−1 |Zxi ], which follow
immediately from (13), Lemma 2, and the lower bound

σ2
xi+1|xi = σ2

xi+1 − (σxi+1xi)
2/σ2

xi ≥ σ
2
s + σ2

n − σ2
sξ

2 :

Lemma 3. If ξ <
ρ

i
, then 0≤ I[Zxi+1 ;Zx0:i−1 |Zxi ]≤∆(i)

where ∆(i)
4
=

1

2
log

„
1− ξ4

( ρ
i
− ξ)(ρ− ξ2)

«−1

.

Remark. If j ≤ s, then ∆(j) ≤ ∆(s) for j, s = 0, . . . , t.

From Lemma 3, since ∆(i) bounds I[Zxi+1 ;Zx0:i−1 |Zxi ] from
above, a small I[Zxi+1 ;Zx0:i−1 |Zxi ] can be guaranteed by
making ∆(i) small. From the definition of ∆(i), there are
a few ways to achieve a small ∆(i): (a) ∆(i) depends on
`′1 through ξ. As `′1 → 0+, ξ → 0+, by definition. Con-
sequently, ∆(i) → 0+. A small `′1 can be obtained us-
ing a small `1 and/or a large ω1, by definition; (b) ∆(i)
also depends on the noise-to-signal ratio σ2

n/σ
2
s through ρ.

Raising σ2
n or lowering σ2

s increases ρ, by definition. This,
in turn, decreases ∆(i); (c) Since i indicates the length of
history of observations, the remark after Lemma 3 tells us
that a shorter length produces a smaller ∆(i). To sum-
marize, (a) environmental field conditions such as smaller
horizontal spatial correlation and noisy, less intense fields,
and (b) sampling task settings such as larger horizontal grid
discretization width and shorter length of history of obser-
vations all contribute to smaller ∆(i), and hence smaller
I[Zxi+1 ;Zx0:i−1 |Zxi ]. This analysis is important for under-
standing the practical implication of our theoretical results
later. A limitation with using Lemma 3 is that of the suffi-
cient condition ξ < ρ/i, which will hold if the field conditions
and task settings realized above to make ∆(i) small are ad-
equately satisfied.

The following theorem uses the induced optimal valueeV0(x0) from solving the Markov-based path planning prob-

lem (11) to bound the maximum entropy V π
∗

0 (x0) of obser-
vation paths achieved by π∗ from solving iMASP (7):

Theorem 4. Let εi
4
=
Pt
s=i ∆(s) ≤ (t − i + 1)∆(t). If

ξ <
ρ

t
, then eVi(xi)−εi ≤ V π∗i (x0:i) ≤ eVi(xi) for i = 0, . . . , t.

The above result is useful in providing an efficient way of
knowing the maximum entropy V π

∗
0 (x0), albeit approximately:

the time needed to derive the two-sided bounds on V π
∗

0 (x0)
is linear in the length of planning horizon (Theorem 1) as
opposed to exponential time required to compute the ex-
act value of V π

∗
0 (x0). Since the error bound εi is defined

as a sum of ∆(s)’s, we can rely on the above analysis of
∆(s) (see paragraph after Lemma 3) to improve this error
bound: (a) environmental field conditions such as smaller
horizontal spatial correlation and noisy, less intense fields,
and (b) sampling task settings such as larger horizontal grid
discretization width and shorter planning horizon (i.e., fewer
transect columns) all improve this error bound.

In the main result below, the Markov-based policy eπ is
guaranteed to achieve an entropy V eπ

0 (x0) of observation paths
(i.e., by plugging eπ into (5)) that is not more than ε0 from

the maximum entropy V π
∗

0 (x0) of observation paths achieved
by policy π∗:

Theorem 5. If ξ <
ρ

t
, then policy eπ is ε0-optimal in

achieving the maximum-entropy criterion, i.e., V π
∗

0 (x0) −
V eπ

0 (x0) ≤ ε0.

Again, since the error bound ε0 is defined as a sum of ∆(s)’s,
we can use the above analysis of ∆(s) to improve this bound:
(a) environmental field conditions such as smaller horizontal
spatial correlation and noisy, less intense fields, and (b) sam-
pling task settings such as larger horizontal grid discretiza-
tion width and shorter planning horizon (i.e., fewer transect
columns) all result in smaller ε0, and hence improve the ac-
tive sampling performance of Markov-based policy eπ relative
to that of non-Markovian iMASP-based policy π∗. This not
only supports our prior intuition (see first paragraph of this
section) but also identifies other means of limiting the per-
formance degradation of the Markov-based policy.

For the multi-robot case, a condition has to be imposed on
the covariance structure of GP to obtain a similar guarantee:

|σuv|x0:i | ≤ |σuv|xm | (14)

for m = 0, . . . , i and any u, v, x0, x1, . . . , xi ∈ U . Intuitively,
(14) says that further conditioning does not make Zu and
Zv more correlated. Note that (14) is satisfied if u = v.

