
Low-Altitude Operation of
Unmanned Rotorcraft

Sebastian Scherer

May 9, 2011

CMU-RI-TR-11-03

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Sanjiv Singh (chair), Carnegie Mellon University

Takeo Kanade, Carnegie Mellon University
Alonzo Kelly, Carnegie Mellon University

Emilio Frazzoli, Massachusetts Institute of Technology

© 2011 Sebastian Scherer. All rights reserved.

To my family

Abstract
Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not
actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other
aerial vehicles during online motion planning. Prior work has successfully addressed some tasks
such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to
enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously
unknown obstacles, respond to changing environmental conditions, and find unknown landing sites.

We consider the problem of enabling autonomous operation at low-altitude with contributions to
four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and
present results from over a 1000 runs at speeds up to 10 m/s. Fast response is achieved through
a reactive algorithm whose response is learned based on observing a pilot. Second, we show an
algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a
micro aerial vehicle, and an autonomous helicopter avoiding obstacles.

Next, we examine the mission of finding a place to land near a ground goal. Good landing sites
need to be detected and found and the final touch down goal is unknown. To detect the landing
sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant
constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing
site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine
evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure.
The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show
results from urban, vegetated, and desert environments, and demonstrate the first autonomous
helicopter that selects its own landing sites.

We present a generalized planning framework that enables reaching a goal point, searching for
unknown landing sites, and approaching a landing zone. In the framework, sub-objective functions,
constraints, and a state machine define the mission and behavior of an UAV. As the vehicle gathers
information by moving through the environment, the objective functions account for this new
information. The operator in this framework can directly specify his intent as an objective function
that defines the mission rather than giving a sequence of pre-specified goal points. This allows the
robot to react to new information received and adjust its path accordingly. The objective is used in
a combined coarse planning and trajectory optimization algorithm to determine the best path the
robot should take. We show simulated results for several different missions and in particular focus on
active landing zone search.

We presented several effective approaches for perception and action for low-altitude flight and
demonstrated their effectiveness in field experiments on three autonomous aerial vehicles: a 1m
quadrocopter, a 3.6m helicopter, and a full-size helicopter. These techniques permit rotorcraft
to operate where they have their greatest advantage: In unstructured, unknown environments at
low-altitude.

Acknowledgments
This thesis would not have been possible without the many people who have influenced, supported,
and guided me along the way. They are numerous and it will be inevitable that I have forgotten
somebody that deserves mention and I thank the forgotten in advance.

First I would like to thank Sanjiv Singh for believing in me and his support in my research,
guidance in the process, and insight in Robotics. I would also like to thank my committee members:
Takeo Kanade for his insight in technical as well as presentation matters, Alonzo Kelly for valuable
discussions about planning and guiding my research in a good direction, and Emilio Frazzoli for
being supportive of my work and valuable advice. Lyle Chamberlain has been invaluable in building
the hardware that made this thesis possible, and especially for being a good friend. I would also
like to thank Roy Maxion who brought me to Carnegie Mellon and gave me the freedom to explore
Robotics. I would also like to thank Red Whittaker for his inspiration and support that got me into
field robotics.

My research experience was enjoyable thanks to all the interactions with great people around
me: Ben Grocholsky for his philosophical insights into robotics, valuable feedback and help with
experimentation, Chris Geyer for explaining me the intrinsics of vision and the moment based-plane
fitting code. Stephen Nuske for his feedback on the thesis. Bradley Hamner in working with Dodger,
and useful comments on my presentations. Wenfan Shi for help with systems, linux, and driver
development. Prasanna Velagapudi for help in simulation matters and feedback. Maggie Scholtz for
the mechanical design on the airrobot mounting and great pictures of the vehicle. Sanae Minick for
help with my many requests and Suzanne Lyons-Muth for guiding me along the way of the details of
the PhD process and Reid Simmons for interesting discussions during the student lunches.

I would like to show my thanks to Fred Heger for being a good office-mate and friend. Thanks
for your constructive comments and helping with odd requests: Debadeepta Dey, Joseph Djugash,
Young-Woo Seo. I was finally drawn into robotics during the Grand Challenge and the great team
motivated me. I would also like to thank the Urban Challenge team for their support.

I owe my deepest gratitude to my family that has enabled me to pursue my passion. I would like
to thank my wife Hiroko for supporting me during long hours and for believing in me; my daughters
Lara, and Amelie for being the best daughters in the world. Bine, and Papi I thank you for letting
me pursue my dream and supporting me along the way. For his advice on graduate life I would like
to thank Franz Scherer Jr. I would also like to thank Yoshie and Yoichiro Sugino for their support.

A lot of people enabled our experiments on the Yamaha RMax and I would like to thank: Samar
Dajani-Brown, Mike Elgersma, Gary Stevenson, Henele Adams, Alan Touchberry, Tara Schesser,
Robert Schley, Mark Delouis, and Brad Looney. For our experiments on the airrobot I would like to
thank: Thomas Meyer, Burkhard Wiggerich, and Fabian Laasch from Airrobot, and Sup Premvuti
from Hokuyo. I would also like to thank STAT Medevac for making their helicopter (EC 135)
available. The experiments on the Unmanned Little Bird helicopter would not have been possible
without the support of Piasecki Aircraft Corp: Fred and John Piasecki, Chris Chiechon, and Buzz
Miller. I would also like to thank the team at the Boeing Company in Mesa, AZ that made the tests
possible: Don Caldwell for his patience in integrating our software, and Lindsay Fry-Schallhorn for
conducting the flight tests of our system, Christine Cameron, Tim Gleason, Jason Graham, Roger
Hehr, David Guthrie, Jack Gray, Dino Cerchie, and Mark Hardesty for enabling the experiments.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Thesis Statement . 2
1.3 Overview . 3
1.4 Publication Notes . 3

2 Related Work 5
2.1 Control . 5
2.2 Obstacle Avoidance . 5
2.3 Obstacle Cost Calculation . 6
2.4 Landing Site Evaluation . 6
2.5 Motion Planning . 7

3 Low-Altitude Obstacle Avoidance 9
3.1 Problem . 9
3.2 Approach . 10

3.2.1 Range Sensor Processing . 10
3.2.2 Architecture . 13
3.2.3 Reactive Collision Avoidance Algorithm: 3D Dodger 14
3.2.4 Speed Controller . 21
3.2.5 Mission Execution . 23

3.3 Experiments . 25
3.3.1 Testbed . 25
3.3.2 System Identification . 27
3.3.3 Results . 30

3.4 Discussion . 33

4 Efficient Calculation of Obstacle Cost 37
4.1 Problem . 37
4.2 Approach . 38

4.2.1 Distance Transform Algorithms . 38
4.2.2 Limited Incremental Distance Transform Algorithm 39

4.3 Experiments . 41
4.3.1 Simulation . 41
4.3.2 Airrobot Quad-Rotor Vehicle . 44
4.3.3 Autonomous Helicopter . 46

4.4 Discussion . 46

5 Evaluating Landing Sites 51
5.1 Problem . 51
5.2 Approach . 53

5.2.1 Coarse Evaluation . 53
5.2.2 Fine Evaluation . 56
5.2.3 Approach and Abort Path Evaluation . 59
5.2.4 Ground Path Planning . 59
5.2.5 Goodness Assessment . 60
5.2.6 A 1D Example . 60

V

Contents Contents

5.2.7 Information Gain Map . 62
5.2.8 Computational Efficiency . 63

5.3 Experiments . 65
5.3.1 Fine and Coarse Landing Zone Evaluation . 65
5.3.2 Landing the Unmanned Little Bird Helicopter 72

5.4 Discussion . 80

6 Multiple-Objective Motion Planning 83
6.1 Problem . 83
6.2 Approach . 87

6.2.1 Problem Approximation . 88
6.2.2 Trajectory Optimization . 89
6.2.3 Initial Guess Generation . 90
6.2.4 Base Cost Function Definition . 93
6.2.5 Autonomous Helicopter Example . 95

6.3 Experiments . 103
6.3.1 Reach a Goal Point . 103
6.3.2 Search for Landing Sites . 103

6.4 Discussion . 112

7 Conclusions and Future Directions 113
7.1 Summary . 113
7.2 Contributions . 114
7.3 Future Directions . 114

7.3.1 New Research Topics . 114
7.3.2 Algorithmic Improvements . 115

VI

List of Figures

1.1 General problem of navigating at low altitude. 2

3.1 RMax helicopter platform. 10
3.2 Evidence grid processing example. 11
3.3 2D horizontal slice of an evidence grid from the McKenna MOUT site. 12
3.4 Overall software architecture of the algorithms. 13
3.5 The benefit of combining local and global methods for navigation. 13
3.6 Diagram illustrating the terms used in the reactive obstacle avoidance control law. . 15
3.7 Attraction and repulsion for the original 2D control law. 15
3.8 Attraction and repulsion surface for our modified control law. 16
3.9 Diagram showing how an obstacle is projected into a grid-discretized spherical repre-

sentation. 18
3.10 Example showing the box of attention. 19
3.11 Result of training the obstacle avoidance parameters. 19
3.12 Difference between two path segments is used to optimize the parameter set ū. . . . 20
3.13 Speed controller slows the robot based on the closest reachable obstacle. 21
3.14 Experiment that shows the speed controller stopping to avoiding collision. 23
3.15 Finite state machine of the sequencing algorithm. 24
3.16 Helicopter testbed details. 25
3.17 Ladar scan pattern of the Fibertek scanner. 27
3.18 Scene generated from a series of static scans. 27
3.19 Example result of a frequency sweep experiment for dynamics characterization. . . 28
3.20 Comparison of simulated velocity to actual telemetry. 29
3.21 Comparison of a simulated and actual path flown by the helicopter. 29
3.22 Long flight sequence over various obstacles at the Phoenix test site at 6m/s. 30
3.23 Flight through the McKenna MOUT site at Ft. Benning, GA at 4 m/s. 8 m/s was

commanded at the first and 6 m/s at the last two segments of the path. 31
3.24 Another McKenna MOUT site demonstration at 4m/s. 31
3.25 Previously unknown waypoint sequence. 32
3.26 Flying with and without ceiling when specified path is directly through a building. . 34
3.27 Comparison of the paths taken with different combinations of the local and global

planner. 34

4.1 Virtual campus environment of Carnegie Mellon University, Pittsburgh, PA that is
used in the simulation experiments. 41

4.2 Autonomous quad-rotor aerial vehicle used for testing. 42
4.3 Comparison of running three distance transform algorithms. 42
4.4 Initial calculation times for an empty 512x512x80 grid. 44
4.5 Box and whisker plot of the computation time for the LIDT algorithm. 45
4.6 Avoiding obstacles with a large obstacle expansion on a quad-rotor. 45
4.7 Obstacle avoidance on the Unmanned Little Bird helicopter. 47
4.8 Top-down view of five obstacle avoidance runs against a manlift obstacle. 48
4.9 Incremental computation times for the LIDT algorithm on the Unmanned Little Bird

helicopter. 49

5.1 Problem of finding good landing zones for rotorcraft. 52
5.2 Steps in our landing site evaluation algorithm. 53

VII

List of Figures List of Figures

5.3 Flow chart showing the control flow of evaluating a patch in the terrain grid map. . 54
5.4 Flow chart of the fine evaluation algorithm. 56
5.5 Illustration of skid - triangulation contact. 57
5.6 Underbody volume between model and triangulation. 57
5.7 1D example of evaluating a landing zone. 61
5.8 Example information gain map in simulation. 64
5.9 Experimental setup for data collection on a EC 135 helicopter. 66
5.10 Results from the “three trees” area. 67
5.11 Results from the “sloped field” area. 68
5.12 Results from the “wooded intersection” area. 69
5.13 Results from the “power plant” area. 70
5.14 Result of varying the weights for the final decision. 71
5.15 System setup on the Boeing Unmanned Little Bird Helicopter. 72
5.16 Problem setup and input sample data. 74
5.17 Example results for the landing site evaluation in Phoenix, AZ. 75
5.18 Information gain map for the problem setup from Fig. 5.16a. 76
5.19 Landing approach and touchdown. 77
5.20 Typical landing missions. 78
5.21 Example of chosen landing sites for two test cases. 78
5.22 Example of chosen landing sites with the system preferring known approach directions. 79

6.1 High-level overview of the planning framework. 84
6.2 Objective functions define the planning interface. 86
6.3 Detailed planning architecture. 88
6.4 Trajectory optimization algorithm flow chart. 89
6.5 State machine for the example unmanned helicopter. 95
6.6 Graphical representation of the obstacle avoidance objective. 96
6.7 Graphical representation of the search for landing sites objective. 96
6.8 Graphical representation of the planning objective for approaching a landing site. . . 96
6.9 Illustration of the smoothness objective. 100
6.10 Illustration of the shape of the smoothing distribution function along one dimension. 101
6.11 Examples of the trajectory optimization algorithm avoiding obstacles. 104
6.12 Using the planned initial guess for trajectory optimization. 105
6.13 Cost and energy per iteration for one planning cycle. 106
6.14 Simple landing site search. 107
6.15 Action prediction example. 108
6.16 Landing site search with obstacles. 109
6.17 Manhattan environment landing site search. 110
6.18 Calculation time and optimization cost for landing site search. 111

