
Incremental Construction of the Saturated-GVG for Multi-Hypothesis

Topological SLAM

Tong Tao, Stephen Tully, George Kantor and Howie Choset

Abstract—The generalized Voronoi graph (GVG) is a topo-
logical representation of an environment that can be incre-
mentally constructed with a mobile robot using sensor-based
control. However, because of sensor range limitations, the GVG
control law will fail when the robot moves into a large open
area. This paper discusses an extended GVG approach to
topological navigation and mapping: the saturated generalized
Voronoi graph (S-GVG), for which the robot employs an
additional wall-following behavior to navigate along obstacles
at the range limit of the sensor. In this paper, we build upon
previous work related to the S-GVG and provide two important

contributions: 1) a rigorous discussion of the control laws
and algorithm modifications that are necessary for incremental
construction of the S-GVG with a mobile robot, and 2) a method
for incorporating the S-GVG into a novel multi-hypothesis
SLAM algorithm for loop-closing and localization. Experiments
with a wheeled mobile robot in an office-like environment
validate the effectiveness of the proposed approach.

I. INTRODUCTION

For almost any navigational task, a mobile robot will

require a map of the environment in which to plan its path

to a goal location. There are different types of maps in

which a mobile robot can plan a path: topological maps,

grid-based maps, and metric feature maps. The advantage of

using topological maps is their ability to concisely represent

an environment with a graph, whose vertices are interesting

“places” and whose edges are feasible paths between them.

Additional advantages of topological maps are their compu-

tational efficiency, their reduced memory requirements, and

their lack of dependence on metric positioning.

The generalized Voronoi graph (GVG) is a specific type

of topological map that has successfully been applied to

mobile robot navigation and mapping [1]–[4]. The GVG

is comprised of meet-points (vertices) that correspond to

locations of three-way equidistance (or more) to obstacles

in the environment and edges that correspond to paths of

two-way equidistance to obstacles that are also feasible paths

between meet-points [1] (see Fig. 1-(a)).

The advantage of the GVG as a topological map is its

convenience for exploration and obstacle avoidance. Since

This work was supported in part by NSF of China under Grant 60605021,
NSF of China under Grant 60805031, NSF of Tianjin under Grant 10JCY-
BJC07600 and the Ph.D. Programs Foundation of Ministry of Education of
China under Grant 200800551015.
T. Tao is a PhD student of the College of Information Technical Science,

Nankai University, Tianjin 300071, China, and a visiting student of the
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
TaoTong2006@gmail.com
S. Tully is with the Electrical and Computer Engineering Department

and G. Kantor and H. Choset are with the Robotics Institute at Carnegie

Mellon University, Pittsburgh, PA 15213, USA. {stully@ece,
choset@cs, kantor@ri}.cmu.edu

the embedded edges of the GVG by definition maximize the

distance between the robot and its surrounding obstacles, it is

inherently safe to follow the GVG edges when navigating in

the map. Unfortunately, one drawback of the GVG as a map

is its sensor range limitation. When the robot traces an edge

of the GVG, it must keep a sufficient number of obstacles

inside its sensor range. If the robot moves out of its sensor

range from the nearby obstacles and into a large open space,

the robot may become lost (see Fig. 1-(b)).

To solve the sensor limitation problem, the saturated gen-

eralized Voronoi graph (S-GVG) can be constructed instead.

The S-GVG has already been discussed in several other

works with notable success [5], [6]. The S-GVG includes

an additional type of embedded graph edge that corresponds

to the locus of points at a saturated distance from an obstacle

in the free space of the environment (see Fig. 1-(c)).

In this paper, we introduce a new incremental method to

construct the S-GVG of an environment with a robot that has

omnidirectional range sensing. Our implementation adapts

proven control laws that were designed for the conventional

GVG to the mapping process for the S-GVG. We also present

a novel implementation of a multi-hypothesis topological

simultaneous localization and mapping (SLAM) approach

that is customized for the S-GVG. The result is an efficient

and robust exploration and mapping method for sensing-

limited mobile robots.

II. RELATED WORK

Early research involving Voronoi diagrams relied on meth-

ods that required full knowledge of the environment. For

example, in [7], an offline retract method is used to com-

pute the Voronoi diagram. Choset et. al. later proposed

a sensor-based planning approach with a mobile robot to

incrementally construct the GVG using control laws without

a priori knowledge [1], [3]. Then, to solve the problem of

weak or unstable meet-points, Nagatani et. al. introduced

in [8] a simplified version of the GVG, called the reduced

generalized Voronoi graph (R-GVG).