Similar to Lemma 3 for the 1-robot case, we can bound
I[Zxi+1 ;Zx0:i−1 |Zxi ] for the multi-robot case but tighter con-
ditions have to be satisfied:

Lemma 6. Let `′1 = `′2. If ξ < min(
ρ

ik
,
ρ

4k
) and (14)

is satisfied, then 0 ≤ I[Zxi+1 ;Zx0:i−1 |Zxi ] ≤ ∆k(i) where

∆k(i)
4
=
k

2
log

 
1− ξ4

( ρ
ik
− ξ)(ρ− 4k

ρ
ξ2)

!−1

.

To improve the upper bound ∆k(i), the above analysis of
∆(i) can be applied here as these two upper bounds are
largely similar: (a) environmental field conditions such as
smaller spatial correlation and noisy, less intense fields, and
(b) sampling task settings such as larger grid discretiza-
tion width and shorter planning horizon (i.e., fewer transect
columns) all entail smaller ∆k(i). Decreasing the number k
of robots also reduces ∆k(i), thus yielding tighter bounds on
I[Zxi+1 ;Zx0:i−1 |Zxi ]. Using Lemma 6, we can derive guaran-
tees similar to that of Theorems 4 and 5 on the performance
of Markov-based policy eπ for the multi-robot case.

5. EXPERIMENTS AND DISCUSSION
In Section 4.2, we have highlighted the practical implica-

tion of our main theoretical result (i.e., Theorem 5), which
establishes various environmental field conditions and sam-
pling task settings to limit the performance degradation of
Markov-based policy eπ. This result, however, does not re-
veal whether eπ performs well (or not) under “seemingly”
less favorable field conditions and task settings that do not
jointly satisfy its sufficient condition ξ < ρ/(tk). These
include large spatial correlation, less noisy, highly intense
fields, small grid discretization width, long planning horizon
(i.e., many transect columns), and large number of robots.
So, this section evaluates the active sampling performance



and time efficiency of eπ empirically on two real-world datasets
under such field conditions and task settings as detailed be-
low: (a) May 2009 temperature field data of Panther Hollow
Lake in Pittsburgh, PA spanning 25 m by 150 m, and (b)
June 2009 plankton density field data of Chesapeake Bay
spanning 314 m by 1765 m.

Using maximum likelihood estimation (MLE) [8], the learned
hyperparameters (i.e., horizontal and vertical length-scales,
signal and noise variances) are, respectively, `1 = 40.45 m,
`2 = 16.00 m, σ2

s = 0.1542, and σ2
n = 0.0036 for the temper-

ature field, and `1 = 27.53 m, `2 = 134.64 m, σ2
s = 2.152,

and σ2
n = 0.041 for the plankton density field. It can be

observed that the temperature and plankton density fields
have low noise-to-signal ratios σ2

n/σ
2
s of 0.023 and 0.019, re-

spectively. Relative to the size of transect, both fields have
large vertical spatial correlations, but only the temperature
field has large horizontal spatial correlation.

The performance of Markov-based policy eπ is compared
to non-Markovian policies produced by two state-of-the-art
information-theoretic exploration strategies: greedy policies
πG (9) and πM (10) proposed by [7] and [3], respectively.
The non-Markovian policy π∗ that has to be derived ap-
proximately using Learning Real-Time A∗ is excluded from
comparison due to the reason provided in Section 1.

5.1 Performance Metrics
The tested policies are evaluated using the two metrics

proposed in [7], which quantify the mapping uncertainty of
the unobserved areas of the field differently: (a) The ENT(π)
metric measures the posterior joint entropy H[Zx0:t+1 |Zx0:t+1 ]
of field measurements Zx0:t+1 at unobserved locations x0:t+1

where x0:t+1 denotes the vector comprising locations of do-
main U not found in the sampled locations x0:t+1 selected
by policy π. Smaller ENT(π) implies lower mapping uncer-
tainty; (b) The ERR(π) metric measures the mean-squared
relative error |U|−1P

u∈U{(zu−µu|x0:t+1)/µ̄}2 resulting from
using the observations (i.e., sampled locations x0:t+1 and
corresponding measurements zx0:t+1) selected by policy π
and the posterior mean µu|x0:t+1 (2) to predict the field