VIII

List of Tables

3.1 Percentage and number of occupied, empty and unknown cells after navigating in
three different environments. 12

3.2 Conditions of the edge labels for the state machine shown in Fig. 3.15. 24
3.3 Specifications for the Yamaha RMax industrial remote-control helicopter. 25
3.4 Specifications for the Fibertek 3-D laser scanner. 26
3.5 Parameters of the SISO dynamic model of the velocity-controlled helicopter 28

4.1 Calculation times of one update for the algorithm by Meijster et al., the mask algorithm
and the limited incremental distance transform algorithm (LIDT). dmax = 20 44

5.1 Binary attributes considered in the coarse evaluation for landing site evaluation. . . 54
5.2 Linear combination of factors determines the goodness of a landing site. 60
5.3 Factors that are incorporated into the information gain map. 62
5.4 Computation times for five successful landing runs of the autonomous helicopter. . . 80

6.1 Finite state machine transition events with the guard C ∨ T for the state machine
shown in Fig. 6.5. 95

6.2 Activated sub-objective functions for different states in the state machine shown in
Fig. 6.5. 95

6.3 Median and standard deviation computation time for landing site search in seconds. 112

7.1 Table of multimedia extensions. 117

IX

List of Algorithms

4.1 Limited Incremental Distance Transform Algorithm (Helper functions). 39
4.2 Limited Incremental Distance Transform Algorithm (Main functions). 40

6.1 Trajectory optimization algorithm. 90
6.2 Overall initial guess algorithm. 90
6.3 Recursive initial guess algorithm. 91
6.4 Simple initial guess algorithm. 91
6.5 Planned initial guess algorithm. 92

XI

1 Introduction
Today the threat of low-altitude obstacles constrain the large number of fielded unmanned aerial
vehicles (UAVs) to operate at high altitude, or under close human supervision at low altitude. Safe
autonomous flight at low altitude is essential for widespread acceptance of aircraft that must complete
missions close to the ground, and such capability is widely sought. For example, search and rescue
operations in the setting of a natural disaster allow different vantage points at low altitude. Likewise,
UAVs performing reconnaissance for the police, the news or the military must fly at low-altitude in
presence of obstacles. Large rotorcraft can fly at high altitude, however have to come close to the
ground during landing and takeoff. So far unmanned full-scale rotorcraft have to land at prepared
land at prepared sites with prior knowledge of obstacle-free trajectories.

Teleoperation with camera feedback close to obstacles is currently used, however it is difficult
because the operator needs a good situational awareness of obstacles and the vehicle state with high
frequency. Situational awareness is difficult to achieve since camera feedback does not allow gauging
the distance to obstacles and small obstacles such as wires are difficult to detect. In a rotorcraft the
range of possible motion also requires a large field of view and requires disambiguating translational
from rotational motion. The communication of this flight critical information requires low latency,
high bandwidth, reliable communication. The methods developed in this thesis could be used to
enable advanced teleoperation or help augment pilot operations.

In this work we assume that the vehicle is given a mission by the operator through partially known
terrain that is executed completely autonomously with no further input and therefore after launch
no more communication is required. Autonomous navigation requires the vehicle to be be aware and
react to obstacles in the flight path, and land in unknown terrain. Since, it cannot be assumed that
reliable communication is available the aircraft should behave according to the users intentions.

1.1 Problem
This thesis presents real-time algorithms that enable low-altitude missions of UAVs in previously
unknown environments completely autonomously. The problem we are addressing is challenging
because we have to plan and account in a complex environment for changing knowledge of obstacles,
landing sites, and other information such as wind on the ground. In general, there is a large number
of objectives and constraints that need to be considered during planning for an unmanned aerial
vehicle. An overview of the problem is given in Fig. 1.1 and can be characterized as follows:

Unknown Obstacles The UAV operates close to the ground and needs to react to obstacles in
realtime. Obstacles that are relevant for rotorcraft include wires, radio towers, vegetation, hills,
buildings, and other man-made structure. It is difficult to operate close to the ground because it is
necessary to sense and avoid very small obstacles like wires in a timely manner. At the same time,
it is required to sense a large field of view to avoid myopic behavior. The environment is coarsely
known or completely unknown and the vehicle needs to react to the terrain as it is discovered. We
assume that the robot is equipped with a range sensor that provides geometric information and a
pose sensor (GPS/INS) for state.

Discover Landing Sites An important advantage of rotary wing aerial vehicles is the ability to
land at unimproved landing sites. However, finding these sites is difficult because helicopters have
many constraints on landing sites. The slope must be small, the terrain smooth, there has to be an
approach and abort path with appropriate glide slope, and the site has to be reachable from the
location one is trying to reach to on the ground. Before the robot can approach a site, it is necessary

1

1.2 Thesis Statement

Missions

Planning

Objectives & Constraints

Obstacles

Pose Uncertainty

Visit a sequence of points

State Uncertainty

Landing Sites

FuelE F

Wind

Find a known object

Cover an area with a sensor

Other Vehicles

Land at an unknown site

Figure 1.1: The general problem of navigating at low altitude. An aerial vehicle is expected to be
capable of performing a variety of interesting missions while at the same time respecting
a set of partially known objective functions and respect dynamic and obstacle constraints
for successful mission completion.

to find the landing site in the shortest time possible. We also want to incorporate prior information
about potential landing sites to shorten the search time. The challenging problem of searching and
landing at previously unknown landing sites in real-time is a benchmark task for evaluating our
framework and algorithms.

Rotary Wing Vehicles In this work, we will focus on rotorcraft of various sizes that we assume to be
stable and can be controlled via higher level commands. Although, the dynamics of the uncontrolled
vehicle are complicated we focus on respecting the dynamics on the commanded path for a controlled
vehicle.

1.2 Thesis Statement
Enabling safe autonomous operation requires the development of methods that enable vehicles to
operate at low altitude. In this thesis I examine several problems and demonstrate the approaches
for small (<1m), medium, and full-scale (manned) rotorcraft flying at low-altitude. The methods are
developed by considering different objectives. Initially the work focussed on only considering goal
points and obstacles as the objectives and I developed two approaches: Fast obstacle avoidance with
late detection of small obstacles, and efficient calculation of obstacle cost for faster global motion
planning. To enable a larger self-awareness of the vehicle and to permit operation close to the ground
I developed a method to evaluate unprepared landing sites, and generalize the planning problem to a
set of objective functions. We test this generalized planning approach for landing site search. This
thesis makes the following thesis statement:

In low-altitude environments safe and efficient trajectories for aerial vehicles can be
constructed by combining and sequencing a set of simpler objective functions.

The framework developed in this thesis has a wide range of applications and could be applied to
other classes of aerial platforms such as fixed wing aircraft. The algorithms developed advance the
field of real-time perception and motion planning in realistic applications of unmanned rotorcraft.
In the future, I expect that this work will extend the envelope of missions where unmanned aerial
rotorcraft can be used.

2

1.4 Publication Notes

1.3 Overview
The work is put in context in Chapter 2. Small aerial vehicles have to react quickly to new obstacle
and Chapter 3 presents a reactive approach coupled with higher level planning to allow operation
among obstacles even if the dynamics of the aerial vehicle cannot be predicted with certainty.

Chapter 4 addresses a particular bottleneck of route planning in a 3D grid for aerial vehicles.
Obstacles need to be expanded to achieve a high safety margin. Calculating the cost of obstacles
depends on the distance to the closest obstacle and can be efficiently updated using the LIDT
algorithm.

A UAV has to land eventually and finding landing sites is particularly relevant for unmanned
rotorcraft because they are not constraint to land on runways. We address a slightly more complicated
problem since we require to find not only feasible landing sites with approach paths but also landing
sites that are reachable from a ground goal in Chapter 5.

The final chapter presents a generalized approach to planning that allows larger rotorcraft to
perform missions such as searching for landing sites while at the same time avoiding obstacles
(Chapter 6). The approach is more computationally intensive as the reactive algorithm presented
earlier and relies on being able to accurately predict the dynamics. However, it is more suitable
for problems where we would like to plan trajectories that can be guaranteed safe and deliberate.
Additionally, the method can be quickly adapted to new dynamic models, sensors, and missions.

The concluding Chapter 7 contains a summary, conclusions, and perspectives for future work.

1.4 Publication Notes
Chapter 3 is edited from the previously published paper in [Scherer et al., 2008]. The efficient cost
function algorithm of Chapter 4 was previously published in [Scherer et al., 2009] and has been
updated with an omitted line in the original LIDT algorithm and results from using the algorithm
on a helicopter. Parts of chapter 5 have been published in [Scherer et al., 2010]. The landing site
algorithm has been enhanced to incorporate approach paths, and ground search paths. The results
now also reflect results from new landing experiments on the Unmanned Little Bird helicopter and
shows computation results for a more optimized algorithm.

3

2 Related Work
Guidance for unmanned aerial vehicles is challenging because it is necessary to solve many sub-
problems to achieve an interesting level of autonomy. Initially, much research has focussed on keeping
vehicles airborne. After good controllers had been demonstrated and were available, the boundaries
of operation of aerial vehicles can be pushed lower and closer to obstacles. However, as one gets
close to obstacles, GPS-based position estimation is not reliable enough and new methods have to be
developed. Moreover, given that positioning information is available, it is still necessary to sense the
surroundings to avoid collisions. Once that reactive capability is achieved motion planning can be
incorporated.

In the following section we will present related work on control, obstacle avoidance, perception,
and motion planning which is applicable to aerial vehicle systems.

2.1 Control
Computing hardware made it possible to control aerial vehicles autonomously, and vision enabled
to control helicopters in the 90’s. Using the limited computational resources available impressive
vision-based control was achieved by Amidi et al. [Amidi, 1996, Amidi et al., 1998], Kanade et al.
[Kanade et al., 2004], Lewis et al.[Lewis et al., 1993], and others. Many of these capabilities were
partially motivated by the International Aerial Robotics Competition [Michelson, 2000]. Initially,
while GPS accuracy was not sufficient for control, vision based approaches for control were developed
by Proctor et al.[Proctor et al., 2006, Proctor and Johnson, 2004] and later while control using GPS
to determine position became possible, focus shifted more towards visual servoing for applications on
platforms as described by Saripalli et. al [Saripalli and Sukhatme, 2003]. As computers and batteries
became lighter, control of smaller vehicles indoors as developed by Bouabdallah [Bouabdallah, 2007],
and Tournier [Tournier, 2006] was possible. For small ornithopters control using vision enables stable
flight. One example is the Delfly described by Deal and Huang[Deal and Huang, 2008].

In our work, we will assume that the low-level control problem has been solved and that we have a
higher level waypoint or over-ground velocity input to command the vehicle.

2.2 Obstacle Avoidance
Obstacle avoidance is a necessary capability to operate close to structures. Optic flow is a popular
approach to avoid obstacles since it is biomimetic and lightweight. Vision-based reactive meth-
ods have been popular because payload weight is a serious limitation for UAVs. Beyeler et al.
[Beyeler et al., 2006, Beyeler et al., 2007] and Zufferey et al. [Zufferey et al., 2006] developed au-
tonomous extremely lightweight indoor fliers that avoid obstacles and stay away from obstacles using
a small 1-D camera. Oh et al. [Oh et al., 2004, Oh, 2004] and Green et al.[Green and Oh, 2008]
developed autonomous optical flow based obstacle avoidance similar in idea to the design by Zufferey
et al. A larger fixed-wing aerial vehicle was used by Grifiths et al. [Griffiths et al., 2006] and Merrel
et al. [Merrell et al., 2004] to reactively avoid obstacles and follow a canyon with ladar and optical
flow.

Hrabar et al. [Hrabar and Gaurav, 2009] also performed extensive experiments using optical flow
for obstacle avoidance however additionally a stereo camera was used to prevent collisions from
straight ahead zero-flow regions. Stereo image processing with evidence grid based filtering was also
used by Andert et al.[Andert et al., 2010][Andert and Goormann, 2007] to create a map based on
stereo imagery that avoided obstacles reactively in simulation. Viquerat et al. [Viquerat et al., 2007]
presented an reactive approach to avoid obstacles using Doppler radar. Paths around obstacles

5

2.4 Landing Site Evaluation

have been planned and maps have been built using ladar by Whalley et al. [Whalley et al., 2008,
Whalley et al., 2005], and Tsenkov et al. [Tsenkov et al., 2008]. Recently Grzonka et al. presented a
small quad-rotor that is capable of localization and SLAM in 2D[Grzonka et al., 2009].

Byrne et al. have demonstrated obstacle detection from a wide-baseline stereo system that uses
color segmentation to group parts of the scene (even if lacking in optical texture) into spatially
contiguous regions for which it is possible to assign range [Byrne et al., 2006].

