Incremental Construction of the Saturated-GVG for Multi-Hypothesis
Topological SLAM

Tong Tao, Stephen Tully, George Kantor and Howie Choset

Abstract— The generalized Voronoi graph (GVG) is a topo-
logical representation of an environment that can be incre-
mentally constructed with a mobile robot using sensor-based
control. However, because of sensor range limitations, the GVG
control law will fail when the robot moves into a large open
area. This paper discusses an extended GVG approach to
topological navigation and mapping: the saturated generalized
Voronoi graph (S-GVG), for which the robot employs an
additional wall-following behavior to navigate along obstacles
at the range limit of the sensor. In this paper, we build upon
previous work related to the S-GVG and provide two important
contributions: 1) a rigorous discussion of the control laws
and algorithm modifications that are necessary for incremental
construction of the S-GVG with a mobile robot, and 2) a method
for incorporating the S-GVG into a novel multi-hypothesis
SLAM algorithm for loop-closing and localization. Experiments
with a wheeled mobile robot in an office-like environment
validate the effectiveness of the proposed approach.

I. INTRODUCTION

For almost any navigational task, a mobile robot will
require a map of the environment in which to plan its path
to a goal location. There are different types of maps in
which a mobile robot can plan a path: topological maps,
grid-based maps, and metric feature maps. The advantage of
using topological maps is their ability to concisely represent
an environment with a graph, whose vertices are interesting
“places” and whose edges are feasible paths between them.
Additional advantages of topological maps are their compu-
tational efficiency, their reduced memory requirements, and
their lack of dependence on metric positioning.

The generalized Voronoi graph (GVG) is a specific type
of topological map that has successfully been applied to
mobile robot navigation and mapping [1]-[4]. The GVG
is comprised of meet-points (vertices) that correspond to
locations of three-way equidistance (or more) to obstacles
in the environment and edges that correspond to paths of
two-way equidistance to obstacles that are also feasible paths
between meet-points [1] (see Fig. 1-(a)).

The advantage of the GVG as a topological map is its
convenience for exploration and obstacle avoidance. Since

This work was supported in part by NSF of China under Grant 60605021,
NSF of China under Grant 60805031, NSF of Tianjin under Grant 10JCY-
BJC07600 and the Ph.D. Programs Foundation of Ministry of Education of
China under Grant 200800551015.

T. Tao is a PhD student of the College of Information Technical Science,
Nankai University, Tianjin 300071, China, and a visiting student of the
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
TaoTong2006@gmail .com

S. Tully is with the Electrical and Computer Engineering Department
and G. Kantor and H. Choset are with the Robotics Institute at Carnegie
Mellon University, Pittsburgh, PA 15213, USA. {stul lyeece,
choseta@cs, kantor@ri} .cmu. edu

the embedded edges of the GVG by definition maximize the
distance between the robot and its surrounding obstacles, it is
inherently safe to follow the GVG edges when navigating in
the map. Unfortunately, one drawback of the GVG as a map
is its sensor range limitation. When the robot traces an edge
of the GVG, it must keep a sufficient number of obstacles
inside its sensor range. If the robot moves out of its sensor
range from the nearby obstacles and into a large open space,
the robot may become lost (see Fig. 1-(b)).

To solve the sensor limitation problem, the saturated gen-
eralized Voronoi graph (S-GVQ) can be constructed instead.
The S-GVG has already been discussed in several other
works with notable success [5], [6]. The S-GVG includes
an additional type of embedded graph edge that corresponds
to the locus of points at a saturated distance from an obstacle
in the free space of the environment (see Fig. 1-(c)).

In this paper, we introduce a new incremental method to
construct the S-GVG of an environment with a robot that has
omnidirectional range sensing. Our implementation adapts
proven control laws that were designed for the conventional
GVG to the mapping process for the S-GVG. We also present
a novel implementation of a multi-hypothesis topological
simultaneous localization and mapping (SLAM) approach
that is customized for the S-GVG. The result is an efficient
and robust exploration and mapping method for sensing-
limited mobile robots.