where µ̄ = |U|−1P
u∈U zu. Smaller ERR(π) implies higher

prediction accuracy. Two noteworthy differences distinguish
these metrics: (a) The ENT(π) metric exploits the spatial
correlation between field measurements in the unobserved
areas whereas the ERR(π) metric implicitly assumes inde-
pendence between them. As a result, unlike the ERR(π)
metric, the ENT(π) metric does not overestimate the map-
ping uncertainty. To illustrate this, suppose the unknown
field measurements are restricted to only two unobserved lo-
cations u and v residing in a highly uncertain area and they
are highly correlated due to spatial proximity. The behavior
of the ENT(π) metric can be understood upon applying the
chain rule for entropy (i.e., ENT(π) = H[Zu, Zv|Zx0:t+1 ] =
H[Zu|Zx0:t+1 ] + H[Zv|Zx0:t+1 , Zu]); the latter uncertainty
term (i.e., posterior entropy of Zv) is significantly reduced or
“discounted” due to the high spatial correlation between Zu
and Zv. Hence, the mapping uncertainty of these two un-
observed locations is not overestimated. A practical advan-
tage of this metric is that it does not overcommit sensing re-
sources; in the simple illustration above, a single observation
at either location u or v suffices to learn both field measure-
ments well. On the other hand, the ERR(π) metric considers
each location to be of high uncertainty due to the indepen-
dence assumption; (b) In contrast to the ENT(π) metric, the

(a) Field 1: `1 = 5.00 m, `2 = 5.00 m.

(b) Field 2: `1 = 5.00 m, `2 = 16.00 m.

(c) Field 3: `1 = 40.45 m, `2 = 5.00 m.

(d) Field 4: `1 = 40.45 m, `2 = 16.00 m.

Figure 2: Temperature fields (measured in ◦C)
with varying horizontal length-scale `1 and vertical
length-scale `2.

ERR(π) metric can use ground truth measurements to eval-
uate if the field is being mapped accurately. Let ENTD(π)
4
= ENT(eπ)−ENT(π) and ERRD(π)

4
= ERR(eπ)−ERR(π).

Decreasing ENTD(π) improves the ENT(eπ) performance ofeπ relative to that of π. Small |ENTD(π)| implies that eπ
achieves ENT(eπ) performance comparable to that of π. ERRD(π)
can be interpreted likewise. Additionally, we will consider
the time taken to derive each policy as the third metric.

5.2 Temperature Field Data
We will first investigate how varying spatial correlations

(i.e., varying length-scales) of the temperature field affect
the ENT(π) and ERR(π) performance of evaluated policies.
The temperature field is discretized into a 5×30 grid of sam-
pling locations as shown in Figs. 1 and 2d. The horizontal
and/or vertical length-scales of the original field (i.e., field 4
in Fig. 2d) are reduced to produce modified fields 1, 2, and
3 (respectively, Figs. 2a, 2b, and 2c); we fix these reduced
length-scales while learning the remaining hyperparameters
(i.e., signal and noise variances) through MLE.

Table 1 shows the results of mean ENT(π) and ERR(π)
performance of tested policies (i.e., averaged over all possi-
ble starting robot locations) with varying length-scales and
number of robots. The ENT(π) and ERR(π) for all poli-
cies generally decrease with increasing length-scales (except
ERR(eπ) for 1 robot from field 2 to 4) due to increasing
spatial correlation between measurements, thus resulting in
lower mapping uncertainty.

For the case of 1 robot, the observations are as follows:
(a) When `2 is kept constant (i.e., at 5 m or 16 m), reduc-
ing `1 from 40.45 m to 5 m (i.e., from field 3 to 1 or field
4 to 2) decreases ENTD(πG), ERRD(πG), ENTD(πM ), and
ERRD(πM ): when the horizontal correlation becomes small,
it can no longer be exploited by the non-Markovian poli-
cies πG and πM ; (b) For field 3 with large `1 and small `2,
ENTD(πG) and ENTD(πM ) are large as the Markov prop-
erty of eπ prevents it from exploiting the large horizontal



Table 1: Comparison of ENT(π) (left) and ERR(π)
(×10−5) (right) performance for temperature fields
that are discretized into 5× 30 grids (Fig. 2).

1 robot Field
Policy 1 2 3 4eπ -83 -246 -543 -597
πG -82 -246 -554 -598
πM -80 -211 -554 -596

1 robot Field
Policy 1 2 3 4eπ 3.7040 0.5713 2.3680 0.5754
πG 1.8680 0.5713 0.0801 0.0252
πM 1.8433 0.5212 0.0701 0.0421

2 robots Field
Policy 1 2 3 4eπ -71 -190 -380 -422
πG -72 -190 -382 -425
πM -68 -131 -382 -421

2 robots Field
Policy 1 2 3 4eπ 0.3797 0.2101 0.1171 0.0095
πG 0.3526 0.2101 0.0150 0.0087
πM 0.6714 0.1632 0.0148 0.0086

3 robots Field
Policy 1 2 3 4eπ -53 -109 -232 -297
πG -53 -109 -215 -297
πM -53 -73 -214 -255

3 robots Field
Policy 1 2 3 4eπ 0.1328 0.0068 0.0063 0.0031
πG 0.1312 0.0068 0.0059 0.0031
πM 0.1080 0.1397 0.0055 0.0030