Shim and Sastry have proposed an obstacle avoidance scheme that uses nonlinear model predictive
control. Their system builds controllers for arbitrarily generated trajectories. They have demonstrated
results on a RMax platform operating in a plane using a single-axis laser rangefinder at speeds of
2m/s [Shim et al., 2006].

Zapata and Lepinay have proposed a reactive algorithm[Zapata and Lepinay, 1999] similar to
the reactive algorithm presented in Chapter 3.2.2, but we are aware only of simulated results
[Zapata and Lepinay, 1998]. We contribute an integrated architecture in the next Chapter that
combines path planning with a reactive obstacle avoidance algorithm based on a global map with a
virtual sensor and show significant results from real experiments.

2.3 Obstacle Cost Calculation
Typically obstacle costs in a grid based representation for planning are calculated by searching
for the closest obstacle within the desired radius. However aerial vehicles want to stay far away
from obstacles if necessary and therefore want a large obstacle expansion. The obstacle expansion
is related to the distance transform and Meijster et al.[Meijster et al., 2000] presented an efficient
algorithm to globally calculate the distance transform. Kalra et al. [Kalra et al., 2006] showed an
incremental algorithm to incrementally construct Vornonoi diagrams. We show an efficient algorithm
similar to D* Lite [Koenig and Likhachev, 2002a] that updates the distance transform up to a limit
incrementally.

2.4 Landing Site Evaluation
There has been some prior work on landing and landing site selection. From a control perspective
the problem has been studied by Sprinkle[Sprinkle et al., 2005] to determine if a trajectory is still
feasible to land. Saripalli et al. [Saripalli and Sukhatme, 2007] have landed on a moving target that
was known to be a good landing site. Barber et al. [Barber et al., 2005] used optical flow based
control to control a fixed wing vehicle to land.

Vision has been a more popular sensor modality for landing site evaluation because the sensor is
lightweight. De Wagter and Mulder[de Wagter and Mulder, 2005] describe a system that uses vision
for control, terrain reconstruction, and tracking. A camera is used to estimate the height above
ground for landing in Yu et al. [Yu et al., 2007], and similarly in Meijas et al. [Mejias et al., 2006] a
single camera is used to detect and avoid powerlines during landing.

Using a stereo camera, Hintze [Hintze, 2004] developed an algorithm to land in unknown envi-
ronments. Bosch et al. propose an algorithm for monocular images that is based on detecting
nonplanar regions to distinguish landing sites from non-landing sites[Bosch et al., 2006]. Another
popular approach is to use structure from motion to reconstruct the motion of the camera and to
track sparse points that allow reconstruction of the environment and plane fitting. This method as
been applied to spacecraft by Johnson et al. [Johnson et al., 2005] and to rotor craft by Templeton
et al. [Templeton et al., 2007].

Ladar based landing site evaluation has not been studied very deeply except as suggested in
Serrano et al. [Serrano, 2006] where a framework for multiple sources like ladar, radar, and cameras
is proposed to infer the suitability of a landing site. For ground vehicles ladar based classification is
popular because of its reliability and direct range measurement. It has been used in conjunction
with aerial vehicle data for ground vehicles by Sofman et al. [Sofman et al., 2006] and by Hebert &
Vandapel [Hebert and Vandapel, 2003].

6

2.5 Motion Planning

Our work in landing site evaluation uses ladar data and some of the proposed techniques in
related work such as plane fitting and roughness for coarse evaluation. However, our method goes
beyond pure plane fitting to actually fit a model of the helicopter geometry to a triangulation of the
environment and also incorporates further constraints based on approach, abort and ground paths.

2.5 Motion Planning
Current approaches to unmanned aerial vehicle motion planning either address the problem of
obstacle avoidance while reaching a goal or optimize a specific objective such as search & track. In
Chapter 3 we address reaching a goal point while avoiding obstacles on an RMax helicopter and
extend this work to a more general applicability in Chapter 6.

Search & track methods for UAVs optimize a similar objective as the landing site search, however
current approaches ignore obstacles and are optimal for a certain task such as the methods by Frew &
Elston[Frew and Elston, 2008] and Tisdale et al. [Tisdale et al., 2009]. Tompkins et al. combined sun
exposure and energy to plan a mission plan that reaches a goal point[Tompkins et al., 2002]. Cyrill
& Grisetti propose a method to explore an environment while also enabling improved localization and
mapping [Stachniss and Grisetti, 2005]. While these approaches optimize one particular problem
they do not generalize to several missions.

One problem that is particularly important for military applications is search and target tracking.
For this problem optimal specific solutions have been developed by Grocholsky[Grocholsky, 2002]
using an information theoretic approach. A tracking algorithm was developed by Brooker et
al.[Brooker et al., 2003] to optimize a target estimate on the ground. Usually one optimizes a
trajectory up to a certain horizon and is myopic after that, as there is no benefit in planning further
for search and track because areas of good information are not predictable. In the problems we are
addressing there is a benefit in planning with a longer planning horizon since information is not
changing as quickly.

Real-time motion planning for robotics is an important problem that addresses the problem of
which trajectory to take based on partial information. Stentz [Stentz, 1994], Koenig & Likhachev
[Koenig and Likhachev, 2002b], and Ferguson & Stentz [Ferguson and Stentz, 2006] developed effi-
cient incremental algorithms to replan kinematic routes once new sensor information is received. These
algorithms usually assume a grid based representation of the world. Nevertheless, other representa-
tions are also possible such as a 3D path network presented by Vandapel et al. [Vandapel et al., 2005]
or octree based presentations as demonstrated by Kitamura et al. [Kitamura et al., 1996]. An
alternative to graph-based planning methods is the Laplacian path planning algorithm by Jackson et
al.[Jackson et al., 2005] that is similar to the approach used in Connolly et al.[Connolly et al., 1990]
and Li & Bui[Li and Bui, 1998].

Since routes planned only based on geometric constraints are not necessarily feasible to execute
if close trajectory tracking is necessary, planning approaches that search a graph over feasible
motions have also been developed by Frazzoli et al. [Frazzoli et al., 2005, Frazzoli et al., 2002] using
maneuver automata, Hwangbo et al. [Hwangbo et al., 2007] using feasible grid resolutions, Shim et
al. [Shim et al., 2006] using model predictive control, and Pivtoraiko et al.[Pivtoraiko et al., 2009]
using a state lattice. These methods could be used in our generalized planning framework to create
an initial guess for trajectory optimization.

Another direction to improve planning algorithms has been to plan to incorporate other objectives to
improve future sensing as in Michel et al. [Michel, 2008], or to direct a sensor by hallucinating obstacles
as in Nabbe [Nabbe, 2005], and Nabbe et al.[Nabbe and Hebert, 2007]. Other researchers have
addressed the problem of staying localized while navigating without GPS. He et al. [He et al., 2008]
planned for a small quadrocopter and Gonzalez & Stentz planned to stay localized for a ground
vehicle [Gonzalez and Stentz, 2008]. Even though in the above approaches a goal point is assumed,
objective functions are incorporated in the planning phase to permit low-cost behavior.

Trajectory optimization is used as a step after planning and sometimes sufficient on its own. The goal
of trajectory optimization is to improve an initial guess of a trajectory to optimize an objective function.
It has been incorporated into a planning framework by Brock et al. [Brock and Khatib, 2002],

7

2.5 Motion Planning

Quinlan et al.[Quinlan and Khatib, 1993], and Kavraki et al. [Kavraki et al., 1996]. Trajectory
optimization methods that have been used to avoid obstacles while trying to preserve smooth
trajectories are presented in Schlemmer et al. [Schlemmer et al., 1995] for a robot arm. Richards &
How[Richards, 2002] and Kuwata [Kuwata, 2007]used mixed-integer linear programming to optimize
trajectories as a receding horizon controller for air and spacecraft to avoid obstacles. Recently
Kolter & Ng[Kolter and Ng, 2009] presented a trajectory optimization method based on cubic spline
optimization. Howard & Kelly [Howard and Kelly, 2007] presented an efficient trajectory optimization
algorithm that is able to incorporate additional constraints such as smoothness.

One method that inspired our trajectory optimization algorithm is the CHOMP algorithm by
Ratliff et al. [Ratliff et al., 2009] that distributes updates to command waypoints to be smooth.
Trajectory optimization methods are interesting because they permit a quick reaction to changes
in the objective function. To run the optimization procedure we need an initial guess that will be
optimized. The difficulty for complex objective functions is to find a good initial guess as many
potential goal points exist. Our approach addresses this problem by using a grid planning method to
calculate a set of initial guesses that is then optimized.

Some solutions to the problem of operating aerial vehicles at low-altitude have been proposed
in previous work. However, a comprehensive approach that is able to plan motion with multiple
changing and unknown objectives in real-time is missing and will be proposed in Chapter 6.

8

3 Low-Altitude Obstacle Avoidance

3.1 Problem
This chapter presents a fast reactive algorithm that allows autonomous rotorcraft to fly close to the
ground and reach a goal point while avoiding obstacles. Operationally, we would like a system that
can safely fly between coarsely specified waypoints without having to know beforehand that the flight
path is clear or that a waypoint is even achievable. Flying close to and among obstacles is difficult
because of the challenges in sensing small obstacles, and in controlling a complex system to avoid
obstacles in three dimensions. Some aspects of collision avoidance are easier for air vehicles than
ground vehicles. Any object close to the intended path of an air vehicle must be avoided as opposed
to ground vehicles where deviations from the nominal ground plane indicate obstacles and are often
not visible until they are close. The use of small helicopters, rather than fixed wing aircraft also helps
because in the worst case it is possible to come to a hover in front of an obstacle. Still, the availability
of appropriate sensors, logistical issues of mounting a vehicle with sufficient sensing, computing
and communication gear, and the risk involved in such experimentation has kept researchers from
significant progress in this area. While some methods of obstacle avoidance on aircraft have been
implemented, none to our knowledge has achieved the speed and endurance that we present here.

In order to operate in real time, we have developed a layered approach, similar in a general way,
to the approach used by autonomous ground vehicles that operate in uncharted terrain: plan globally
and react locally. Our approach combines a slower path planner that continuously replans the path to
the goal based on the perceived environment with a faster collision avoidance algorithm that ensure
that the vehicle stays safe.

This approach accrues two main benefits. First, it decomposes the problem of navigating in
unknown terrain into two simpler separable problems– one of determining a generally preferred
route and the other of staying safe. Route planning and replanning is best done online given that
highly accurate maps are not available ahead of time, but such a computation is not required at the
high frequency necessary for avoiding obstacles. While route planning is best off considering all the
information available and is hence slower, collision avoidance requires consideration of only a shorter
horizon and thus can be executed at a higher frequency. Second, any map information available
ahead of time can be easily used to bootstrap the representation used by the planning algorithm to
generate plans that are of better quality than those that must be generated based on sensed data.

The coarse planner creates a path to the goal point from the current location of the vehicle. The
path is used to provide sub-goals to the reactive algorithm. The reactive algorithm is based on
a model of obstacle avoidance by humans. This method is similar to the classic potential fields
[Khatib, 1986] that compose a control by adding repulsions from obstacles and an attraction to the
goal but it prescribes a potential over the steering function rather than only the euclidean position
of the vehicle. This difference is important for two reasons– first it helps the vehicle get close to
obstacles (steering the vehicle away only if it is headed towards an obstacle) if necessary and it
incorporates the vehicle’s steering dynamics into the control. As might be expected, the collision
avoidance method must be tuned to deal with the specific mechanism used. Here we show how the
parameters necessary for collision avoidance can be learned automatically by analysis of only one
path generated by a pilot remote controlling the vehicle to avoid obstacles. The method by Fajen &
Warren[Fajen and Warren, 2003] that inspired our work is a control law to steer at constant speed
in 2D to avoid point obstacles given a fixed goal. We have made novel extensions to this method to
deal with: non-point obstacles, irrelevant obstacles, three dimensional environments, distant goals,
and varying speeds.

The combined local and global methods produce an efficient navigation controller that can both
look ahead significantly as well as be nimble even when the vehicle is flying at high speeds. The main

9

3.2 Approach

Figure 3.1: The helicopter platform we used to test collision avoidance flying autonomously between
two poles 10 m apart. The rotor span of this helicopter is 3.4 m

contribution that this paper documents is a methodology to autonomously navigate in 3D, that is to
travel from A to B without prior knowledge of the environment. We have validated these ideas by a
large number of experiments (over 1000 flights on an autonomous helicopter shown in Fig 3.1) in
two significantly different environments at speeds (up to 20 knots) significantly greater than those
attempted by anyone to date. .

Next we describe sensor processing in section 3.2.1. Section 3.2.2 explains our architecture and the
algorithm is shown in section 3.2.3. The speed control is described in section 3.2.4 and the mission
execution in section 3.2.5. In section 3.3.1 we describe the flight hardware and range sensor. Section
3.3.2 describes our simulator and in section 3.3.3 we show results from field tests and conclude in
section 3.4.