II. RELATED WORK

Early research involving Voronoi diagrams relied on meth-
ods that required full knowledge of the environment. For
example, in [7], an offline retract method is used to com-
pute the Voronoi diagram. Choset et. al. later proposed
a sensor-based planning approach with a mobile robot to
incrementally construct the GVG using control laws without
a priori knowledge [1], [3]. Then, to solve the problem of
weak or unstable meet-points, Nagatani et. al. introduced
in [8] a simplified version of the GVG, called the reduced
generalized Voronoi graph (R-GVG).

Lisien et. al in [4] propose a hierarchical map where
the GVG serves as a high-level representation of the envi-
ronment that organizes a collection of lower level feature-
based submaps. This hierarchical map was later used for
efficient topological localization [9] and multi-hypothesis
SLAM [10] in large-scale environments. We note that many
of the ideas we present in this paper can be easily extended to
a hierarchical approach via the inclusion of additional metric
information along the edges in the S-GVG topological graph.

yim)

30 30
a0 b) 40
) h o)) 60 &0 100 120 h

x(m)

Fig. 1.
incrementally constructed S-GVG.

Huang et. al. and Beeson et. al. discuss the saturated
generalized Voronoi diagram similar to the topology used
in this paper in [5] and [6] respectively. The former was one
of the first to define the saturated behavior and unsaturated
behavior for a mobile robot traversing GVG edges while the
latter refers to the S-GVG as the extended Voronoi diagram.
Both papers investigate the S-GVG as a solution to a robot’s
sensor range limitations. While important in many respects,
the work in [5] assumes rectilinearity of the environment
(which may not always be the case). Both of the papers do
not discuss a means for the incremental construction of such
a graph with specific control laws necessary to navigate the
S-GVG. Additionally, they do not apply the S-GVG to full-
fledged SLAM with loop-closing, which is a topic we are
addressing in this paper.

For topological SLAM, the challenging task for the robot
is to perform vertex matching or loop-closing. The robot
must be able to determine whether a vertex in the graph is
newly explored or revisited. In [11], Nagatani suggests using
several stable features to identify a vertex. The approach,
however, does not consider multiple hypotheses and performs
loop-closing with simple yes/no heuristics. In [12], a Rao-
Blackwellized particle filter is implemented over the space
of topologies. In [10], we propose a similar probabilistically
grounded multi-hypothesis technique that builds a map/state
hypothesis tree for topological SLAM. The SLAM method
we are proposing in this paper for the S-GVG is an extension
of our previous work and customizes the SLAM algorithm
for dealing with a combination of both saturated and con-
ventional GVG regions.

III. INCREMENTAL CONSTRUCTION OF THE S-GVG

While navigating the conventional GVG, the robot traces
GVG edges with a control law and homes into the exact
location of the meet-point. The robot will explore other
GVG edges and detect additional GVG meet-points, recur-
sively, until all meet-points and edges have been explored.
Following this procedure, the GVG can be incrementally
constructed with a mobile robot using sensor-based con-
trol [3] (one caveat being the recognition of loop-closure in
an ambiguous environment, which we discuss in Sec. V).

The S-GVG, on the other hand, will contain regions in
which the edges follow two-way equidistance as per usual
(conventional GVG edges) and regions in which the edges
follow an obstacle at a saturated distance (saturated GVG
edges). We refer to a meet-point whose associated edges

A comparison between different GVG approaches: (a) GVG with

0 o

&0 &
x(m) x(m)

full knowledge, (b) sensor-based incremental GVG construction, and (c)

are all conventional GVG edges as a conventional GVG
meet-point. Likewise, we refer to a meet-point whose edges
include at least one saturated GVG edge as a saturated GVG
meet-point. Fig. 1-(c) shows the saturated edges (the dashed
lines) and the conventional edges (solid lines).
Incrementally constructing the S-GVG is similar to creat-
ing the conventional GVG. The difference is when a robot
is traversing a hallway that leads into a large open space. In
this case, a different control law must be used to home into a
meet-point with two-way equidistance instead of three-way
equidistance. Also, when departing a saturated meet-point
onto a saturated edge, a new control law must be used to
follow the obstacle boundary at the saturated distance.