Table 2: Comparison of ENT(π) (left) and ERR(π)
(×10−5) (right) performance for temperature field
that is discretized into 13× 75 grid.
ENT(π) Number k of robots
Policy 1 2 3eπ -4813 -4284 -3828
πG -4813 -4286 -3841
πM -4808 -4277 -3825

ERR(π) Number k of robots
Policy 1 2 3eπ 1.0287 0.0032 0.0015
πG 0.0082 0.0030 0.0024
πM 0.0087 0.0034 0.0019

correlation; (c) When `1 is kept constant (i.e., at 5 m or
40.45 m), reducing `2 from 16 m to 5 m (i.e., from field 2
to 1 or field 4 to 3) increases ERRD(πG) and ERRD(πM ):
when vertical correlation becomes small, it can no longer be
exploited by eπ, thus incurring larger ERR(eπ).

For the case of 2 robots, the observations are as follows:
(a) |ENTD(πG)| and |ENTD(πM )| are small for all fields
except for field 2 where eπ significantly outperforms πM . In
particular, when `2 is kept constant (i.e., at 5 m or 16 m),
reducing `1 from 40.45 m to 5 m (i.e., from field 3 to 1 or field
4 to 2) decreases ENTD(πG), ENTD(πM ), and ERRD(πG):
this is explained in the first observation of 1-robot case;
(b) For field 3 with large `1 and small `2, ERRD(πG) and
ERRD(πM ) are large: this is explained in the second and
third observations of 1-robot case; (c) When `1 is kept con-
stant (i.e., at 5 m or 40.45 m), reducing `2 from 16 m to 5 m
(i.e., from field 2 to 1 or field 4 to 3) increases ERRD(πG):
this is explained in the third observation of 1-robot case.
This also holds for ERRD(πM ) when `1 is large.

For the case of 3 robots, it can be observed that eπ can
achieve ENT(eπ) and ERR(eπ) performance comparable to
(if not, better than) that of πG and πM for all fields.

To summarize the above observations on spatial correla-
tion conditions favoring eπ over πG and πM , eπ can achieve
ENT(eπ) performance comparable to (if not, better than)
that of πG and πM for all fields with any number of robots
except for field 3 (i.e., of large `1 and small `2) with 1 robot
as explained previously. Policy eπ can achieve comparable
ERR(eπ) performance for field 2 (i.e., of small `1 and large
`2) with 1 robot because eπ is capable of exploiting the large
vertical correlation, and the small horizontal correlation can-
not be exploited by πG and πM . Policy eπ can also achieve
comparable ERR(eπ) performance for all fields with 2 and 3
robots except for field 3 (i.e., of large `1 and small `2) with 2
robots. These observations reveal that (a) small horizontal
and large vertical correlations are favorable to eπ; (b) though
large horizontal and small vertical correlations are not favor-
able to eπ, this problem can be mitigated by increasing the
number of robots. For more detailed analysis (e.g., visual-
ization of planned observation paths and their corresponding
error maps), the interested reader is referred to [5].

Figure 3: Plankton density (chl-a) field (measured in
mg m−3) spatially distributed over a 314 m × 1765 m
transect that is discretized into a 8 × 45 grid with
`1 = 27.53 m and `2 = 134.64 m.

We will now examine how the increase in resolution to 13×
75 grid affects the ENT(π) and ERR(π) performance of eval-
uated policies; the resulting grid discretization width and
planning horizon are about 0.4× smaller and 2.5× longer,
respectively. Table 2 shows the results of mean ENT(π) and
ERR(π) performance of tested policies with varying num-
ber of robots, from which we can derive observations similar
to that for temperature field 4 discretized into 5 × 30 grid:eπ can achieve ENT(eπ) and ERR(eπ) performance compara-
ble to (if not, better than) that of πG and πM except for
ERR(eπ) performance with 1 robot. So, increasing the grid
resolution does not seem to noticeably degrade the active
sampling performance of eπ relative to that of πG and πM .

5.3 Plankton Density Field Data
Fig. 3 illustrates the plankton density field that is dis-

cretized into a 8 × 45 grid. Table 3 shows the results of
mean ENT(π) and ERR(π) performance of tested policies
with varying number of robots. The observations are as
follows: eπ can achieve the same ENT(eπ) and ERR(eπ) per-
formance as that of πG and superior ENT(eπ) performance
over that of πM because small horizontal and large vertical
correlations favor eπ as explained in Section 5.2. By increas-
ing the number of robots (i.e., k > 2), eπ can achieve ERR(eπ)
performance comparable to (if not, better than) that of πM .