3.2 Approach
3.2.1 Range Sensor Processing
We keep a map of the world because it improves decision making and provides more information about
obstacles than an instantaneous range sensor scan. The map we use is a three dimensional evidence grid
because it is able to express the belief of a volume of space being occupied[Martin and Moravec, 1996].
Another advantage of an evidence grid is that it is a compact view of the world that can be updated
in realtime. Furthermore the grid can incorporate sensor uncertainty and represents relevant obstacle
occupancy. It is arranged as a regular grid of voxels that store the log-likelihood ratio of the voxel
being non-empty. The raw range sensor data is transformed to an occupancy probability and the result
is mapped into an evidence grid using position and orientation information. Fig. 3.2 summarizes the
flow of data.

3.2.1.1 Construction of Evidence Grids

The evidence grid algorithm assumes a static scene. It will however incorporate changes in the
environment if it sees enough evidence of empty space or occupancy. Accordingly our algorithms will

10

3.2 Approach

Figure 3.2: Evidence grid processing example. A laser rangefinder returns a signal indicating a hit.
The signal is mapped to an occupancy probability P (m|o). This probability is used to
update the relevant belief cells in the evidence grid.

avoid moving obstacles suboptimally since moving obstacles will create a smeared representation in
the evidence grid and no explicit tracking is performed.

The notation used in this derivation follows closely the notation used by Foessel[Foessel, 2002].
Let the grid be denoted by M where each grid cell is m<x,y,z,>. The value of a cell is b(m), the belief
of occupancy of the cell. Initially it is assumed that the probability of a cell being occupied initially
(prior probability) is P (m) = 0.5 and that a cell is either occupied or empty so b(m) = 1 − b(m).
b�(m) is the updated belief of the evidence grid.

The sensor model maps the signal returned from the laser rangefinder to a probability of occupancy
given the observation P (m|o). The belief of the cells b(m) of the evidence grid is then updated using
Bayes rule:

b�(m) = P (m|o)
1 − P (m|o) ·

1 − P (m)
P (m) ·

b(m)
1 − b(m) (3.1)

however since P (m) = 0.5:

b�(m) = P (m|o)
1 − P (m|o) ·

b(m)
1 − b(m) (3.2)

A representation of the belief which is better suited for our purposes and faster to update is the
log odds representation. The log odds of the update rule is

b(m) = ln b(m)
1 − b(m) = ln b(m) − ln(1 − b(m)) (3.3)

Therefore the new update rule is

b
�(m) = b(m) + ln P (m|o) − ln(1 − P (m|o)) (3.4)

Our robot uses a laser rangefinder that scans in azimuth and elevation (Also see section 3.3.1).
The sensor returns a range and status value. Since the accuracy is independent of range we have a
range-invariant sensor model. Furthermore a reported hit is extremely likely to be from an obstacle.
Accordingly we map the probability to a simple model in which

ln P (m|o) − ln(1 − P (m|o)) = 127 (3.5)

and
ln P (m|o) − ln(1 − P (m|o)) = −1 (3.6)

if we received a valid return. We determined these values based on experiments with the sensor
and chose the values with the qualitatively best evidence grid.

The algorithm used for selecting the cells affected in the 3D evidence grid is a 3D extension of
Bresenhams line algorithm[Bresenham, 1965]. A description of the algorithm are can be found in

11

3.2 Approach

Location % Occupied % Empty % Unknown # Occupied # Empty # Unknown
Ft. Benning, GA 2.10 14.20 83.70 88344 595399 3510561
Phoenix, AZ #1 1.80 6.52 91.68 75727 273342 3845235
Phoenix, AZ #2 0.26 1.40 98.34 10922 58812 4124570

Table 3.1: Percentage and number of occupied, empty and unknown cells after navigating in three
different environments. A cluttered test site environment with dense vegetation and two
environments with sparse obstacles and vegetation.

Figure 3.3: A 2D horizontal slice of an evidence grid from the McKenna military operations in urban
terrain (MOUT) site at Ft. Benning, GA (USA). This model was created by flying part of
the shown path. Red(Dark) represents occupancy and white is evidence of free space. An
aerial image is overlaid on top of the evidence grid in order to facilitate the interpretation
and show the accuracy of the constructed model. The grid spacing is 10 m.

[Liu and Cheng, 2002].
The beam of the ladar has a diversion at the maximum range that is smaller than the evidence

grid cell size. Therefore processing of a new ladar hit is linear O(n) in the number of cells of the ray
from the current location to the hit location.

3.2.1.2 Evaluation of evidence grids

Evidence grids have advantages and disadvantages over other representations of obstacles like lists of
hits representing point clouds. In the following we explore some of the issues of the use of evidence
grids.

An advantage of using evidence grids is the representation of uncertainty in the occupancy for
each part of the space defined by a cell. A false positive data point is erased if enough rays penetrate
the cell containing a false positive hit. Dust particles and rain drops, for example can cause a false
obstacle to appear. Although the robot might react to such false positives the wrong evidence added
will be erased if enough evidence of empty space is accumulated. However if a real obstacle is only
visible in a very small fraction of hits it is possible that the hits will get erased. The smallest obstacle
in our problem specification was a 6mm thin wire that was seen by the sensor sufficiently often that
this was not a problem.

Processing of new sensor information is fast in evidence grids because only a small number of cells
have to be updated for a laser rangefinder and the calculation of the cells that need to be updated
can be performed fast. However, the coarse discretization of the grid leads to aliasing. Aliasing
misregisters obstacles and can cause true obstacles to be erased.

The grid is regular and of fixed size. Consequently, it requires a constant amount of memory

12

3.2 Approach

Global
Planner

Local Planner Speed ControllerState Estimator

Flight Controller

Evidence Grid

Deliberative Layer

Control Layer

Reactive Layer

v d , !"

p g

v d ' , !" '

Figure 3.4: Overall software architecture of the algorithms. The higher the layer the lower the
frequency of execution. A path pg is produced in the planning layer and transmitted to
the reactive layer. The reactive layer produces commands (v�

d
, θ̇�) that are then executed

by the flight controller.

Box of attentionBox of attention
Goal

Obstacles

Goal from
straight-line path

b)a)

Obstacles

Goal

Goal from
global planner

Figure 3.5: The benefit of combining local and global methods for navigation. In (a) the vehicle uses
obstacles in the "box of attention" in its guidance. Since the horizon is short, this can
lead the vehicle to a cul-de-sac from where it might have to either turn around or execute
an expensive climb maneuver. In (b), the vehicle selects its temporary goal point along
the path found by the global planner and ends up following a better route.

to store. This design reduces the computation required to update a memory location and does
not require managing dynamic allocation and deallocation of cells. However in the case of sparse
obstacles this can result in large amounts of wasted memory. As shown in Table 3.1 most cells are
never touched. Only a small percentage(0.26% - 2.1%) of cells is occupied in Phoeniz, AZ and Ft.
Benning, GA. The evidence of being empty is however useful to reject false positives.

A 2D slice of an evidence grid from McKenna MOUT is shown in Fig. 3.3. This model was created
using the displayed flight path and is overlaid with an aerial view of the site. Since the evidence grid
was shifted several times there are hard boundaries when the position of the grid changed. A large
amount of space is also known as free space with a high certainty. This can help in deciding if a
region is safe to traverse.

3.2.2 Architecture
Our layered obstacle avoidance architecture uses a combination of a global planner with a local
planner to react quickly to obstacles while not getting trapped in local minima. This appears like
double the work at first since we are avoiding obstacles in both algorithms. However the goal of
the global planner is to find a path around obstacles. This path is not necessarily executable in
the short run since the vehicle could be moving in the opposite direction. However in the long run

13

3.2 Approach

the vehicle should move roughly along the path of the global planner. The local planner’s priorities
on the other hand are to avoid obstacles and then try to follow the path from the global planner.
Another advantage in using two algorithms is that reaction is faster and reliability requirements
decrease with the complexity of the problem the algorithm tries to solve. Searching a path in three
dimensions is difficult and finding a path might even be impossible. However our overall architecture
will still avoid obstacles. If even our local planner should fail the helicopter will at worst come to a
stop in front of an obstacle because the speed controller will stop early enough.

In Fig. 3.4 one can see that at the lowest layer the speed controller slows and accelerates the
vehicle based on the distance to the closest reachable obstacle and on the minimum turning radius.
At the next level, our local planning algorithm produces steering commands in both horizontal and
vertical axes to actively avoid obstacles. At the highest layer, a global path planning algorithm
generates a smooth path around obstacles to the next goal.

Since a helicopter can come to a complete hover, it can get around obstacles by moving horizontally
or vertically. However, we prefer to smoothly change the direction of travel like a fixed wing aircraft,
partly for energy reasons but also because such motion keeps the sensor looking forward. Hence, in
the ideal case, the helicopter maintains a constant speed while it maneuvers around obstacles.

This behavior is achieved by integrating the reactive layer (Local Planner and Speed Control)
with the deliberative layer (Global Planner). Since the global planner looks far ahead to the next
waypoint (100s of meters) it will produce a nominal path that will not require the reactive layer to
escape by flying straight up or by turning around. In the unlikely case that a large obstacle appears
suddenly, it will still be avoided by the reactive layer long before it is incorporated by the planning
layer. Furthermore it is is necessary to incorporate a deliberative layer because the reactive layer
alone can get stuck in certain cluttered configurations of obstacles as illustrated in Fig. 3.5. In this
example the helicopter might have to climb over the obstacle if it would just use the reactive layer
because it might decide to turn left. Instead by integrating the local and global planner we pick a
new goal point based on the planned trajectory and can therefore successfully avoid the obstacles.

3.2.3 Reactive Collision Avoidance Algorithm: 3D Dodger
In this section we present our formulation of a 3D local planning algorithm based on a control law for ob-
stacle avoidance in people avoiding point obstacles studied by Fajen and Warren[Fajen and Warren, 2003].
The interesting aspect of this model is that the human (or robot in our case) is avoiding obstacles
and reaching a goal by turning in the direction where the obstacle repulsion and goal attraction are
at an equilibrium.

This is in contrast to previous approaches like potential fields [Khatib, 1986], because the repulsion
and attraction does not only depend on the position of the robot but depends on the state ([x, y, θ]
in 2D for example). The advantage of this model is that the direction of motion is incorporated in
the reaction which will cause the avoidance maneuver to be smoother because the turning dynamics
influence the reaction.

2D Formulation Fajen and Warren’s model (FW) uses a single goal point which attracts the vehicle’s
heading. This model uses angles and distances to obstacles. The terms used in this formulation are
shown in Fig. 3.6. The attraction increases as the distance to the goal decreases and as the angle to
the goal increases (Fig. 3.7.A-B), yielding the goal attraction function

attractF W (g) = kgψg(e−c1dg + c2) (3.7)

ψg is the angle to the goal. dg is the distance to the goal. kg, c1, and c2 are parameters which
must be tuned. Similarly, each obstacle repulses the agent’s heading. The repulsion increases with
decreasing angle and decreasing distance (Fig. 3.7.C-D). Then for each obstacle, there is a repulsion
function:

repulseF W (o) = koψo(e−c3do)(e−c4|ψo|) (3.8)

ψo is the angle to the obstacle. do is the distance to the obstacle. ko, c3, and c4 are parameters which
must be tuned. These attractions and repulsions are summed together (assuming a superposition

14

3.2 Approach

Figure 3.6: A diagram illustrating the terms used in the reactive obstacle avoidance control law. The
coordinates used are expressed in a robot centric reference frame.

−100 −50 0 50 100
−30

−20

−10

0

10

20

30
Attraction for varying goal angle ψg (A)

ψg(deg)

at
tra

ct
fw

(g
)

0 10 20 30
2.8

3

3.2

3.4

3.6

3.8
Attraction for varying goal distance dg (B)

dg(m)

at
tra

ct
fw

(g
)

−100 −50 0 50 100
−6

−4

−2

0

2

4

6
x 10−3Repulsion for varying obstacle angle ψo (C)

ψo(deg)

re
pu

ls
e fw

(o
)

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
Repulsion for varying obstacle distance do (D)

do(m)

re
pu

ls
e fw

(o
)

Figure 3.7: The attraction and repulsion for the original 2D control law for varying goal angle (A),
varying goal distance (B), varying obstacle angle (C), and varying obstacle distance (D)

15

3.2 Approach

Figure 3.8: The attraction and repulsion surface for our modified control law. Plot (A) and (B) show
the independence of the goal attraction on each axis. Since a sigmoid shapes the repulsion
for the repulsion function in plot (C) and (D) is not uniform.

holds) and damped with the current angular velocity to get an angular acceleration command. The
result is a single control model:

φ̈F W = −bφ̇ − attractF W (g) +
�

o∈O

repulseF W (o) (3.9)

Extension to 3D Adding another dimension to the 2D algorithm requires to add the possibility of
moving vertically. In our algorithm we achieve a vertical movement by pretending we can steer also
in the up-down direction. However adding this dimension also causes an ambiguity because one can
choose from an infinite number of directions along the obstacle boundary, while in 2D there are only
two choices, e.g. left and right.