A. Control Law

Choset et. al. introduced a control law for generating
the GVG [3], [13]. The control law performs sensor-based
planning by controlling the heading of the robot in a way that
merges the prediction and correction phases so as to avoid
the jagged path generated by traditional control methods.
According to his work, at a point x in the neighborhood of
the interior of a GVG edge, the robot steps in the direction,

X = oNull(VG(x)) + B(VG(x))TG(x), (1)

where G(x) is the difference of the distances to nearby
obstacles. In the planar case, G(x) can be written as,

G(x) = [d\(x) — da(x)]. ()

In this formulation, the solutions of G(x) =0 form the GVG
path, the distances to nearby obstacles (d; (x) and d»(x)) are
the local minima of the range sensor, and (VG(x))" is the
Penrose pseudo-inverse of the Jacobian VG(x), i.e.,

(VG(x)" = (VG)T (VG)(VG)) ™ (3)

In [3], Choset proves that (1) produces a heading direction
for the robot that converges onto the GVG path when 3 < 0.

The conventional GVG edge maximizes the distance to
each obstacle. For saturated GVG edge tracing, the distance
of the robot to the obstacle should equal the sensor range
r. This choice maximizes the distance of the robot to the
obstacle up to the limit where the boundary of the obstacle
can still be sensed. This is demonstrated in Fig.1-(c): the
distance between the dashed line and the wall will be r.

In order to take advantage of the control law in (1), we
introduce a virtual minimum, which simulates the presence of
another obstacle on the other side of the robot when the robot

2r—-d

Xf———WO,‘i,_{._

robot heading
+ local minima

X virtual minima

Fig. 2. A virtual minimum for tracing the S-GVG.

@ @ = @ 7777777 ’

Fig. 3. Line fitting: x is sensed minimum and + is corrected minimum.

is tracing a saturated GVG edge. We denote the distance
associated with the current local minima of the range sensor
as d(x), which is the distance to the true obstacle boundary.
We additionally define the distance to the virtual minima
to be d,(x) = 2r —d(x). All three points (the location of
the true minima, the robot location, and the location of the
virtual minima) are all assumed to be colinear. In Fig. 2, we
show the local minima (represented by “+”) and the virtual
minima (represented by “x”

By having a virtual minima, we can represent the control
problem in the same formulation as the conventional GVG
tracing problem,

Gs(x) = [d(x) — dy(x)]. 4)
It follows that,
Gs(x) =2[d(x) —r].)

In (5), we show that by creating the virtual minimum, we
are controlling the robot to keep a distance » away from
the nearest obstacle. This is the desired result for obstacle
following for the tracing process with a saturated GVG edge.

Because we have formulated this control problem in
the same way as the conventional GVG tracing problem
(compare (4) with (2)), we can apply the same control law
as in (1) to optimally follow a smooth path at a saturated
distance. Although this is not the only way to control a
robot to perform boundary following at a fixed distance
from an obstacle, we feel that it is an important feature
of our algorithm that a proven and previously implemented
component of robot software can be incorporated to handle
this new tracing control problem.

B. Line-Fitting

A robot with noisy sonar and/or a cheap laser sensor often
has a delay between when a robot passes by an obstacle and
when its boundary is sensed by the sensor. With the S-GVG,
a delay in sensor data can cause significant problems when
tracing the obstacle boundary at the saturated distance. As
in Fig. 3-(a), for a robot whose sensed minima is trailing
the robot due to a sensing delay, the distance between the
robot and the obstacle will undesirably increase when driving
forward. This will cause a control response to steer the

Curve Following

Ctn e T L et A A e s, s e R A e’ W

M\/\/_fVQ
a),. o emea iy o
Line Fitting
Lt e - e R e s
J\._—\(‘ Q
b) -..‘\s--u:.:.u-_

Fig. 4. The effect of line-fitting for the S-GVG tracing procedure.

robot towards the wall to reduce the error. Then, when
additional sonar points are eventually acquired, the robot
will immediately steer away from the wall to correct back
to the saturated distance. This unstable behavior will then
repeat due to the delay in the control system. The effect of
the sensing delay and the control response can be seen in
Fig. 4-(a).