Lisien et. al in [4] propose a hierarchical map where

the GVG serves as a high-level representation of the envi-

ronment that organizes a collection of lower level feature-

based submaps. This hierarchical map was later used for

efficient topological localization [9] and multi-hypothesis

SLAM [10] in large-scale environments. We note that many

of the ideas we present in this paper can be easily extended to

a hierarchical approach via the inclusion of additional metric

information along the edges in the S-GVG topological graph.

0 20 40 60 80 100 120
−50

−40

−30

−20

−10

0

10

20

30

40

50

x (m)

y
 (

m
)

0 20 40 60 80 100 120
−50

−40

−30

−20

−10

0

10

20

30

40

50

x (m)

y
 (

m
)

0 20 40 60 80 100 120
−50

−40

−30

−20

−10

0

10

20

30

40

50

x (m)

y
 (

m
)

a) b) c)

Fig. 1. A comparison between different GVG approaches: (a) GVG with full knowledge, (b) sensor-based incremental GVG construction, and (c)
incrementally constructed S-GVG.

Huang et. al. and Beeson et. al. discuss the saturated

generalized Voronoi diagram similar to the topology used

in this paper in [5] and [6] respectively. The former was one

of the first to define the saturated behavior and unsaturated

behavior for a mobile robot traversing GVG edges while the

latter refers to the S-GVG as the extended Voronoi diagram.

Both papers investigate the S-GVG as a solution to a robot’s

sensor range limitations. While important in many respects,

the work in [5] assumes rectilinearity of the environment

(which may not always be the case). Both of the papers do

not discuss a means for the incremental construction of such

a graph with specific control laws necessary to navigate the

S-GVG. Additionally, they do not apply the S-GVG to full-

fledged SLAM with loop-closing, which is a topic we are

addressing in this paper.

For topological SLAM, the challenging task for the robot

is to perform vertex matching or loop-closing. The robot

must be able to determine whether a vertex in the graph is

newly explored or revisited. In [11], Nagatani suggests using

several stable features to identify a vertex. The approach,

however, does not consider multiple hypotheses and performs

loop-closing with simple yes/no heuristics. In [12], a Rao-

Blackwellized particle filter is implemented over the space

of topologies. In [10], we propose a similar probabilistically

grounded multi-hypothesis technique that builds a map/state

hypothesis tree for topological SLAM. The SLAM method

we are proposing in this paper for the S-GVG is an extension

of our previous work and customizes the SLAM algorithm

for dealing with a combination of both saturated and con-

ventional GVG regions.

III. INCREMENTAL CONSTRUCTION OF THE S-GVG

While navigating the conventional GVG, the robot traces

GVG edges with a control law and homes into the exact

location of the meet-point. The robot will explore other

GVG edges and detect additional GVG meet-points, recur-

sively, until all meet-points and edges have been explored.

Following this procedure, the GVG can be incrementally

constructed with a mobile robot using sensor-based con-

trol [3] (one caveat being the recognition of loop-closure in

an ambiguous environment, which we discuss in Sec. IV).

The S-GVG, on the other hand, will contain regions in

which the edges follow two-way equidistance as per usual

(conventional GVG edges) and regions in which the edges

follow an obstacle at a saturated distance (saturated GVG

edges). We refer to a meet-point whose associated edges

are all conventional GVG edges as a conventional GVG

meet-point. Likewise, we refer to a meet-point whose edges

include at least one saturated GVG edge as a saturated GVG

meet-point. Fig. 1-(c) shows the saturated edges (the dashed

lines) and the conventional edges (solid lines).

Incrementally constructing the S-GVG is similar to creat-

ing the conventional GVG. The difference is when a robot

is traversing a hallway that leads into a large open space. In

this case, a different control law must be used to home into a

meet-point with two-way equidistance instead of three-way

equidistance. Also, when departing a saturated meet-point

onto a saturated edge, a new control law must be used to

follow the obstacle boundary at the saturated distance.

A. Control Law

Choset et. al. introduced a control law for generating

the GVG [3], [13]. The control law performs sensor-based

planning by controlling the heading of the robot in a way that

merges the prediction and correction phases so as to avoid

the jagged path generated by traditional control methods.