Table 4 shows the results of mean ENT(π) and ERR(π)
performance of tested policies after increasing the resolu-
tion to 16 × 89 grid; the resulting grid discretization width
and planning horizon are about 0.5× smaller and 2× longer,
respectively. Similar observations can be obtained: eπ can
achieve ENT(eπ) performance comparable to that of πG and
superior ENT(eπ) performance over that of πM . By deploy-
ing more than 1 robot, eπ can achieve ERR(eπ) performance
comparable to (if not, better than) that of πG and πM .
Again, we can observe that increasing the grid resolution
does not seem to noticeably degrade the active sampling
performance of eπ relative to that of πG and πM .

5.4 Incurred Policy Time
Fig. 4 shows the time taken to derive the tested policies

for sampling the temperature and plankton density fields
with varying number of robots and grid resolutions. It can
be observed that the time taken to derive eπ is shorter than
that needed to derive πG and πM by more than 1 and 4
orders of magnitude, respectively. It is important to point
out that Fig. 4 reports the average time taken to derive πG

and πM over all possible starting robot locations. So, if the
starting robot locations are unknown, the incurred time to
derive πG and πM have to be increased by rCk-fold. In con-
trast, eπ caters to all possible starting robot locations. So,
the incurred time to derive eπ is unaffected. These observa-
tions show a considerable computational gain of eπ over πG

and πM , which supports our time complexity analysis and
comparison (Section 4). So, our Markov-based path planner
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Figure 4: Graph of time taken to derive policy vs. number k of robots for temperature field 4 discretized
into (a) 5× 30 and (b) 13× 75 grids and plankton density field discretized into (c) 8× 45 and (d) 16× 89 grids.

Table 3: Comparison of ENT(π) (left) and ERR(π)
(×10−3) (right) performance for plankton density
field that is discretized into 8× 45 grid.

ENT(π) Number k of robots
Policy 1 2 3 4eπ -359 -322 -196 -121
πG -359 -322 -196 -121
πM -230 -186 -70 -11

ERR(π) Number k of robots
Policy 1 2 3 4eπ 5.6124 2.2164 0.0544 0.0066
πG 5.6124 2.2164 0.0544 0.0066
πM 4.5371 0.5613 0.0472 0.0324

Table 4: Comparison of ENT(π) (left) and ERR(π)
(×10−3) (right) performance for plankton density
field that is discretized into 16× 89 grid.
ENT(π) Number k of robots
Policy 1 2 3eπ -4278 -3949 -3681
πG -4238 -3964 -3686
πM -4171 -3840 -3501

ERR(π) Number k of robots
Policy 1 2 3eπ 3.4328 0.0970 0.0546
πG 1.5648 0.1073 0.0643
πM 0.8186 0.0859 0.0348

is more time-efficient for in situ, real-time, high-resolution
active sampling.

6. CONCLUSION
This paper describes an efficient Markov-based information-

theoretic path planner for active sampling of GP-based en-
vironmental fields. We have provided theoretical guarantees
on the active sampling performance of our Markov-based
policy eπ for the transect sampling task, from which ideal
environmental field conditions (i.e., small horizontal spatial
correlation and noisy, less intense fields) and sampling task
settings (i.e., large grid discretization width and short plan-
ning horizon) can be established to limit its performance
degradation. Empirically, we have shown that eπ can gen-
erally achieve active sampling performance comparable to
that of the widely-used non-Markovian greedy policies πG

and πM under less favorable realistic field conditions (i.e.,
low noise-to-signal ratio) and task settings (i.e., small grid
discretization width and long planning horizon) while en-
joying huge computational gain over them. In particular,
we have empirically observed that (a) small horizontal and
large vertical correlations strongly favor eπ; (b) though large
horizontal and small vertical correlations do not favor eπ,
this problem can be mitigated by increasing the number of
robots. In fact, deploying a large robot team often produces
superior active sampling performance of eπ over πM in our
experiments, not forgetting the computational gain of > 4
orders of magnitude. Our Markov-based planner can be used
to efficiently achieve more general exploration tasks (e.g.,
boundary tracking and those in [6, 7]), but the guarantees
provided here may not apply. For our future work, we will
“relax” the Markov assumption by utilizing a longer (but
not entire) history of observations in path planning. This
can potentially improve the active sampling performance in
fields of moderate to large horizontal correlation but does
not incur as much time as that of non-Markovian policies.
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APPENDIX
A. PROOFS

A.1 Proof Sketch of Theorem 1
For each vector xi of current robot locations, the time

needed to evaluate the posterior entropy H[Zτ(xi,ai)|Zxi ]
(i.e., using Cholesky factorization) over all possible actions
ai ∈ A(xi) is |A| × O(k4) = O(|A|k4). Doing this over all
possible vectors of current robot locations in each column
thus incurs |A|×O(|A|k4) = O(|A|2k4) time since the vector
space of current robot locations in each column is of the same
size as that of the joint action space |A|. We do not have
to compute these posterior entropies again for every column
because the entropies evaluated for any one column repli-
cate across different columns. This computational saving is
due to the Markov assumption and the problem structure of
the transect sampling task. Propagating the optimal values
from stages t to 0 takes O(|A|2t) time. Hence, solving the
Markov-based path planning problem (11) or deriving the
Markov-based policy eπ (12) takes O(|A|2(t + k4)) time for
the transect sampling task.