To solve this problem, we introduce a line-fitting pro-
cedure to improve the performance of the S-GVG tracing
algorithm. In most structured environments, the obstacles we
encounter have straight edges (or at least can be approxi-
mated with several line segments locally). Thus, we are able
to use the history of sensed minima to fit a line, which we
extend forward past the robot, to simulate the as-of-yet un-
sensed portion of the obstacle (as the dashed line in Fig. 3-
(b)). From this line, we can compute a more probable range
minimum (as the + symbol in Fig. 3-(b)). We use a least
square approach to fit the line and then compute the corrected
local minima by projecting the robots position onto the fitted
line. In addition, we use a clustering algorithm and an error
metric to test whether the measured obstacle points conform
to the computed line parameters. If not, we simply trust the
uncorrected sensed minimum.

To show the effectiveness of this approach, we performed
the S-GVG tracing process in the same environment with
(and without) the line fitting procedure. Fig. 4-(a) shows the
robot tracing the wall without line fitting and Fig. 4-(b) shows
the result when applying line fitting. The path is straight and
follows the wall at the saturated distance, which allows for
stable mapping of the S-GVG.

C. Meet-Point Detection

With the saturated GVG, a saturated meet-point can occur
in two ways as in Fig. 5. The first occurs when the robot is
tracing a conventional GVG path and the equidistance to the
two obstacles increases until it is equal to ». This indicates
that if the robot were to continue tracing the conventional
GVG path, it would lose sight of the obstacle (as in Fig. 5-
(a)). The second occurs when the robot is tracing a saturated
GVG path, and it encounters another obstacle. Since the
robot just encountered this obstacle, the distance to this
obstacle is equal to the sensor range » (as in Fig. 5-(b)).

For both of the two conditions, the saturated meet-point
is a point which is equidistant to the two closest obstacles

Fig. 5. The two types of saturated GVG meet-points

20

3@:

Departure angle determination.

Fig. 6.

(and the equidistance value is). Since the meet-points
in the GVG topological graph are important for successful
mapping, the robot must precisely locate itself at the meet-
points. We use a meet-point homing process that will control
the robot to converge to the meet-point (as in [3]).

The control law for homing is similar to (1). Here, the
function G is defined,

o-[4yr] -0 e

After homing, the robot is at the meet-point and must
determine the departing angles for the edges that emanate
from the current meet-point. With a saturated meet-point,
there will be two local minima in the robot’s omnidirectional
range sensor. The bisector of the two lines drawn to the
sensed minima will be one of the departing edges (in this
case a conventional GVG edge). The angles of the two
additional edges are perpendicular to each of the lines drawn
to the sensed minima, away from the direction that leads
towards the conventional GVG edge. Fig. 6 shows how the
robot determines the departing angles of the three edges. In
the figure, the two “x” symbols represent the sensed local
minima, the three long dashed lines indicates the direction
of each edge emanating from the meet-point.

After computing the departing angles of the new edges, the
edge which the robot came from is then marked as explored.
If this is a new meet-point, the robot will start to trace a new
unexplored edge. If this is an old meet-point and all of the
edges have been explored, the robot will use a branch search
to find the nearest unexplored edge to trace for complete
exploration of the environment.

IV. ToPOLOGICAL SLAM USING THE S-GVG

Although we discussed incrementally building a topologi-
cal map in the previous section and how to control the robot
to navigate the S-GVG, we did not yet describe how the robot
can perform vertex matching in this type of environment.
In ambiguous maps, the robot must be able to detect loop-
closures while mapping the S-GVG. This section introduces
a topological SLAM approach that handles loop-closing with

a multi-hypothesis filter. This type of SLAM approach is an
extension of previous work [10], although we are presenting
here, for the first time, a version of multi-hypothesis SLAM
that is specific to the S-GVG.

A. Constructing a Hypothesis Tree

Each hypothesis # in our multi-hypothesis SLAM ap-
proach stores a possible topological graph, GZ, and a possible
robot state, X' = (v}, ;') (which stores the meet-point at
which the robot is currently located, VZ, as well as the edge
from which the robot arrived at that meet-point, (xf). The
subscript k represents the time-step.

Ideally, at every time-step k£, we would like to compute
the possible map/state pairs, one of which will be correct
and will incorporate the correct loop-closing and meet-point
matching decisions. To do this, we maintain a hypothesis
tree where each level of the tree corresponds to a different
time-step. The tree structure we maintain is similar to that
in [10], [14], [15].