According to his work, at a point x in the neighborhood of

the interior of a GVG edge, the robot steps in the direction,

ẋ = αNull(∇G(x))+ β (∇G(x))†G(x), (1)

where G(x) is the difference of the distances to nearby

obstacles. In the planar case, G(x) can be written as,

G(x) = [d1(x)−d2(x)]. (2)

In this formulation, the solutions of G(x) = 0 form the GVG

path, the distances to nearby obstacles (d1(x) and d2(x)) are
the local minima of the range sensor, and (∇G(x))† is the

Penrose pseudo-inverse of the Jacobian ∇G(x), i.e.,

(∇G(x))† = (∇G(x))T (∇G(x)(∇G(x))T)−1. (3)

In [3], Choset proves that (1) produces a heading direction

for the robot that converges onto the GVG path when β < 0.

The conventional GVG edge maximizes the distance to

each obstacle. For saturated GVG edge tracing, the distance

of the robot to the obstacle should equal the sensor range

r. This choice maximizes the distance of the robot to the

obstacle up to the limit where the boundary of the obstacle

can still be sensed. This is demonstrated in Fig.1-(c): the

distance between the dashed line and the wall will be r.

In order to take advantage of the control law in (1), we

introduce a virtual minimum, which simulates the presence of

another obstacle on the other side of the robot when the robot

robot heading

local minima

virtual minima

2 r − d
d

Fig. 2. A virtual minimum for tracing the S-GVG.

(a) (b)

Fig. 3. Line fitting: × is sensed minimum and + is corrected minimum.

is tracing a saturated GVG edge. We denote the distance

associated with the current local minima of the range sensor

as d(x), which is the distance to the true obstacle boundary.
We additionally define the distance to the virtual minima

to be dv(x) = 2r− d(x). All three points (the location of

the true minima, the robot location, and the location of the

virtual minima) are all assumed to be colinear. In Fig. 2, we

show the local minima (represented by “+”) and the virtual

minima (represented by “×”).
By having a virtual minima, we can represent the control

problem in the same formulation as the conventional GVG

tracing problem,

Gs(x) = [d(x)−dv(x)]. (4)

It follows that,

Gs(x) = 2[d(x)− r]. (5)

In (5), we show that by creating the virtual minimum, we

are controlling the robot to keep a distance r away from

the nearest obstacle. This is the desired result for obstacle

following for the tracing process with a saturated GVG edge.

Because we have formulated this control problem in

the same way as the conventional GVG tracing problem

(compare (4) with (2)), we can apply the same control law

as in (1) to optimally follow a smooth path at a saturated

distance. Although this is not the only way to control a

robot to perform boundary following at a fixed distance

from an obstacle, we feel that it is an important feature

of our algorithm that a proven and previously implemented

component of robot software can be incorporated to handle

this new tracing control problem.

B. Line-Fitting

A robot with noisy sonar and/or a cheap laser sensor often

has a delay between when a robot passes by an obstacle and

when its boundary is sensed by the sensor. With the S-GVG,

a delay in sensor data can cause significant problems when

tracing the obstacle boundary at the saturated distance. As

in Fig. 3-(a), for a robot whose sensed minima is trailing

the robot due to a sensing delay, the distance between the

robot and the obstacle will undesirably increase when driving

forward. This will cause a control response to steer the

a)

b)

Line Fitting

Curve Following

Fig. 4. The effect of line-fitting for the S-GVG tracing procedure.

robot towards the wall to reduce the error. Then, when

additional sonar points are eventually acquired, the robot

will immediately steer away from the wall to correct back

to the saturated distance. This unstable behavior will then

repeat due to the delay in the control system. The effect of

the sensing delay and the control response can be seen in

Fig. 4-(a).

To solve this problem, we introduce a line-fitting pro-

cedure to improve the performance of the S-GVG tracing

algorithm. In most structured environments, the obstacles we

encounter have straight edges (or at least can be approxi-

mated with several line segments locally). Thus, we are able

to use the history of sensed minima to fit a line, which we

extend forward past the robot, to simulate the as-of-yet un-

sensed portion of the obstacle (as the dashed line in Fig. 3-

(b)). From this line, we can compute a more probable range

minimum (as the + symbol in Fig. 3-(b)). We use a least

square approach to fit the line and then compute the corrected

local minima by projecting the robots position onto the fitted

line. In addition, we use a clustering algorithm and an error

metric to test whether the measured obstacle points conform

to the computed line parameters. If not, we simply trust the

uncorrected sensed minimum.