A.2 Proof of Lemma 2
Let Σx0:i−1x0:i−1|xi

4
= C + E where C is defined to be a

matrix with diagonal components σ2
xk = σ2

s + σ2
n for k =

0, . . . , i− 1 and off-diagonal components 0, and E is defined
to be a matrix with diagonal components −(σxkxi)

2/σ2
xi =

−(σxkxi)
2/(σ2

s + σ2
n) for k = 0, . . . , i − 1 and the same

off-diagonal components as Σx0:i−1x0:i−1|xi (i.e., σxjxk|xi =

σxjxk − σxjxiσxixk/σ
2
xi for j, k = 0, . . . , i− 1, j 6= k). Then,

||C−1||2 = ||(σ2
s + σ2

n)−1I||2 =
1

σ2
s + σ2

n

. (15)

The last equality follows from σ2
s + σ2

n being the smallest
eigenvalue of C. So, 1/(σ2

s + σ2
n) is the largest eigenvalue of

C−1, which is equal to ||C−1||2.
Note that the minimum distance between any pair of lo-

cation components of x0:i−1 cannot be less than ω1. So, it
can be observed that any component of E cannot have an
absolute value more than σ2

sξ. Therefore,

||E||2 ≤ iσ2
sξ , (16)

which follows from a property of the matrix 2-norm that
||E||2 cannot be more than the largest absolute component
of E multiplied by i [1].

Note that the minimum distance between locations xi and
xi+1 as well as between location xi and any location compo-
nent of x0:i−1 cannot be less than ω1. So, it can be observed
that any component of Σxi+1x0:i−1|xi cannot have an abso-

lute value more than σ2
sξ

2. Therefore,

|σZxi+1Zxk |xi
| ≤ σ2

sξ
2 (17)

for k = 0, . . . , i− 1.

Now,

Σxi+1x0:i−1|xi(C + E)−1Σx0:i−1xi+1|xi −
Σxi+1x0:i−1|xiC

−1Σx0:i−1xi+1|xi

= Σxi+1x0:i−1|xi{(C + E)−1 − C−1}Σx0:i−1xi+1|xi

≤ ||Σxi+1x0:i−1|xi ||
2
2 ||(C + E)−1 − C−1||2

≤
i−1X
k=0

|σZxi+1Zxk |xi
|2 ||C

−1||2 ||E||2
1

||C−1||2
− ||E||2

= i(σ2
s)2ξ4

||C−1||2 ||E||2
1

||C−1||2
− ||E||2

.

(18)

The first inequality is due to Cauchy-Schwarz inequality and
submultiplicativity of the matrix norm [12]. The second in-
equality follows from an important result in the perturba-
tion theory of matrix inverses (in particular, Theorem III.2.5
in [12]). It requires the assumption of ||C−1 E||2 < 1.
This assumption can be satisfied by ||C−1||2 ||E||2 < 1
because ||C−1 E||2 ≤ ||C−1||2 ||E||2. By (15) and (16),
||C−1||2 ||E||2 < 1 translates to ξ < ρ/i. The last equality
is due to (17).

From (18),

Σxi+1x0:i−1|xi(C + E)−1Σx0:i−1xi+1|xi

≤ Σxi+1x0:i−1|xiC
−1Σx0:i−1xi+1|xi + i(σ2

s)2ξ4
||C−1||2 ||E||2

1
||C−1||2

− ||E||2

≤ i(σ2
s)2ξ4 ||C−1||2

 
1 +

||E||2
1

||C−1||2
− ||E||2

!

=
i(σ2

s)2ξ4

1
||C−1||2

− ||E||2

≤ i(σ2
s)2ξ4

σ2
s + σ2

n − iσ2
sξ

=
σ2
sξ

4

ρ
i
− ξ

(19)
The second inequality is due to

Σxi+1x0:i−1|xiC
−1Σx0:i−1xi+1|xi ≤ i(σ

2
s)2ξ4 ||C−1||2 ,

which follows from Cauchy-Schwarz inequality and (17). The
third inequality follows from (15) and (16).

We will need the following property of posterior variance
that is similar to (3):

σ2
xi+1|x0:i = σ2

xi+1|xi−Σxi+1x0:i−1|xiΣ
−1
x0:i−1x0:i−1|xiΣx0:i−1xi+1|xi

(20)
where Σxi+1x0:i−1|xi is a posterior covariance vector with
components σxi+1xk|xi for k = 0, . . . , i − 1, Σx0:i−1xi+1|xi
is the transpose of Σxi+1x0:i−1|xi , and Σx0:i−1x0:i−1|xi is a
posterior covariance matrix with components σxjxk|xi for
j, k = 0, . . . , i− 1.