At the start of an experiment, we assume the robot has no
information except for the degree of the first meet-point it
sees, Oy, which equals the number of edges emanating from
the meet-point. Therefore, we initialize the root node of our
hypothesis tree as follows: #=0, k=0, vz =0, and oc,f’ =0.
All neighbors of the root node are labeled as unexplored.

During an experiment, the robot is continuously moving
between meet-points. At each time-step k, the robot chooses
a motion input u; in order to transition to another meet-
point. The motion input is a relative offset from the previous
arrival edge, and produces the following departure edge By
for a new hypothesis that is spawned from hypothesis 4.

ﬁk = (OC]?,I + le) mod &1 (7)

After departing along edge f, the robot drives to a new
meet-point and then detects the number of edges emanating
from that meet-point, which is stored as the degree .

After performing a new motion input uy, all leaf nodes
of the hypothesis tree must be expanded (the leaf nodes
being the set of hypotheses at time-step £ — 1). Our algorithm
expands all leaf nodes of the hypothesis tree in the following
way. If the neighbor of sz | that is associated to the departing
edge B is not unexplored, then we copy the hypothesis to a
single child hypothesis but move the robot’s state to the new
meet-point. If the neighbor is unexplored, then the algorithm
considers several possibilities: 1) that the robot traverses
the unexplored edge and arrives at a new meet-point, or 2)
that a loop is closed and the robot arrives at a previously
visited meet-point via one of its unexplored edges. Different
hypotheses are spawned for these cases. Fig. 7 demonstrates
the expansion of the hypothesis tree.

B. Computing the Posterior Probability

In order to solve the problem of topological SLAM for
the S-GVG, we must determine which hypotheses among
the leaf nodes of the hypothesis tree are likely to represent
the true state and the true map. To do this, we compute the
posterior probability of each hypothesis given a sequence

3 (29
QR

a) 1(.2) 2 (1,3)

3 (2,4) 3 (21)

%
A3 R

b)

o C
1(:2) 2 (1,3) 13,2 2 (1,3)

4 (3,5 3 (24) 4 (31) 3 (24) 3 @1

R
*ls @ R¢
4 2 (1,3) 142 2 (1,3)

e) f)

‘ 1(32) R 203
<712

Fig. 7. This is an example of expanding the hypothesis tree due to robot
motion. Hypothesis (a) spawns (b) and (c) after one edge traversal. After
another edge traversal, hypothesis (b) spawns (d) and (e) while hypothesis
(c) spawns only (f). The location of R in the figure marks the robot’s state.

of sensor measurements. The hypothesis that better fits the
sensor data will produce a higher probability measure and is
therefore more likely to represent the true state and map.

During time-step k, the robot leaves the previous meet-
point, traverses an edge in the graph, and arrives at a new
meet-point (either saturated or conventional). A measure-
ment z{ is obtained during the edge traversal (such as the
distance travelled as measured by wheel odometry) and
a measurement z; is obtained when the robot arrives at
the new meet-point (such as the range measurement for
the equidistance to the nearby obstacles). The posterior
probability of a hypothesis is p(Xf,GﬂzO;k,ul;k), where, as
before, X,fq and Gﬁ represent the robot’s state and graph re-
spectively. Additionally, zo.x = (zj.;,25.;) is the collection of
all measurements during the experiment, which includes the
edge measurement sequence, z{.,, as well as the meet-point
measurement sequence, z;,,. The sequence u1. represents the
motion inputs through time-step .

The posterior can be computed using Bayes law,

P(XE, Gllzo, urx)
= 1N p(ZO:k|X]?7G27ul:k) p(X]faGﬁlul:k)
= 1N p(ZO:k|X]?7G27ul:k) p(Gﬁlulik)a (8)

where p(zo.x |X,f’, Gz,ulzk) is the measurement likelihood and
p(X]', Gluy) is a prior on the hypothesis. The prior reduces
to p(GP|u) in (8) because the robot correctly performs the
motion input sequence. The scalar value 11 in Eq. 8 is to
normalize over the space of possible hypotheses.