To show the effectiveness of this approach, we performed

the S-GVG tracing process in the same environment with

(and without) the line fitting procedure. Fig. 4-(a) shows the

robot tracing the wall without line fitting and Fig. 4-(b) shows

the result when applying line fitting. The path is straight and

follows the wall at the saturated distance, which allows for

stable mapping of the S-GVG.

C. Meet-Point Detection

With the saturated GVG, a saturated meet-point can occur

in two ways as in Fig. 5. The first occurs when the robot is

tracing a conventional GVG path and the equidistance to the

two obstacles increases until it is equal to r. This indicates

that if the robot were to continue tracing the conventional

GVG path, it would lose sight of the obstacle (as in Fig. 5-

(a)). The second occurs when the robot is tracing a saturated

GVG path, and it encounters another obstacle. Since the

robot just encountered this obstacle, the distance to this

obstacle is equal to the sensor range r (as in Fig. 5-(b)).

For both of the two conditions, the saturated meet-point

is a point which is equidistant to the two closest obstacles

0 10 20 30 40 50

−5

0

5

10

15

20

25

30

x (m)

y
 (

m
)

r r

0 10 20 30 40 50

0

5

10

15

20

25

30

35

x (m)

y
 (

m
)

r

r

a) b)

Fig. 5. The two types of saturated GVG meet-points

0

12

Fig. 6. Departure angle determination.

(and the equidistance value is r). Since the meet-points

in the GVG topological graph are important for successful

mapping, the robot must precisely locate itself at the meet-

points. We use a meet-point homing process that will control

the robot to converge to the meet-point (as in [3]).

The control law for homing is similar to (1). Here, the

function G is defined,

G(x) =

[

d1(x)− r

d2(x)− r

]

= 0 (6)

After homing, the robot is at the meet-point and must

determine the departing angles for the edges that emanate

from the current meet-point. With a saturated meet-point,

there will be two local minima in the robot’s omnidirectional

range sensor. The bisector of the two lines drawn to the

sensed minima will be one of the departing edges (in this

case a conventional GVG edge). The angles of the two

additional edges are perpendicular to each of the lines drawn

to the sensed minima, away from the direction that leads

towards the conventional GVG edge. Fig. 6 shows how the

robot determines the departing angles of the three edges. In

the figure, the two “×” symbols represent the sensed local

minima, the three long dashed lines indicates the direction

of each edge emanating from the meet-point.

After computing the departing angles of the new edges, the

edge which the robot came from is then marked as explored.

If this is a new meet-point, the robot will start to trace a new

unexplored edge. If this is an old meet-point and all of the

edges have been explored, the robot will use a branch search

to find the nearest unexplored edge to trace for complete

exploration of the environment.

IV. TOPOLOGICAL SLAM USING THE S-GVG

Although we discussed incrementally building a topologi-

cal map in the previous section and how to control the robot

to navigate the S-GVG, we did not yet describe how the robot

can perform vertex matching in this type of environment.

In ambiguous maps, the robot must be able to detect loop-

closures while mapping the S-GVG. This section introduces

a topological SLAM approach that handles loop-closing with

a multi-hypothesis filter. This type of SLAM approach is an

extension of previous work [10], although we are presenting

here, for the first time, a version of multi-hypothesis SLAM

that is specific to the S-GVG.

A. Constructing a Hypothesis Tree

Each hypothesis h in our multi-hypothesis SLAM ap-

proach stores a possible topological graph, Gh
k , and a possible

robot state, Xh
k = (vhk ,α

h
k) (which stores the meet-point at

which the robot is currently located, vhk , as well as the edge

from which the robot arrived at that meet-point, αh
k). The

subscript k represents the time-step.

Ideally, at every time-step k, we would like to compute

the possible map/state pairs, one of which will be correct

and will incorporate the correct loop-closing and meet-point

matching decisions. To do this, we maintain a hypothesis

tree where each level of the tree corresponds to a different

time-step. The tree structure we maintain is similar to that

in [10], [14], [15].

At the start of an experiment, we assume the robot has no

information except for the degree of the first meet-point it

sees, δ0, which equals the number of edges emanating from
the meet-point. Therefore, we initialize the root node of our

hypothesis tree as follows: h = 0, k = 0, vhk = 0, and αh
k = 0.