In other words obstacles are double counted if they are avoided along both axis simultaneously.
If an obstacle is to our right, for example we would still try to climb or sink to avoid the obstacle.
We resolve this ambiguity by decreasing the repulsion of obstacles as the angle on the other axis
increases. The repulsion of the other axis is decreased using a sigmoid function.

The goal attraction on the other hand is just a concatenation of the two axis because there is
no choice in steering to the goal. Steering left-right and up-down can be expressed as two angles
in two planes of the helicopter. A natural representation in 3D dimensions is therefore a spherical
coordinate system [r, θ, φ] for goal and obstacle points. The resulting command for the helicopter in
left-right is θ̇ and in up-down is φ̇.

The goal attraction has two angles θg, φg and a distance to the goal dg. The attraction to the goal
increases proportionally with angle and decreases exponentially with distance (Fig. 3.8A-B). The
vector of the two steering rates for goal attraction is therefore defined as

−−−−→
attract3D(g) = −→

kg

�
θg

φg

�
(e−c1dg + c2) (3.10)

16

3.2 Approach

Obstacle positions are also expressed in spherical coordinates. The repulsion increases exponentially
with decreasing angles and decreases exponentially with increasing distance as shown in Fig. 3.8C-D.
Also, larger angles from the other axis like φ for θ decrease the repulsion from obstacles. The repulsion
function is

−−−−−→
repulse(o) = −

−→
ko·

�
sign(θo) · sigmoid(s1(1 −

|φo|
s2

))
sign(φo) · sigmoid(t1(1 −

|θo|
t2

))

�
(e−c3do)

�
e−c4|θo|

e−c4|φo|

�
(3.11)

where

sign(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

(3.12)

and
sigmoid(x) = 1

1 + e−x
(3.13)

The resulting steering rate command sent is

−̇→
φ 3D = −−−−→

attract3D(g) +
�

o∈O

−−−−−→
repulse3D(o) (3.14)

because we assume a superposition principle holds.
Since the off-axis angles have less weight than the angles closer to the direction of travel the

algorithm commits to going around or over obstacles after it has reacted sufficiently to an obstacle.
For example, imagine the vehicle approaching a telephone pole head on. Initially both the horizontal
and vertical controllers will respond to the pole, turning up and say, to the left. But as the pole
moves more to the right, it falls out of the attention region of the vertical controller defined by
the sigmoid function and remains in the attention region of the horizontal controller. The result
is that the vehicle stops its vertical avoidance maneuver and commits to the horizontal avoidance.
Note, however that this commitment is only due to the fact that the obstacle angles change and
if an obstacle should suddenly appear the behavior changes. In another scenario, say the vehicle
approaches a wide building. Again, both controllers initially react, but this time the building moves
out of the attention region of the horizontal controller first. The result is that the vehicle commits
to the vertical maneuver and climbs over the building. Allowing both controllers to initially react
and compete for control results in intrinsically choosing the reaction that most quickly avoids the
obstacle, while keeping both options open initially.

The two steering rates
�
θ̇, φ̇

�
that are the output of our control law need to be converted into a

representation suitable for a helicopter that typically has four control inputs {vxd, vyd, vzd, θ̇d}. We
reduce the 4 to 2 degrees of freedom in the following way. First, we impose an artificial non-holonomic
constraint for lateral velocities vyd = 0, chiefly because we want the laser scanner to point in the
direction of travel. Second, the magnitude of the velocity vector is determined by the speed controller.
Therefore we are left with only 2 degrees of freedom: A heading rate θ̇ and a vertical velocity
component vzd. Since the input to the UAV is a vertical velocity we create a velocity command
based on the vertical heading rate. The current velocity vector is rotated to reflect the tangent to
the circle defined by φ̇ in ∆t seconds where we use a fixed ∆t = 0.2s.

Our local planning algorithm avoids obstacles in all the situations we tested; however, the behavior
is not as desired in several situations. One undesirable feature of our method is the independence of
the reaction from speed. Ideally the reaction of the method should depend on the time to collision
since one wants to react earlier to obstacles if the speed is fast and later if the speed is slow. We
tuned the behavior of our system at 4 m/s and the reaction was sufficient up to 10 m/s. However at
10 m/s the reaction was not as smooth as at 4 m/s.

Another related problem that we solved using a box constraint (described later) is that the ground

17

3.2 Approach

Figure 3.9: A diagram showing how an obstacle is projected into a grid-discretized spherical represen-
tation. The angle θo and φo determine the index into the grid. An obstacle at a similar
angle is ignored because it is occluded by the closer obstacle.

plane is an obstacle just like any other building or wire. However since our goal is to fly low we need
to be able to ignore the ground up to a certain altitude. Therefore we remove visible obstacles below
a certain altitude.

Virtual range sensor In the original formulation only point obstacles are avoided and we observed
in our experiments that even with non-point obstacles the model is able to produce the right behavior.
However since we approximate the obstacles by a set of points that are summed up (superimposed),
we would like to consider a minimal and relevant set of obstacles to avoid. One insight is that
obstacles that are not visible from the current location of the robot are not avoided because it
is not possible to hit these obstacles. Therefore it is sufficient to consider obstacles that are in
line-of-sight. Furthermore, since the robot only flies in one direction and obstacles behind the current
direction of travel don’t matter in terms of obstacle avoidance they can be ignored. We use of a wide
field-of-view(FOV) virtual range sensor as shown in Fig. 3.9 to represent obstacles.

The set of obstacles oi ∈ O where

oi =

θi

φi

di

 (3.15)

determines the behavior in the presence of obstacles. The virtual range sensor returns a matrix
of ranges for a grid-discretized latitude and longitude pattern from a reprojected z-buffer. This
projection of obstacles from Cartesian coordinates in the evidence grid to vehicle centric spherical
coordinates is created by rendering the evidence grid.

We use virtual range sensor data because we want to be robust against noisy measurements and
want to keep a memory of the environment. The sensor we are using has a relatively small field of
view and without memory it is possible that the control will oscillate between obstacles going in and
out of field of view.

The advantage of this representation is that it considers the relative size of an obstacle to be more
important than the absolute size. Large obstacles at a large distance have less influence than small
obstacles close to the robot. Furthermore the number of obstacles is also limited by the discretization
because each entry in the matrix represents only one obstacle point o. The matrix of ranges to
obstacles has a field of view of 140 degrees in both axis and each matrix entry represents the closest
distance in the volume of a 2x2 degree pyramid.

18

3.2 Approach

Figure 3.10: An example showing the box of attention. The box restricts the obstacles considered
and is set between the goal point and the current location of the UAV.

Figure 3.11: Result of training the obstacle avoidance parameters. This figure shows the path used
for training as a dashed line and the path taken by the RMax helicopter as a solid
line. The path with the fine-tuned learned parameters still is a adequate match for our
training path.

The obstacles considered by our reactive algorithm are additionally limited by a box-shaped
constraint as shown in Fig. 3.10. The reasons for further constraining the obstacles that are
considered are three-fold. First the box decreases the minimum altitude of the UAV because it only
extends a little bit(5m) below the helicopter. Second since the yaw axis of the box is defined by
the location of the robot and the current goal point the box ignores obstacles that are not in the
relevant state space for obstacle avoidance because they are not in line between the UAV and the goal
point. If an obstacle was relevant and we would have to swerve more around we would eventually see
the obstacle and still avoid it. Third, the box also reduces the amount of processing because only
obstacles inside the box need to be considered for obstacle avoidance. The grid restricted by the box
typically contains on the order of 30000 cells or approximately 0.7% of the total number of cells in
the evidence grid. The evidence grid without the box contains 256x256x64 cells and has a resolution
of 1 m.

Determining the parameters Our control law has a large number of parameters that need to be
set to generate a desired behavior. Overall there are 12 constants

u = (kg, c1, c2, s1, s2, t1, t2, ko,1, ko,2, c3,1, c3,2, c4,2) (3.16)

Some of the parameters have an intuitive meaning and are defined by the problem domain but
some of the parameters are tedious and difficult to set. The goal following parameters kg, c1 and c2

19

3.2 Approach

d
d

d
d

d

Ps

Pt

q

p

p

q

q

p

1

i

i n

n

1

Figure 3.12: The difference between two path segments is used to optimize the parameter set ū. Ps

is a recorded path segment while Pt was generated from a parameter set ū.

were determined by hand since we had a desired performance for pure goal following and tuning this
subset is intuitive. The values of s1, s2, t1, t2 are used to shape the number of obstacles considered
and were therefore also fixed.

In order to learn the remaining parameters our pilot flies the helicopter and tries to follow a
straight line between a start and goal point while avoiding a pole obstacle in one axis. The resulting
training data is shown as a dashed line in Fig. 3.11. Data about the goal point, the obstacles, and
the flown path are recorded and used to determine the unknowns of the described control model.
The input to the control model and human subject at any point in time is a goal point pg and a
set of obstacles O. The pilot flies the helicopter pretending he is seeing the obstacles only when the
algorithm actually uses the the obstacle information.

Our training example is chosen to not require any sink or climb maneuver. This reduces the
number of parameters that need to be learned, because only the horizontal commands determine the
behavior:

ue = (ko,1, c3,1, c4,1) (3.17)

Given a set u of parameters, we generate a path Pt = {qi = (ki, li)|i = 1..n} with the same n
number of points as the training path segment Ps, which contains regularly sampled points in the
plane. Ps = {pi = (xi, yi)|i = 1..n}.

The error between the two paths is defined as the Euclidean distance between each point pair
as shown in Fig. 3.12: d(ū)i =

�
(ki − xi)2 − (li − yi)2. Consequently, the total error minimized

between two path segments is D(ū) =
�n

i=1 d(ū)i. The optimization procedure minimizes the error
term minūD(ū).

The path Pt is generated from a forward simulation of the commands sent to the robot (See Section
3.3.2 for the simulator). Since the length of the path and velocities are not controlled in this model,
we use the recorded speeds to ensure Pt has the same length as the training path Ps. Since the space
of parameters has many local minima we do a random search of parameters uniformly distributed
between 0 and 10.

The model of the helicopter used for training is not perfectly accurate and therefore it was necessary
to fine tune the parameters on the actual helicopter to improve the behavior of the real system. We
varied the value of ko systematically between 100% − 150% to fine tune the behavior on a set of test
cases.

It is sufficient to use only one trajectory to train the three parameters because we are only fitting
three parameters that determine the desired response with respect to the pole obstacle. In this case
the optimization tries to fit how much ko,1, c4 and when c3 to react to the obstacle.

Figure 3.11 shows the path the autonomous helicopter took overlaid with the training input from
our pilot. The parameters used after fine-tuning still adequately matched the prediction. The initial
conditions are not the same since the operator who was controlling the aircraft was not able to see
the actual start point precisely.

It is interesting to note that even though we trained our method only on this simple example the
parameters generalize to more complicated scenarios with trees, large buildings, and wires.

20

3.2 Approach

Figure 3.13: The speed controller slows the robot based on the closest reachable obstacle. Reachability
is determined by the minimum turning radius based on the current velocity and the
maximum turning rate of 30◦/s .

Generalization The proposed control law generalizes well in the different environments and vehicles
we have tested it in. The space of parameters appears expressive enough to adjust the control law
for the desired behavior of the system.

The modified FW method was trained using a very simple pole obstacle at a desert site in Phoenix,
Arizona and tested using more difficult obstacle at a different test site in Fort Benning, Georgia,
which was wooded with many buildings and wires. It was not necessary to changes the parameters
or the algorithm. This is one indicator that the control law is general enough to be used in different
environments.

In prior work we evaluated a variant of the Fajen and Warren control law on a ground vehicle
[Hamner et al., 2006]. In this work we also examined the effectiveness of different learning algorithms
to fit parameters for this control law. We observed that even though we trained the control law on
simple avoidance cases the method generalized to more complex obstacle configurations.

3.2.4 Speed Controller
The last resort of safety in our collision avoidance is the speed controller. Since the magnitude of
the speed is always set to be within the safe region and we start within a safe region by induction
collision free operation can be guaranteed as long as the model of speed control is conservative in
terms of deceleration. The safety limits the performance because we are operating within a stopping
distance regime. It is assumed that all obstacles in the flight path of the vehicle are visible. We
assure this partly by insisting that the helicopter flies without instantaneous sideways motion. In
very cluttered environments, occlusion can lead to pockets that are not visible and are not viewed
unless the sensor can always point in the direction of travel.

The desired velocity magnitude is modified based on three constraints: desired user speed, vehicle
speed limits, and obstacle distances. First, the user-specifies a speed between waypoints that must
not be exceeded. Second, the robot itself has a 3m/s climb rate limit and a 1m/s sink rate limit
to prevent settling with power and excessive load. The resulting command vector is scaled if these
limits are exceeded.