For a given time-step, we can compute the posterior
probability of the new leaf nodes of the tree using Eq. 8.
To reduce storage and computation, the likelihood term of
a new hypothesis /4’ can be computed recursively given the
likelihood of the parent hypothesis 4, i.e.,

P(zoxl X Gl ury)

! !
= p(Z, 22001, X0 Gl urg) p(zog1|X{ 1, Gl i)

It turns out that the S-GVG inherently stores additional
information that is useful for SLAM. The robot is completely
aware of the fact that it has homed into either a saturated
meet-point or a conventional meet-point. The robot can
distinguish between the two types because the chosen control
laws are different and the number of equidistant obstacles
will be different. Therefore, the detection of the meet-point
type (saturation versus conventional) is a useful feature for
proposing or rejecting loop-closure hypotheses.

Thus, to customize the implementation of multi-hypothesis
SLAM for the S-GVG, we purposefully fabricate an extra
measurement at each meet-point probability update that
represents the detected type of meet-point: saturated or
conventional. The meet-point measurement is therefore z; =
[€],5}], where g is the measured equidistance and s} is the
detected meet-point type (saturated or conventional). The
measurement model for the detected meet-point type is,

v o~1.0 T(X,G)=saturated
p(s; = saturated|X, G){ |0 T(X.G) % saturated
p(s; # saturated|X,G) = 1— p(s} = saturated|X,G),

where T'(X,G) is the meet-point type assigned to the meet-
point in question according to the hypothesis, X and G. The
idea is that if the meet-point is labeled as saturated, the
likelihood of the robot detecting the meet-point as a saturated
GVG vertex is nearly one.

This measurement model is then incorporated into the
likelihood update for the posterior probability computation.
By adding this measurement to the likelihood term, we can
greatly penalize a hypothesis that expects the robot to be in a
conventional region of the graph when the robot is currently
homing into a meet-point with two-way equidistance at the
range limit of its sensors (in a saturated region).

Neglected thus far in our discussion is the prior p(G/|uy.)
in Eq. 8. This term represents, without any sensor infor-
mation, the probability that the robot happens to be placed
in an environment with a topology GZ. What should this
distribution be? There is no way to know the right answer.
But we can do better than a uniform distribution. We use the
following distribution for experiments,

p(GPluyx) o< exp (—Nzi’ logk) ;

which favors smaller maps that still explain the measurement
data properly. This makes sense, because we would like to
prevent over-fitting when testing loop-closing hypotheses. It
turns out that this formulation is equivalent to using the
Bayesian information criterion [16] for model selection.

By combining in Eq. 8 the prior developed here with the
recursive likelihood function, we are effectively trying to
capture the perfect balance between concise maps that are
typical for structured environments and large intricate maps
that better fit the data. Lastly, we incorporate a conservative
pruning step, based on thresholding the posterior probability
of a topological map hypothesis, that improves the efficiency
of our multi-hypothesis SLAM algorithm.

The result is a SLAM algorithm that uses the meet-point
type as information towards testing loop-closing hypotheses.

conventional node
e saturated node
. degree-one node

a) b)
Fig. 8. This is the experimental result for our S-GVG SLAM algorithm.
% 50 —— with node type test : :
E 40 - - without node type test]
g 30 1
£ 20 1
§ 10 N
0 90
k (time step)
Fig. 9. This plot shows the number of hypotheses in our SLAM filter for

an S-GVG experiment.

The algorithm also incorporates traditional measurements to
help resolve the posterior probability over topological maps
so that the SLAM process will find the most likely solution.

V. EVALUATION

We have performed extensive testing of our S-GVG incre-
mental construction algorithm. We are using a Nomad Scout
robot with an omnidirectional sonar array for sensing range
in an office-like environment (Wean Hall and Newell Simon
Hall at Carnegie Mellon University). The robot primarily
navigates in the hallways, but intermittently encounters large
regions that extend beyond the sensing range.

In Fig. 8-(a), we show the environment in which the
robot performed a SLAM experiment. In this experiment, the
robot navigated three different saturated regions in which the
layout of the floor plan was too large for the sensor range
while also traversing many conventional GVG edges. If the
robot only used conventional GVG edge tracing approach,
it would fail when it moved into the saturated regions. We
note that this experiment was created over several days for
convenience and the data was post-processed at a later date.