All neighbors of the root node are labeled as unexplored.

During an experiment, the robot is continuously moving

between meet-points. At each time-step k, the robot chooses

a motion input uk in order to transition to another meet-

point. The motion input is a relative offset from the previous

arrival edge, and produces the following departure edge βk

for a new hypothesis that is spawned from hypothesis h.

βk = (αh
k−1 +uk) mod δk−1 (7)

After departing along edge βk, the robot drives to a new

meet-point and then detects the number of edges emanating

from that meet-point, which is stored as the degree δk.
After performing a new motion input uk, all leaf nodes

of the hypothesis tree must be expanded (the leaf nodes

being the set of hypotheses at time-step k−1). Our algorithm

expands all leaf nodes of the hypothesis tree in the following

way. If the neighbor of vhk−1 that is associated to the departing

edge βk is not unexplored, then we copy the hypothesis to a

single child hypothesis but move the robot’s state to the new

meet-point. If the neighbor is unexplored, then the algorithm

considers several possibilities: 1) that the robot traverses

the unexplored edge and arrives at a new meet-point, or 2)

that a loop is closed and the robot arrives at a previously

visited meet-point via one of its unexplored edges. Different

hypotheses are spawned for these cases. Fig. 7 demonstrates

the expansion of the hypothesis tree.

B. Computing the Posterior Probability

In order to solve the problem of topological SLAM for

the S-GVG, we must determine which hypotheses among

the leaf nodes of the hypothesis tree are likely to represent

the true state and the true map. To do this, we compute the

posterior probability of each hypothesis given a sequence

R

R

R

R

R

R

1 (•,2)

2 (1,3)

3 (2,4)4 (3,5)

5 (4,•)

1 (4,2) 2 (1,3)

3 (2,4)4 (3,1)

1 (3,2) 2 (1,3)

3 (2,1)

1 (•,2) 2 (1,3)

1 (•,2) 2 (1,3)

3 (2,4)

1 (3,2)

3 (2,1)

2 (1,3)

4 (3,•)

3 (2,•)

a)

b) c)

d) e) f)

Fig. 7. This is an example of expanding the hypothesis tree due to robot
motion. Hypothesis (a) spawns (b) and (c) after one edge traversal. After
another edge traversal, hypothesis (b) spawns (d) and (e) while hypothesis
(c) spawns only (f). The location of R in the figure marks the robot’s state.

of sensor measurements. The hypothesis that better fits the

sensor data will produce a higher probability measure and is

therefore more likely to represent the true state and map.

During time-step k, the robot leaves the previous meet-

point, traverses an edge in the graph, and arrives at a new

meet-point (either saturated or conventional). A measure-

ment zek is obtained during the edge traversal (such as the

distance travelled as measured by wheel odometry) and

a measurement zvk is obtained when the robot arrives at

the new meet-point (such as the range measurement for

the equidistance to the nearby obstacles). The posterior

probability of a hypothesis is p(Xh
k ,Gh

k |z0:k,u1:k), where, as
before, Xh

k and Gh
k represent the robot’s state and graph re-

spectively. Additionally, z0:k = (zv0:k,z
e
1:k) is the collection of

all measurements during the experiment, which includes the

edge measurement sequence, ze1:k, as well as the meet-point

measurement sequence, zv0:k. The sequence u1:k represents the

motion inputs through time-step k.

The posterior can be computed using Bayes law,

p(Xh
k ,Gh

k |z0:k,u1:k)

= η p(z0:k|X
h
k ,Gh

k ,u1:k) p(Xh
k ,Gh

k |u1:k)

= η p(z0:k|X
h
k ,Gh

k ,u1:k) p(Gh
k |u1:k), (8)

where p(z0:k|X
h
k ,Gh

k ,u1:k) is the measurement likelihood and
p(Xh

k ,Gh
k |u1:k) is a prior on the hypothesis. The prior reduces

to p(Gh
k |u1:k) in (8) because the robot correctly performs the

motion input sequence. The scalar value η in Eq. 8 is to

normalize over the space of possible hypotheses.

For a given time-step, we can compute the posterior

probability of the new leaf nodes of the tree using Eq. 8.