Third and most importantly, the closest forward reachable obstacle limits the speed of the robot.
The distance to this obstacle is used to determine a maximum speed based on stopping distance.
Stopping distance is a constant deceleration and reaction time approximation to the actual stopping

21

3.2 Approach

dynamics of the vehicle. The formula for stopping distance is

db = vtr + v2

2amax

(3.18)

where tr and amax have to be determined based on the vehicle dynamics.

The inverse can be calculated as

vb = −amaxtr +
�

2amaxdm + a2
maxtr (3.19)

Using the inverse one can determine a speed vb at which it is possible to stop if a stop command
is issued within tr. If this speed is set iteratively the robot will slow down if it gets closer to an
obstacle. Additionally since it is less likely to turn into obstacles that are away from the current
direction of travel one can increase the speed by

v�
b = vb

cos(θ) (3.20)

where θ is the angle of the obstacle to the current direction of travel. Increasing the speed to v�
b

is
an optimistic assumption in our algorithm and is an attempt to avoid double counting of obstacles
since our local planner should avoid all obstacles. If the speed control is pessimistic the interaction
between steering and speed control increases the gain of turning and can lead to an overreaction to
an obstacle. However since we do not completely trust the local planner we slow the vehicle when we
are flying directly at an obstacle. The modification is not safe in the sense that if the local algorithm
should decide to fly into an obstacle the speed controller might not be able to stop in time.

Not all obstacles are considered to determine the distance d. Instead as shown in Fig. 3.13 all
obstacles in the current direction of travel that can be reached by performing the tightest turn are
considered. The minimum turning radius is determined by the current speed and the maximum
turning rate. It is given by

rt = vc

θ̇max

(3.21)

where θ̇max = 30◦/s

This radius is used to calculate the forward reachable field of view. The reachable field of view
limits the obstacles considered for speed control.

∆θ = rtπ − db

2rt

(3.22)

For the obstacles in this field of view O� the arc length is calculated as follows

do = 2 · d max(φ, θ)
sin(π

2 − max(φ, θ)
sin(2 max(φ, θ)) (3.23)

The closest obstacle is consequently the minimum of all the obstacles that are considered:

dm = mino∈O�(do) (3.24)

which is used to calculated vb.

We performed a simulation of the helicopter flying into a virtual wall because we wanted to test if
the speed controller could safely stop the helicopter without it hitting an obstacle. In Fig. 3.14 one
can see the actual speed of the helicopter as it approached the wall. Before reaching the wall the
speed drops to 0 and the helicopter stops. The commanded speed decreases as the distance to the
obstacle decreases . The maximum braking acceleration used in our system was amax = 2.4 m

s2 and
the reaction time is tr = 1.1s.

22

3.2 Approach

05101520253035404550
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
p

e
e

d
 in

 m
/s

Obstacle distance in m

Figure 3.14: Experiment that shows the speed controller stopping to avoiding collision. The solid line
shows the actual speed of our physical simulation as the helicopter approaches a wall.
In this example only the speed controller is avoiding obstacles because the local and
global planning algorithm were disabled. The dashed line shows the commanded speed
from the speed controller determined by the closest point to the wall. The helicopter
stops without hitting the wall.

3.2.5 Mission Execution

The algorithms we described so far are only able to reach a particular goal point. We add another
sequencing layer that allows us to visit a sequence of waypoints. The helicopter should hover at
each location and then continue on to the next point. We therefore first track the start point of the
current waypoint pair and if we have sufficiently tracked it we will try to reach the goal point of that
pair using the described architecture. Sometimes it is not possible to reach a specified goal point.
We designed our finite state machine to avoid getting stuck at a certain point in the sequence. After
a finite amount of time a mission will be finished or we have entered an error state. We achieve this
with time-outs and a goal point tracking algorithm that will not collide with obstacles. First the
algorithm gets a start and a goal point from the current sequence of waypoints. Then it uses the
start point and direction to the goal point in the tracking algorithm to align itself with the goal point.
If there are obstacles between the current position and the start point it only orients itself with the
new goal direction and does not try to track the original position. This behavior ensures that an
unreachable goal point or an unexpected obstacle in the straight line path will not cause a collision.

After the helicopter has achieved all conditions it switches to the obstacles avoidance algorithm.
Once the obstacle avoidance algorithm has reached the goal point it switches to get a new leg with
the old goal as the new start point and a new goal point. If this was the last leg it will go into the
end state and stop.

Each transition is based on jump conditions. The finite state machine describing the states of the
helicopter is shown in Fig. 3.15. Six labels a-f represent conditions on the transition between states
described in Table 3.2. The global timeout is a global maximum amount of time a segment can take
and is based on a multiple of the product between the straight line distance of a waypoint pair and
the desired speed. This timer is started as soon as a segment is started. It ensures that eventually a
transition to the next segment is guaranteed. The local timeout is started once the robot gets within
a certain radius of the goal point and causes the robot to abandon a waypoint if it cannot get close
enough to the goal after a reasonable amount of time.

23

3.2 Approach

Start NewLeg

End

EStop

d

e

Tracking

c b

ObsAvoid

f

a

Figure 3.15: Finite state machine of the sequencing algorithm. The state machine begins execution in
the "start" state and has two end states. "End" and "EStop." The conditions of the edge
labels are shown in Table 3.2. “NewLeg” creates a new waypoint segment, “Tracking”
holds the position of the first point if it is reachable, and “ObsAvoid” performs the
obstacle avoidance.

Label Condition
a OR

Global timeout has been exceeded: tgl > tgloballimit

Local timeout has been exceeded: tlo > tlocallimit

Goal is not reachable within 20m.
Braking distance is larger than distance to goal: db ≥ dg

b An exception happened.
c A new segment is available.
d No more segments are available.
e No path has been uploaded.
f AND

Received OK to continue from base station?
Oriented correctly to new direction: ∆θ < ∆θp

Close enough to goal point: ∆d < ∆dp

Have tracked at at least 5s: ttrack > 5s
Starting from near standstill: v < 1 m

s

Table 3.2: Conditions of the edge labels for the state machine shown in Fig. 3.15.

24

3.3 Experiments

Figure 3.16: Helicopter testbed, a Yamaha RMax, used for our experiments has a payload of 29kg +
fuel.

Max Payload∗ 31kg
Max Takeoff weight∗ 94kg
Main Rotor Diameter 3.1 m
Tail Rotor Diameter 0.5 m
Overall Length (with rotor) 3.6 m
Overall Width 0.7 m
Overall Height 1.1 m
Engine Type Water-cooled, 2-stroke, 2-cylinder
Engine Displacement 246cc
Maximum Torque 2.6kgm
∗(at 1 bar, 35o C)

Table 3.3: Specifications for the Yamaha RMax industrial remote-control helicopter.

3.3 Experiments
3.3.1 Testbed
3.3.1.1 Helicopter and Flight Control

We fitted a Yamaha RMax helicopter (Fig. 3.16), with a commercially available flight controller. The
resulting system provides a reliable platform capable of carrying a comparatively large payload (29
kg @ 1200 meters elevation). The flight control system provides a robust velocity loop even in the
presence of strong gusty winds. See Table 3.3 for more specifications.

The input from our algorithms was sent to a flight controller developed by the Swiss company
weControl [weControl AG, 2006]. We tested the RMax+flight controller system at velocities up to
15m/s and weights up to the full payload capacity of the RMax.

One problem with using a larger helicopter is that it is susceptible to problems that normally don’t
occur with smaller research platforms. One potential problem is the flight mode known as a settling
with power. This dangerous situation is caused when vortices form around the edge of the rotor disk
and push the helicopter downwards. The more power the pilot adds to correct the sudden drop in
lift, the stronger the vortex becomes. Eventually the helicopter will stop flying and fall to the ground.
This failure usually occurs when the helicopter descends too quickly in still air and then tries to
slow down. Full-scale helicopter pilots avoid this problem by maintaining a forward airspeed during
descent. The flight controller has no knowledge of these constraints. We added a watchdog program
between the output of our navigation system and the flight controller that overrides commands that
could cause a power-on descent.

25

3.3 Experiments

Field of View 30o elevation
40o azimuth

Oval Scan Rate 22 Hz
Frame Rate 1.33 Hz
Sample Rate 64kHz
Angular resolution 2 mrad
Range resolution < 2 m
Beam divergence 2 mrad
High-Power Range
6mm black wire 58 m
Blind Range 14 m
Low-Power Range
6mm black wire 38 m
Blind Range 9 m
Safety Class 1

Table 3.4: Specifications for the Fibertek 3-D laser scanner. The early detection of wires makes
high-speed obstacle avoidance possible. We tested detection range at a low and high
power setting. At low power detection range is smaller while at high power thin wires are
detected earlier. The minimum range of detection increases with the output power.

3.3.1.2 Sensor

We used a custom 3-D laser scanner from Fibertek Inc. with a 30x40 degree field of view to sense
the environment. The scanner sweeps an oval pattern back and forth as shown in Fig. 3.17. This
pattern is designed to facilitate detection of wires in many orientations. By contrast, a scanner that
sweeps a straight scan line back and forth will have difficulty detecting a wire that is aligned parallel
to the scan line.

Originally designed to operate as an operator aid for human pilots, this pattern is particularly
suited to the detection of wires in many orientations as shown in Fig. 3.18. This sensor facilitates
collision avoidance because it is sensitive enough to detect obstacles at distances much greater than
the stopping distance of the helicopter at the maximum speed. For instance it can detect typical
powerlines at 100-150 m while the stopping distance is 40 m at a speed of 10 m/s.

Table 3.4 shows the specifications for the scanner. With a large detection range and high frame
rate, the sensor is well suited for obstacle detection, however there are two main drawbacks of this
sensor. The first is the blind range. The current output window is not perfectly matched to the
wavelength of the laser, so there is backscatter back into the receiver. The receiving unit must be
blanked to keep from being blinded by the pulse. At high power, this blanking time results in a
blind range of 14 meters. The routines that build the world map must take this blind range into
account. Also, this blind range increases the minimum radius of turns in order to guarantee that the
helicopter will see an obstacle as it comes around a corner.

The second problem with the ladar is sensitivity to dust and other airborne particles. The sensor
sees clouds of pollen when flying in forested areas of Ft. Benning. This sensitivity to dust could be
minimized by waveform analysis of the return signal, and is an active area of research for Fibertek.

3.3.1.3 State Estimation

The Novatel state estimation system provides 100Hz estimates in six degrees of freedom. This
estimate is crucial for accurate registration of the ladar data into a coherent world map. An HG-1700
ring laser gyro inertial measurement unit(IMU) provides rate and acceleration data to the system.
We used differential GPS to provide 1cm accuracy in the position estimate. The map does not have
to be centimeter accurate to dodge an obstacle; however, we used the best system available in order
to test the obstacle avoidance algorithms themselves with good ground truth for analysis.

26

3.3 Experiments

Figure 3.17: Ladar scan pattern of the Fibertek scanner. The small circle is scanned at 22 Hz while it
it swept across the field in 0.75s. The laser rangefinder measures distance at a frequency
of 64 kHz.

Figure 3.18: A scene generated from a series of static scans of the environment with buildings, trees
and powerlines. The powerlines are visible at 170m.

3.3.1.4 Computing

All processing of sensor data, path planning and collision avoidance is performed on a Linux computer
with a Pentium M processor at 1.6 GHz, 2 GB of RAM and 4 GB compact flash. The onboard
accelerated graphics processor reduces computation of the virtual range sensor.

3.3.2 System Identification
We created a simulation model that approximates the dynamics of the velocity-controlled helicopter.
The model is used for algorithm development and software validation. It is essential for learning the
parameters of our reactive algorithm because we have to consider the closed-loop response of the
system to obstacles. Also see section 3.2.3 for details on the training procedure.

3.3.2.1 Model

The flight control system described in section 3.3.1.1 controls the velocity of the helicopter. For our
simulation, it is sufficient to characterize the dynamics of this velocity-controlled system. Ideally, the
flight controller provides four independent degrees of freedom.The controller attempts to minimize
coupling between the degrees of freedom and we can therefore use a single input single output (SISO)
frequency-domain model. The model is given by

Hi(s) = b0sk + b1sk−1 + . . . + bk

sk + a1sk−1 + . . . + ak

e−std (3.25)

where Hi(s) is the frequency response of system i to the complex frequency s, ai and bi are real
scalar coefficients, and td is the time delay. In the case where the numerator is of lower order than
the denominator, the corresponding bi are defined as 0. We represent latency separately to reduce
the needed order to represent each system. The time delay term e−std is explicitly modeled as a
delay queue in the input to the simulation.