By (19) and (20),

σ2
xi+1|xi − σ

2
xi+1|x0:i

= Σxi+1x0:i−1|xiΣ
−1
x0:i−1x0:i−1|xi

Σx0:i−1xi+1|xi

≤ σ2
sξ

4

ρ
i
− ξ .

A.3 Proof of Theorem 4
Proof by induction on i that V π

∗
i (x0:i) ≤ eVi(xi) ≤ V π∗i (x0:i) +Pt

s=i ∆(s) for i = t, . . . , 0.



Base case (i = t): By Lemma 3,

H[Zxt+1 |Zx0:t ] ≤ H[Zxt+1 |Zxt ]
≤ H[Zxt+1 |Zx0:t ] + ∆(t) for any xt+1

⇒ max
at∈A(xt)

H[Zxt+1 |Zx0:t ] ≤ max
at∈A(xt)

H[Zxt+1 |Zxt ]

≤ max
at∈A(xt)

H[Zxt+1 |Zx0:t ] + ∆(t)

⇒ V π
∗

t (x0:t) ≤ eVt(xt) ≤ V π∗t (x0:t) + ∆(t) .
(21)

Hence, the base case is true.

Inductive case: Suppose that

V π
∗

i+1(x0:i+1) ≤ eVi+1(xi+1) ≤ V π
∗

i+1(x0:i+1)+

tX
s=i+1

∆(s) (22)

is true. We have to prove that V π
∗

i (x0:i) ≤ eVi(xi) ≤ V π∗i (x0:i) +Pt
s=i ∆(s) is true.

We will first show that eVi(xi) ≤ V π
∗

i (x0:i) +
Pt
s=i ∆(s).

By Lemma 3,

H[Zxi+1 |Zxi ] ≤ H[Zxi+1 |Zx0:i ] + ∆(i) for any xi+1

⇒ H[Zxi+1 |Zxi ] + eVi+1(xi+1) ≤ H[Zxi+1 |Zx0:i ] +

V π
∗

i+1(x0:i+1) +
Pt
s=i ∆(s) by (22) for any xi+1

⇒ max
ai∈A(xi)

H[Zxi+1 |Zxi ] + eVi+1(xi+1)

≤ max
ai∈A(xi)

H[Zxi+1 |Zx0:i ] + V π
∗

i+1(x0:i+1) +

tX
s=i

∆(s)

⇒ eVi(xi) ≤ V π∗i (x0:i) +

tX
s=i

∆(s) .

We will now prove that V π
∗

i (x0:i) ≤ eVi(xi). By Lemma 3,

H[Zxi+1 |Zx0:i ] ≤ H[Zxi+1 |Zxi ] for any xi+1

⇒ H[Zxi+1 |Zx0:i ] + V π
∗

i+1(x0:i+1)

≤ H[Zxi+1 |Zxi ] + eVi+1(xi+1) by (22) for any xi+1

⇒ max
ai∈A(xi)

H[Zxi+1 |Zx0:i ] + V π
∗

i+1(x0:i+1)

≤ maxai∈A(xi) H[Zxi+1 |Zxi ] + eVi+1(xi+1)

⇒ V π
∗

i (x0:i) ≤ eVi(xi) .
Hence, the inductive case is true.

A.4 Proof of Theorem 5
The following lemma is needed for this proof:

Lemma 7. eVi(xi) ≤ V eπ
i (x0:i)+

Pt
s=i ∆(s) for i = 0, . . . , t.

The proof of the above lemma is provided in Appendix A.6.
Proof by induction on i that V π

∗
i (x0:i) ≤ V eπ

i (x0:i)+
Pt
s=i ∆(s)

for i = t, . . . , 0.

Base case (i = t):

V π
∗

t (x0:t) ≤ eVt(xt) ≤ V eπ
t (x0:t) + ∆(t) .

The first inequality is due to Theorem 4. The second in-
equality follows from Lemma 7. Hence, the base case is true.

Inductive case: Suppose that

V π
∗

i+1(x0:i+1) ≤ V eπ
i+1(x0:i+1) +

tX
s=i+1

∆(s) (23)

is true. We have to prove that V π
∗

i (x0:i) ≤ V eπ
i (x0:i) +Pt

s=i ∆(s) is true.

V π
∗

i (x0:i) ≤ eVi(xi)
= H[Zτ(xi,eπi(xi))|Zxi ] + eVi+1(τ(xi, eπi(xi)))
≤ H[Zτ(xi,eπi(xi))|Zx0:i ] + ∆(i) + eVi+1(τ(xi, eπi(xi)))
≤ H[Zτ(xi,eπi(xi))|Zx0:i ] + ∆(i) + V eπ

i+1( (x0:i, τ(xi, eπi(xi))) ) +Pt
s=i+1 ∆(s)

= V eπ
i (x0:i) +

tX
s=i

∆(s) .