To reduce storage and computation, the likelihood term of

a new hypothesis h′ can be computed recursively given the

likelihood of the parent hypothesis h, i.e.,

p(z0:k|X
h′

k ,Gh′

k ,u1:k)

= p(zek,z
v
k|z0:k−1,X

h′

k ,Gh′

k ,u1:k) p(z0:k−1|X
h
k−1,G

h
k−1,u1:k−1).

It turns out that the S-GVG inherently stores additional

information that is useful for SLAM. The robot is completely

aware of the fact that it has homed into either a saturated

meet-point or a conventional meet-point. The robot can

distinguish between the two types because the chosen control

laws are different and the number of equidistant obstacles

will be different. Therefore, the detection of the meet-point

type (saturation versus conventional) is a useful feature for

proposing or rejecting loop-closure hypotheses.

Thus, to customize the implementation of multi-hypothesis

SLAM for the S-GVG, we purposefully fabricate an extra

measurement at each meet-point probability update that

represents the detected type of meet-point: saturated or

conventional. The meet-point measurement is therefore zvk =
[εvk ,s

v
k], where εvk is the measured equidistance and svk is the

detected meet-point type (saturated or conventional). The

measurement model for the detected meet-point type is,

p(svk = saturated|X ,G)

{

α ≈ 1.0 T (X ,G) = saturated

1−α T (X ,G) 6= saturated

p(svk 6= saturated|X ,G) = 1− p(svk = saturated|X ,G),

where T (X ,G) is the meet-point type assigned to the meet-

point in question according to the hypothesis, X and G. The

idea is that if the meet-point is labeled as saturated, the

likelihood of the robot detecting the meet-point as a saturated

GVG vertex is nearly one.

This measurement model is then incorporated into the

likelihood update for the posterior probability computation.

By adding this measurement to the likelihood term, we can

greatly penalize a hypothesis that expects the robot to be in a

conventional region of the graph when the robot is currently

homing into a meet-point with two-way equidistance at the

range limit of its sensors (in a saturated region).

Neglected thus far in our discussion is the prior p(Gh
k |u1:k)

in Eq. 8. This term represents, without any sensor infor-

mation, the probability that the robot happens to be placed

in an environment with a topology Gh
k . What should this

distribution be? There is no way to know the right answer.

But we can do better than a uniform distribution. We use the

following distribution for experiments,

p(Gh
k |u1:k) ∝ exp

(

−Nh
k logk

)

,

which favors smaller maps that still explain the measurement

data properly. This makes sense, because we would like to

prevent over-fitting when testing loop-closing hypotheses. It

turns out that this formulation is equivalent to using the

Bayesian information criterion [16] for model selection.

By combining in Eq. 8 the prior developed here with the

recursive likelihood function, we are effectively trying to

capture the perfect balance between concise maps that are

typical for structured environments and large intricate maps

that better fit the data. Lastly, we incorporate a conservative

pruning step, based on thresholding the posterior probability

of a topological map hypothesis, that improves the efficiency

of our multi-hypothesis SLAM algorithm.

The result is a SLAM algorithm that uses the meet-point

type as information towards testing loop-closing hypotheses.

conventional node

saturated node

degree-one node

Saturated Region

Saturated Region

Saturated Region

20m

a) b)

Fig. 8. This is the experimental result for our S-GVG SLAM algorithm.

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

 with node type test

without node type test

k (time step)

N
u

m
 H

y
p

o
th

e
se

s

Fig. 9. This plot shows the number of hypotheses in our SLAM filter for
an S-GVG experiment.

The algorithm also incorporates traditional measurements to

help resolve the posterior probability over topological maps

so that the SLAM process will find the most likely solution.

V. EVALUATION

We have performed extensive testing of our S-GVG incre-

mental construction algorithm. We are using a Nomad Scout

robot with an omnidirectional sonar array for sensing range

in an office-like environment (Wean Hall and Newell Simon

Hall at Carnegie Mellon University). The robot primarily

navigates in the hallways, but intermittently encounters large

regions that extend beyond the sensing range.

In Fig. 8-(a), we show the environment in which the

robot performed a SLAM experiment. In this experiment, the

robot navigated three different saturated regions in which the

layout of the floor plan was too large for the sensor range

while also traversing many conventional GVG edges. If the

robot only used conventional GVG edge tracing approach,

it would fail when it moved into the saturated regions. We

note that this experiment was created over several days for

convenience and the data was post-processed at a later date.