3.3.2.2 Experiments

We performed SISO system characterization for each of four degrees of freedom(DOF) on the velocity-
stabilized helicopter: longitudinal, lateral, vertical, and yaw DOF. Characterization of each DOF
consisted of the following steps:

27

3.3 Experiments

0 50 100 150
−10

−5

0

5

R

e
sp

o
n
se

 (
m

/s
)

0 50 100 150
−5

0

5

Time (s)

C
o
m

m
a

n
d

 (
m

/s
)

Figure 3.19: Example result of a frequency sweep experiment for dynamics characterization. This
data is used to fit a dynamic model of the system for simulation.

a1 a2 b0 b1 b2 td (FPE)
Longitudinal 1.03 0.70 0 0 0.75 1.58 0.15
Lateral 0.81 0.60 0 0 0.58 1.22 0.29
Vertical 1.28 1.28 0 0 0.93 1.06 0.08
Yaw 2.21 4.03 0 0 4.19 0.36 4.22

Table 3.5: Parameters of the SISO dynamic model of the velocity-controlled helicopter

1. Perform frequency sweeps near the point of linearization.

2. Fit linear model to data.

3. Evaluate fit on separate data.

We used the Matlab System Identification Toolbox to do the fit and evaluation. An example data set
for longitudinal dynamics is shown in Fig. 3.19. All of the SISO dynamics could be well approximated
by a 2nd order system with two poles and no zeros. Table 3.5 shows the resulting systems. The final
column, FPE, is the Akaike Final Prediction Error for the fit.

3.3.2.3 Evaluation of model

There were a few problems with the simulation fidelity; however, the SISO approximation proved
sufficient for our needs.

There was observable coupling between different degrees of freedom. Figure 3.20 shows the inputs
and outputs for each degree of freedom during an actual flight and a flight recreated in simulation
using the same recorded control inputs. In this test, a constant forward velocity is given while the
heading rate command is swept back-and-forth with increasing frequency. The commanded velocities
for lateral and vertical motion are constant at zero. In an ideal diagonalized system, one would
expect to see the system remain at this commanded zero; however, there is actually quite a bit of
coupling. The lateral coupling is somewhat noisy. The vertical coupling is surprisingly repeatable
and strong in this case. Figure 3.21 shows the trajectories recorded for this test. Despite the coupling
between axis, the general shape of the simulated trajectory is close to the recorded path.

Wind was an unmeasurable factor for both of the shown tests. While we tried to do such evaluations
in calm weather, we invariably had 3-6 knot (1.5 to 3 m/s) winds that interfered with measurements.

28

3.3 Experiments

290 300 310 320 330 340 350 360 370 380 390

0
2
4
6
8

fo
rw

a
rd

 v
e
l

290 300 310 320 330 340 350 360 370 380 390
−2

0

2

la
te

ra
l v

e
l

290 300 310 320 330 340 350 360 370 380 390
−2

0

2

ve
rt

ic
a
l v

e
l

290 300 310 320 330 340 350 360 370 380 390

−20

0

20

h
e
a

d
in

g
 r

a
te

time (s)

Cmd

Actual

Sim

Figure 3.20: Comparison of simulated velocity to actual telemetry. These graphs show coupling
between forward velocity and turn rate with altitude and lateral dynamics. The
trajectories for this experiment are shown in Fig. 3.21.

−200 −150 −100 −50 0 50 100 150 200

−50

0

50

100

150

200

250

Northing (meters)

E
a
st

in
g
 (

m
e
te

rs
)

Simulated

Start

Actual

Figure 3.21: Comparison of a simulated and actual path flown by the helicopter. The general shape
of the two trajectories are quite similar, though errors add up over time. The velocities
and commands that generated these paths are shown in Fig. 3.20.

29

3.3 Experiments

Figure 3.22: A long flight sequence over various obstacles at the Phoenix test site at 6m/s. The
environment had a series of containers, three poles and a wire as obstacles. In the
beginning of the sequence two containers are stacked resulting in an overall height of 17
feet. The last stack of containers is stacked to a height of 25.5 feet.

Another problem with the modeling technique we used was the inability to model non-linear effects.
The helicopter displays different flight dynamics at different speeds and flight configurations. Altitude
dynamics are significantly effected by relative airspeed and helicopter attitude. For example, in a
sudden stop the helicopter will pitch up and tend to climb. The dynamics are also different for
climbing vs. diving.

Ideally we would solve these problems of nonlinear effects by using a full dynamic model of the
helicopter. However, this is impractical in our case because the commercial wePilot flight controller is
essentially a black box with unknown and possibly time-varying dynamics. Any hi-fidelity nonlinear
model of the helicopter would be useless in simulation without a similar model of the control system.
Alternatively, varying speed effects could be modeled by a linear system with coupling, but eventually
we would have to use multi-linear approaches to model the changes in dynamics over time.

The current simulation recreates the helicopter dynamics well enough for the application of verifying
the obstacle-avoidance routines offline. If future applications require, we will develop a multi-input
multi-output linear model that incorporates coupling.

3.3.3 Results
In this section we will show some results demonstrating the overall behavior of our system at two
different test sites. The runs shown in the figures were completely autonomous with varying speeds.
At the start point the robot had no information about the obstacles or the ground. The UAV built
the map incrementally as it was avoiding obstacles. The minimum speed was 4m/s and the maximum
commanded speed was 10m/s. The connection between distinct segments often shows loops and
other behavior. This is due to the fact that the robot is trying to track and hold the point. Wind
can blow the robot and cause it to move when it is tracking goal points.

We performed over 1000 successful obstacle-avoidance legs on our helicopter testbed in up to 24
knot winds. Our layered architecture allowed the reactive layer to quickly respond to obstacles, while
the deliberative layer found a good general path. On several instances, this ability to react quickly
saved the helicopter from collisions with wires that the sensor could only register at short ranges.
On the other hand, the global planner was invaluable for finding routes around very large objects,
such as tree lines or buildings, where the reactive layer would have a tendency to oscillate or get
stuck if left to itself. Finally, in cases where both collision avoidance measures failed (during early

30

3.3 Experiments

Figure 3.23: Flight through the McKenna MOUT site at Ft. Benning, GA at 4 m/s. 8 m/s was
commanded at the first and 6 m/s at the last two segments of the path.

Figure 3.24: Another McKenna MOUT site demonstration at 4m/s. This one shows the behavior of
the system with an unachievable waypoint located inside a building.

31

3.3 Experiments

Figure 3.25: A third party provided a previously unknown waypoint sequence. The plot shows a
flight of this waypoint sequence at the McKenna MOUT site at 4m/s.

development due to software bugs), the speed control system brought the helicopter to a stop before
a collision occurred.

The development phase required 600 autonomous runs to integrate and test the entire system.
Once we reached a final configuration, we ran more than 700 successful obstacle avoidance runs, some
of which ran in long continuous sequences that maintained autonomy for the entire maximum flight
duration of 35 minutes. Only one error (discussed below) required aborting a run. Other aborts were
caused when the safety pilot was not able to keep up with the helicopter.

In Fig. 3.22 the helicopter is commanded to follow a long sequence of obstacles at our first test
site in Phoenix, AZ (USA). The evidence grid is shown in red. Several stacks of containers and
three poles with a wire obstruct the straight lines between waypoints. In the first four segments the
helicopter flies over the containers and a wire between poles. In the next segment it avoids a high row
of containers by flying around them. During the second approach to the wires and poles it avoids the
wires by turning because the approach is diagonal. In all cases our local planner has some climbing
and some turning behavior. However depending on the configuration the turn or climb can be very
minimal. One can also see that a thin reflective wire is detected and avoided without problems.

At our second test site at the McKenna MOUT site we also determined waypoints of paths flying
above the town and through some large trees. Even though the environment is very different from
the desert like terrain in Phoenix the behavior was still as desired without modifications to the
algorithms.

In Fig. 3.23 the helicopter follows a sequence of waypoints through trees, a wire and over a town.
At waypoint e the helicopter is required to fly to a fairly tight hiding spot between trees and buildings.
There are approximately 10 m between the obstacles and the location of the helicopter. The altitude
(~8m above ground) is so low that the helicopter is not visible nor audible from the start of the path
(Also see Extension 1).

Notice also how the system begins to avoid obstacles in both the vertical and horizontal axis before
committing to one or the other. This is a property of the local planning algorithm as shown in
Equation 3.11, which begins to evade with both degrees of freedom until one direction becomes clear
of obstacles. This behavior allows the system to implicitly decide which path provides the closest safe
path as a function of vehicle dynamics. For example, in Fig. 3.23, the path between points d and e is
blocked by a long building. The system begins to turn to go around it, and at the same time begins
to climb over. As the vehicle climbs, it encounters a free path on the vertical axis. The horizontal
avoidance component quickly drops off, and the vehicle follows a vertical avoidance trajectory. The
converse happens on the leg between g and End. The system chooses to fly around the tall tree
rather than climb over it.

In Fig. 3.24 we demonstrated the behavior in case of unachievable waypoints and reconnaissance
along a boulevard. The robot first flies along the main street of the town and then goes to a point

32

3.4 Discussion

outside the town. From there it is commanded to fly into the large building at the center of the town.
Since that waypoint is sensed to be unachievable the robot does not try to get closer to it after some
distance and proceeds to the next goal point on the other side while avoiding the wire.

In two other tests the robot was given a sequence of waypoints from a third party and it had to fly
the paths without any preparation or tests. Both tests were successful and the robot flew the paths
without intervention on the first try. A plot of one test is shown in Fig. 3.25.

During the final testing phase of 700+ runs, we encountered only one dangerous bug in the behavior,
twice in the same location. In a cluttered environment sensor occlusions are quite common and leave
holes in the evidence grid. The path planner will consequently plan a path through unseen obstacles.
This is not a problem as long as the sensor covers this unknown area before the vehicle traverses it,
as the local planner will react immediately while the planner finds a new route. In the error case, the
planned path went through a large patch of ground. The geometry of the scene and sensor FOV
prevented the sensor from seeing the patch before the helicopter started descending in the direction
of the ground. This behavior was rare, as any holes in the evidence grid are too small to fly through
without having the local planner cause an evasion. While the simple addition of a ground plane in
the evidence grid would have eliminated this behavior, we believe it is essential that a UAV is able
to point the range sensor in the direction of travel. Another safeguard would have been to set the
speed by treating unknown cells as obstacles.

Another perception problem is that of dust. The laser that we use is very sensitive so that it can
see wires from large distances. Unfortunately, dust and pollen can have the same signature as a
small wire. Despite some adjacent point filtering, observed dust clouds would occasionally divert
the helicopter’s flight path. Eventually the evidence grid would clear these clouds using negative
evidence. This false-positive error does not cause dangerous behavior, but can impede low altitude
flight. On windy days in dusty areas the system chose to fly higher to avoid dust clouds.

A ceiling or upper-limit of flight is helpful in cases where the helicopter has to stay low for stealth
or low-level observation; however, forcing a robot to observe the ceiling can result in an impasse
(such as coming to a long tree line which extends above the ceiling). We therefore force only the
path planning algorithm to respect the ceiling constraint, while the reactive algorithm has no such
constraint. The system will obey the constraint if the planner can see a way around, but otherwise
will do what is necessary to avoid obstacles and continue the mission. An example of this situation
during actual flight is shown in Fig. 3.26(Also see Extension 2).

Figure 3.27 compares the flight paths of various combinations of the local and global planning
algorithms in avoiding a wire and pole. The local planner waits to veer away from the pole, while
the global planner veers as soon as it notices the obstacle. The combination is approximately the
median between the two. The vehicle steers toward a goal point farther away and undercuts the
wide turn the global planner generated.

The optimized global planner chooses the furthest line-of-sight point on the Laplacian-generated
path and redraws the path as a straight line to that point. In this case, that point is almost at the
final goal point, so the local planer is primarily responsible for the obstacle avoidance behavior, as
can be seen in this example.

The combination of a local and global planning algorithm leads to an improved behavior in difficult
situations but also improves the general behavior because obstacles are avoided before the reactive
algorithm is really repelled by them.

3.4 Discussion
We have developed a first-of-a-kind capability suited for UAVs implemented on a helicopter that
avoids obstacles of various sizes and shapes while flying close to the ground at significant speeds. In
our experiments, the uninhabited helicopter started with no prior knowledge of the environment,
having been provided only a list of coarse waypoints separated by up to hundreds of meters. The
straight line path between the waypoints often intersected obstacles. While we regularly ran collision
avoidance close to buildings, trees and wires between 4-6 m/s, the system was tested at commanded
speeds up to 10 m/s. To accomplish these results our system uses a fast avoidance method that stays

33

3.4 Discussion

Figure 3.26: Flying with and without ceiling when specified path is directly through a building. If
a ceiling has been specified, the vehicle tries to stay below a specified altitude. On
the run with ceiling, the system begins by flying around buildings, but then ignores
altitude constraint and climbs to safely clear power lines. Key: Blue(dash-dot)→No
ceiling. Red(solid)→With Ceiling.

Figure 3.27: A comparison of the paths taken with different combinations of the local and global
planner. Key: Blue→Just global planner. Red→Just local planner. Green→local+
global planer. Black→local + optimized global planner.

34

3.4 Discussion

away from obstacles intelligently coupled with a global planning method that suggests a direction of
travel.