The first inequality is due to Theorem 4. The first equal-
ity follows from (11). The second inequality follows from
Lemma 3. The third inequality is due to Lemma 7. The last
equality follows from (5). Hence, the inductive case is true.

A.5 Proof Sketch of Lemma 6
Define x

[m]
i to be the m-th component of vector xi of robot

locations for m = 1, . . . , k. Let x
[1:m]
i denote a vector com-

prising the first m components of xi (i.e., concatenation of

x
[1]
i , . . . , x

[m]
i ).

I[Zxi+1 ;Zx0:i−1 |Zxi ]
= H[Zxi+1 |Zxi ]−H[Zxi+1 |Zx0:i ]

=

kX
m=1

„
H[Z

x
[m]
i+1
|Z

(xi,x
[1:m−1]
i+1 )

]−H[Z
x
[m]
i+1
|Z

(x0:i,x
[1:m−1]
i+1 )

]

«

=
1

2

kX
m=1

0@log

σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

σ2

x
[m]
i+1|(x0:i,x

[1:m−1]
i+1 )

1A
=

1

2

kX
m=1

log

0@1−
σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

− σ2

x
[m]
i+1|(x0:i,x

[1:m−1]
i+1 )

σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

1A−1

≥ 0 .
(24)

The second equality follows from the chain rule for entropy.
Similar to Lemma 2, the following result bounds the vari-

ance reduction term

σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

− σ2

x
[m]
i+1|(x0:i,x

[1:m−1]
i+1 )

in (24):

Lemma 8. If ξ < min(
ρ

ik
,
ρ

4k
) and (14) is satisfied,

0 ≤ σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

− σ2

x
[m]
i+1|(x0:i,x

[1:m−1]
i+1 )

≤ σ2
sξ

4

ρ
ik
− ξ .

The proof of the above result is largely similar to that of
Lemma 2 (Appendix A.2), and is therefore omitted here.

The bounds on I[Zxi+1 ;Zx0:i−1 |Zxi ] follow immediately
from (24), Lemma 8, and the following lower bound on



σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

:

σ2

x
[m]
i+1|(xi,x

[1:m−1]
i+1 )

= σ2

x
[m]
i+1
−

Σ
x
[m]
i+1(xi,x

[1:m−1]
i+1 )

Σ−1

(xi,x
[1:m−1]
i+1 )(xi,x

[1:m−1]
i+1 )

Σ
(xi,x

[1:m−1]
i+1 )x

[m]
i+1

≥ σ2
s + σ2

n −
σ2
sξ

2

ρ
2k−1

− ξ
≥ σ2

s + σ2
n − 4k

ρ
σ2
sξ

2 .

The equality is due to (3). The first inequality is due to
Cauchy-Schwarz inequality, submultiplicativity of the ma-
trix norm [12], and a result in the perturbation theory of
matrix inverses (in particular, Theorem III.2.5 in [12]). The
second inequality follows from the given satisfied condition

ξ <
ρ

4k
.

A.6 Proof of Lemma 7
Proof by induction on i that eVi(xi) ≤ V eπ

i (x0:i)+
Pt
s=i ∆(s)

for i = t, . . . , 0.

Base case (i = t):eVt(xt) = max
at∈A(xt)

H[Zτ(xt,at)|Zxt ]

= H[Zτ(xt,eπt(xt))|Zxt ]
≤ H[Zτ(xt,eπt(xt))|Zx0:t ] + ∆(t)

= V eπ
t (x0:t) + ∆(t) .

The first equality follows from (11). The inequality follows
from Lemma 3. The last equality is due to (5). So, the base
case is true.

Inductive case: Suppose that

eVi+1(xi+1) ≤ V eπ
i+1(x0:i+1) +

tX
s=i+1

∆(s) (25)

is true. We have to prove that eVi(xi) ≤ V eπ
i (x0:i)+

Pt
s=i ∆(s)

is true.
By Lemma 3,

H[Zxi+1 |Zxi ] ≤ H[Zxi+1 |Zx0:i ] + ∆(i) for any xi+1

⇒ H[Zxi+1 |Zxi ] + eVi+1(xi+1) ≤ H[Zxi+1 |Zx0:i ] +

V eπ
i+1(x0:i+1) +

Pt
s=i ∆(s) by (25) for any xi+1

⇒ H[Zτ(xi,eπi(xi))|Zxi ] + eVi+1(τ(xi, eπi(xi)))
≤ H[Zτ(xi,eπi(xi))|Zx0:i ] + V eπ

i+1( (x0:i, τ(xi, eπi(xi))) ) +Pt
s=i ∆(s)by xi+1 ← τ(xi, eπi(xi))

⇒ eVi(xi) ≤ V eπ
i (x0:i) +

tX
s=i

∆(s) by (11) and (5).

Hence, the inductive case is true.