For this experiment, the robot traced the GVG quite well,
as seen in the result (Fig. 8-(a)). The robot also mapped
the correct topology for the environment, as seen in Fig. 8-
(b), which precisely compares to the true environment. We
attribute this to the success of the multi-hypothesis SLAM
algorithm at detecting loop-closure despite ambiguities.

In Fig. 9, we depict the number of hypotheses that were
maintained by our SLAM filter during the experiment. The
robot observed ambiguous information, due to structural
similarity between different regions in the environment, and
had to consider different hypotheses about loop-closure after

several edge traversals in the environment. We note that, as
time progresses, the number of hypotheses converges to 1,
with the only remaining hypothesis equaling the correct true
map/state pair. The experiment was run twice (once while
using the detected meet-point type and once without).

VI. CONCLUSION

The Generalized Voronoi Graph (GVG) is a popular topo-
logical representation for roadmap based path planning and
sensor-based navigation. When the robot navigates in a large
open area, though, the conventional GVG approach fails due
to sensor range limitations. This paper investigates the satu-
rated generalized Voronoi graph (S-GVG) and provides a rig-
orous method for the incremental construction of the S-GVG
with a sensor-limited mobile robot. Our contributions include
a method for incrementally constructing the S-GVG, which
includes a control law for following the obstacle boundary
and a line fitting technique for smoothing the sensor-based
control of the robot. We also introduce a novel loop-closing
method that considers multiple hypotheses when performing
SLAM with the S-GVG.

REFERENCES

[1] H. Choset and J. Burdick, “Sensor based planning, part I: The gener-
alized voronoi graph,” in Proceedings of the 1995 IEEE International
Conference on Robotics and Automation, 1995.

, “Sensor based planning, part II: Incremental construction of
the generalized voronoi graph,” in Proceedings of the 1995 IEEE
International Conference on Robotics and Automation, 1995.

[3] H. Choset, I. Konukseven, and A. Rizzi, “Sensor based planning: A
control law for generating the generalized voronoi graph,” in Proc. of
the 1997 IEEE Intl. Conf. on Advanced Robotics, 1997.

[4] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, and H. Choset,
“The hierarchical atlas,” Robotics, IEEE Transactions on, vol. 21,
no. 3, pp. 473-481, June 2005.

[5] W.Huang and K. Beevers, “Complete topological mapping with sparse
sensing,” Rensselaer Polytechnic Institute, Technical Report 05-06,
March 2005.

[6] P.Beeson, N. Jong, and B. Kuipers, “Towards autonomous topological
place detection using the extended voronoi graph,” in Proc. of the 2005
IEEE Intl. Conf. on Robotics and Automation, 2005.

[7] C. O’Dunlaing and C. Yap, “A retraction method for planning the
motion of a disc,” The Journal of Algorithms, vol. 6, no. 1, pp. 104—
111, 1985.

[8] K. Nagatani and H. Choset, “Toward robust sensor based exploration
by constructing reduced generalized voronoi graph,” in Proc. of the
1999 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 1999.

[9] S. Tully, H. Moon, D. Morales, G. Kantor, and H. Choset, “Hybrid lo-
calization using the hierarchical atlas,” in Proc. of the 2007 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, October 2007.

[10] S. Tully, G. Kantor, H. Choset, and F. Werner, “A multi-hypothesis
topological slam approach for loop closing on edge-ordered graphs,”
in Proc. 2009 IEEE/RSJ Intl. Conf. on Int. Robots and Systems, 2009.

[11] K. Nagatani, H. Choset, and S. Thrun, “Towards exact localization
without explicit localization with the generalized voronoi graph,” in
Proc. of the 1998 IEEE Intl. Conf. on Robotics and Automation, 1998.

[12] A. Ranganathan and F. Dellaert, “Online probabilistic topological
mapping,” The International Journal of Robotics Research, 2010.

[13] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[14] G. Dudek, P. Freedman, and S. Hadjres, “Using local information in a
non-local way for mapping graph-like worlds,” Proc. 3rd International
Conference on Artificial Intelligence, pp. 1639-1645, 1993.

[15] E. Remolina and B. Kuipers, “Towards a general theory of topological
maps,” Artificial Intelligence, vol. 152, no. 1, pp. 47-104, 2004.

[16] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, pp. 461-464, 1978.