For this experiment, the robot traced the GVG quite well,

as seen in the result (Fig. 8-(a)). The robot also mapped

the correct topology for the environment, as seen in Fig. 8-

(b), which precisely compares to the true environment. We

attribute this to the success of the multi-hypothesis SLAM

algorithm at detecting loop-closure despite ambiguities.

In Fig. 9, we depict the number of hypotheses that were

maintained by our SLAM filter during the experiment. The

robot observed ambiguous information, due to structural

similarity between different regions in the environment, and

had to consider different hypotheses about loop-closure after

several edge traversals in the environment. We note that, as

time progresses, the number of hypotheses converges to 1,

with the only remaining hypothesis equaling the correct true

map/state pair. The experiment was run twice (once while

using the detected meet-point type and once without).

VI. CONCLUSION

The Generalized Voronoi Graph (GVG) is a popular topo-

logical representation for roadmap based path planning and

sensor-based navigation. When the robot navigates in a large

open area, though, the conventional GVG approach fails due

to sensor range limitations. This paper investigates the satu-

rated generalized Voronoi graph (S-GVG) and provides a rig-

orous method for the incremental construction of the S-GVG

with a sensor-limited mobile robot. Our contributions include

a method for incrementally constructing the S-GVG, which

includes a control law for following the obstacle boundary

and a line fitting technique for smoothing the sensor-based

control of the robot. We also introduce a novel loop-closing

method that considers multiple hypotheses when performing

SLAM with the S-GVG.

REFERENCES

[1] H. Choset and J. Burdick, “Sensor based planning, part I: The gener-
alized voronoi graph,” in Proceedings of the 1995 IEEE International
Conference on Robotics and Automation, 1995.

[2] ——, “Sensor based planning, part II: Incremental construction of
the generalized voronoi graph,” in Proceedings of the 1995 IEEE
International Conference on Robotics and Automation, 1995.

[3] H. Choset, I. Konukseven, and A. Rizzi, “Sensor based planning: A
control law for generating the generalized voronoi graph,” in Proc. of
the 1997 IEEE Intl. Conf. on Advanced Robotics, 1997.

[4] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, and H. Choset,
“The hierarchical atlas,” Robotics, IEEE Transactions on, vol. 21,
no. 3, pp. 473–481, June 2005.

[5] W. Huang and K. Beevers, “Complete topological mapping with sparse
sensing,” Rensselaer Polytechnic Institute, Technical Report 05-06,
March 2005.

[6] P. Beeson, N. Jong, and B. Kuipers, “Towards autonomous topological
place detection using the extended voronoi graph,” in Proc. of the 2005
IEEE Intl. Conf. on Robotics and Automation, 2005.

[7] C. O’Dúnlaing and C. Yap, “A retraction method for planning the
motion of a disc,” The Journal of Algorithms, vol. 6, no. 1, pp. 104–
111, 1985.

[8] K. Nagatani and H. Choset, “Toward robust sensor based exploration
by constructing reduced generalized voronoi graph,” in Proc. of the
1999 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 1999.

[9] S. Tully, H. Moon, D. Morales, G. Kantor, and H. Choset, “Hybrid lo-
calization using the hierarchical atlas,” in Proc. of the 2007 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, October 2007.

[10] S. Tully, G. Kantor, H. Choset, and F. Werner, “A multi-hypothesis
topological slam approach for loop closing on edge-ordered graphs,”
in Proc. 2009 IEEE/RSJ Intl. Conf. on Int. Robots and Systems, 2009.

[11] K. Nagatani, H. Choset, and S. Thrun, “Towards exact localization
without explicit localization with the generalized voronoi graph,” in
Proc. of the 1998 IEEE Intl. Conf. on Robotics and Automation, 1998.

[12] A. Ranganathan and F. Dellaert, “Online probabilistic topological
mapping,” The International Journal of Robotics Research, 2010.

[13] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[14] G. Dudek, P. Freedman, and S. Hadjres, “Using local information in a
non-local way for mapping graph-like worlds,” Proc. 3rd International
Conference on Artificial Intelligence, pp. 1639–1645, 1993.

[15] E. Remolina and B. Kuipers, “Towards a general theory of topological
maps,” Artificial Intelligence, vol. 152, no. 1, pp. 47–104, 2004.

[16] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, pp. 461–464, 1978.