Our architecture separates global planning from local planning and can therefore achieve the reaction
time of a simple control law with the intelligence of a more deliberative approach. Furthermore the
failure of one method should still keep the robot safe. We automatically determined the parameters
of the local planning algorithm from a piloted training example.

We intend to address a few issues in future work. Our current method is not built to scale with
significant increases in speed and avoids the obstacle with a margin that is irrespective of speed.
Ideally the reaction should depend on speed to react earlier to obstacles if the robot is faster and later
if it is slower. Another issue is the tradeoff between sensitivity to small obstacles and an excessive
reaction to large objects close by (such as in an urban canyon) even if they are not in the path of the
vehicle.

Furthermore we want to address that currently the repulsion from obstacles is exponential and
additive and therefore sometimes exceeds the physical constraints of the vehicle. Too large commands
can cause the vehicle to oscillate between one and another extreme reaction. Another improvement
we would like to address in future work is that the goal point is picked at a fixed distance ahead
of the vehicle. This causes the UAV to follow the path but also gives it room to avoid obstacles.
Since the distance to that point is significant the vehicle can cut corners in tight situations which
will cause it to go towards obstacles that are already circumvented by the path.

Our speed control method is still very conservative and limited by stopping distance. In future
work we would like to be less conservative and be limited by swerving distance instead. This however
requires us to rely more on the local planning algorithm.

Currently the flight altitude of the helicopter is mainly determined by the altitude of the goal point.
However if the helicopter gets too close to the ground it is repelled and will climb. The box limits
the obstacles considered below the ground plane to 6m. It is therefore not possible to fly closer to
the ground. In future work we would like to improve our implementation to be able to automatically
set an altitude above ground from defined waypoint latitude and longitude to allow nap of the earth
flight.

Since path planning already produces a plan that avoids obstacles it is not necessary for the
reactive algorithm to additionally avoid those obstacles. In future work instead we should only react
to unexpected obstacles. As a future extension we propose a tunnel that defines the set of paths
that are obstacle free at the time of planning. If unexpected obstacles should enter this region the
reactive algorithm will avoid these obstacles while respecting the tunnel. The tunnel can also be
modified by the prediction of the reactive algorithm if it is necessary to leave the tunnel.

35

4 Efficient Calculation of Obstacle Cost
The main contribution of this chapter is an incremental algorithm that enables instant updates of
obstacle information in 3D grid maps for aerial vehicles at an order of magnitude lower computation
time than current approaches to obstacle expansion. Incremental planning has been well studied,
however in prior work it has mostly been assumed that planning is performed on a C-space expanded
cost map and that calculating this cost map is not difficult. Indeed in 2D the number of cells affected
to update the cost function based on a new obstacle is only a function of the square of the maximum
expansion. For example for an expansion of 20 cells about 400 cells are affected. However, in 3D it is
not trivial to update the cost function after new sensor data has been received because the number of
cells that need to be recomputed changes cubicly. So for the same expansion we have to potentially
look at roughly 8000 cells.

In this chapter, we present the Limited Incremental Distance Transform algorithm (LIDT) to
efficiently perform this cost function update. In our approach, changes to the environment evidence
grid [Martin and Moravec, 1996] are propagated via the described limited incremental distance
transform. The list of changed costs is then used by an incremental planning algorithm to update
the current plan.

We begin by describing in Section 4.1 how navigation cost functions are typically computed and
their relationship to distance transforms. In Section 4.2.1 we discuss several potential approaches on
computing such cost functions. Section 4.2.2 describes our novel algorithm and Section 4.3 presents
experiments and results, including results from two autonomous aerial vehicles.

4.1 Problem
Incremental replanning using D* or its variants [Stentz, 1994, Koenig and Likhachev, 2002a] is a
general and efficient approach to adapt to a partially-known or dynamic environment. However it is
not always easy to determine how the map for planning changed on a 3D grid since it is necessary to
plan in the changed configuration space [Choset et al., 2005] with changed costs.

Even though it is theoretically possible to plan with an arbitrary C-space expansion and cost
function, the dominant factor is the distance to the closest obstacle. Therefore we assume that we
can calculate the cost for planning around obstacles from distance.

Here, we assume a spherical robot, a reasonable assumption for a rotor-craft. A spherical expansion
is easy to compute if we know the distance to the closest obstacle. If the distance is closer than the
radius rv of the UAV one is in contact with an obstacle. We set the cost for such an edge to be
infinite cost.

We can express the general cost function between two vertices as follows:

c(k, l) =
�

∞ if d(l)2
o < r2

v

γ · obst(l) + dist(k, l) otherwise
(4.1)

where c(k, l) is the cost between position k and l, and the closest obstacle is d(l)2
o. The cost consists

of a scale factor γ that scales between the cost of obstacles obst(l) and the cost of the distance
dist(k, l). Since we can express the C-space expansion in the cost function as an infinite cost, we
will from here on refer to the cost function as the cost of an edge that also includes the C-space
expansion.

The dist function can be any valid distance metric but one common metric is the squared Euclidean
distance:

dist(k, l) = (kx − lx)2 + (ky − ly)2 + α(kz − lz)2 (4.2)

37

4.2 Approach

where the x, y, z components are the displacement in the respective axis. If α = 1 going left/right or
to climb/sink is equal cost. If α > 1 the robot will prefer to move laterally and if α < 1 it will prefer
to move vertically.

Several interesting cost functions for UAVs depend on the distance to the closest obstacle. For
example, the shortest path with a clearance to obstacles:

obst(l) = max(0, d2
max − d(l)2

o) (4.3)

A maximum distance d2
max determines a cutoff beyond which the closest obstacle does not influence

the path anymore. In the extreme case if d2
max and γ is large the path found will correspond to

the solution of the Generalized Voronoi Graph (GVG) since the path will first lead away from the
obstacle to get onto the Voronoi graph and then the lowest cost path will be on the graph and finally
will go away from the graph to the goal point. In a natural outdoor environment the separation of
obstacles is in many cases unbounded so that planning on that boundary would lead to too long
paths.

Another useful cost function is to stay close to obstacles up to a desired distance ddes but not too
close. This can be important for stealth reasons but also one might want to stay closer to obstacles
to avoid wind or to stay localized using a limited range sensor. In this case the cost function can be
expressed as follows:

obst(l) =| d2
des − min(d2

max, d(l)2
o) | (4.4)

Note that for both obst(l) functions it is necessary to know d(l)2
o, the distance to the closest

obstacle up-to the maximum distance d2
max. Naively computing the distance d(l)2

o is expensive for
large d2

max that are typically used in planning for UAV. The contribution of this paper is an efficient
algorithm for calculating the changes to d(l)2

o.

4.2 Approach
4.2.1 Distance Transform Algorithms
The distance d(l)2

o is the result that is computed by the distance transform algorithm. There are
many possible distance metrics that can be applied, however the squared Euclidean distance is most
useful for our application since we want the obstacle expansion and C-space expansion to be spherical.
The property of the distance transform that we want can be expressed for a m x n x o grid with
boolean obstacles b[i, j, k] as follows:

EDT (x, y, z) = min(b[i, j, k] : (x − i)2 + (y − j)2 + (z − k)2) (4.5)

This property says that for every coordinate in the distance transform EDT (x, y, z) we determine
the minimum of the distance to all the obstacles b[i, j, k]. This would of course not be a very efficient
algorithm in most cases however it shows what we need to compute. The Manhattan distance L1
transform can be written like this:

MDT (x, y, z) = min(b[i, j, k] :| x − i | + | y − j | + | z − k |) (4.6)

An efficient non-incremental linear time algorithm to calculate the distance transform was proposed
by Meijster et al. [Meijster et al., 2000]. Even though this algorithm is very efficient, we will show in
section 4.3 that repeatedly recomputing the result takes too long to be useful for navigation on a
large grid. The algorithm scans the grid in three phases. In each phase the grid is scanned along a
different axis forward and backward to determine a minimum. Overall the work performed is six
passes through the grid for three dimensions. In two dimensions four passes are necessary.

A simple incremental approach to update the cost function in a grid is to update the grid with
a mask of the distances to the obstacles. We will refer to this algorithm as “mask algorithm” in
the algorithm evaluation. Every time an obstacle is added a convolution of the surrounding area is

38

4.2 Approach

Algorithm 4.1 Limited Incremental Distance Transform Algorithm (Helper functions).

algorithm scans the grid in three phases. In each phase the
grid is scanned along a different axis forward and backward
to determine a minimum. Overall the work performed is
six passes through the grid for three dimensions. In two
dimensions four passes are necessary.

A simple incremental approach to update the cost function
in a grid is to update the grid with a mask of the distances
to the obstacles. We will refer to this algorithm as “mask al-
gorithm” in the algorithm evaluation. Every time an obstacle
is added a convolution of the surrounding area is performed
to check if any of the distances is larger than the distance in
the mask. In the case of obstacle removal all non-obstacle
cells that are in the mask of the obstacle are set to infinity
and a region of two times the size of the mask is scanned
for all obstacles. The region inside the removed obstacle is
checked for any obstacle and the closest distance is restored.
This algorithm serves as an incremental algorithm that one
could implement easily.

While the runtime of the Meijster et al. algorithm depends
on the size of the grid and is therefore non-incremental, the
runtime of the mask algorithm depends on the number of
obstacles added and removed. The algorithm we propose also
depends on the number of obstacles that changed however if
only a small number of distances changes less work has to
be performed by the LIDT algorithm.

Kalra et al. [12] developed an incremental algorithm to
reconstruct the Generalized Voronoi Diagram (GVD) in 2D.
The GVD is based on a quasi-Euclidean distance transform
of the obstacles. The algorithm is the basis of the algorithm
presented in this paper, however we have modified the
incremental GVD algorithm to make it suitable for C-space
and cost function updates. The presented algorithm also
adds another variable to keep track of the changes in the
distance transform while it is being computed that can then
be used in an incremental planning algorithm (Also see Fig.
2) . Furthermore we have generalized the algorithm to be
applicable for different distance metrics (such as the squared
Euclidean distance metric) while the original algorithm only
allowed a quasi-Euclidean expansion. Also one can control
the maximum amount of computation per obstacle in the
LIDT algorithm because one controls the maximum distance
dmax that needs to be expanded into account.

IV. LIMITED INCREMENTAL DISTANCE TRANSFORM
ALGORITHM

A. Intuition

The Limited Incremental Distance Transform algorithm
provides an efficient solution to keep an updated distance
transform for changes to the cost function in the environment.

The algorithm is an incremental version of the brushfire
algorithm and, as with the original brushfire algorithm it
propagates a wavefront of distances to update the distance
for each cell to its closest obstacle. For a good explanation of
the brushfire algorithm also see Choset et al. [10]. The open
list O keeps track of the wavefront and contains the cells that
need to be expanded. Initially if only obstacles are added,
the values of cells are lowered from dmax to consistent
(or correct) distance values in the same way that brushfire

INITIALIZE()
1 O ← ∅
2 foreach cell s
3 dists ← d2max

4 distnew
s ← d2max

5 distolds ← d2max

6 obsts ← ∅

SETOBSTACLE(o)
1 if distnew

o �= 0
2 distnew

o ← 0
3 obsto ← o
4 UPDATEVERTEX(o)

REMOVEOBSTACLE(o)
1 distnew

o ← d2max

2 obsto ← ∅
3 if disto < d2max

4 UPDATEVERTEX(o)

CALCULATEKEY(o)
1 return min(disto, dist

new
o)

UPDATEVERTEX(o)
1 key ← CALCULATEKEY(o)
2 if o ∈ O
3 UPDATE(O, o, key)
4 else
5 INSERT(O, o, key)

DISTANCE(n, s)
1 Squared Euclidean:
2 v ← posn − posobsts
3 return v · v

DISTANCE(n, s)
1 Quasi Euclidean:
2 v ← posn − poss
3 return v · v + distnew

s

Fig. 3. The Limited Incremental Distance Transform Algorithm (Helper
functions).

would proceed. Since the values are sorted by increasing
distance the cells with the smallest distance get updated first.
Finally, the wavefront that is moving outwards terminates if
the distance has reached a value that is larger than any of the
neighboring cells or if the grid boundary has been reached.

If an obstacle is removed a similar sweep outward prop-
agates the changes to cells whose previous distance values
are based on the removed obstacle and updates the distance
for those cells since they now have a too close distance
value. The cost to each of these cells is then updated based
on the closest valid obstacle. Once the removal wavefront
terminates each cell that does not have a valid obstacle will
be updated with a valid obstacle (up to dmax).

It is important to note that the size of the queue in the
wavefront depends on the radius of expansion. The number
of cells in the queue is dependent on the radius r of the
wavefront and grows linearly with the radius O(r). However
since we are calculating the expansion in 3D the number of
cells on the surface of the sphere grows with the square of
the radius O(r2). Also the maximum radius that has to be
expanded depends on the size of the Voronoi region that is
affected. One worst case example is an empty grid with one
obstacle that is removed. In that example first all the cells
going outward have to be invalidated and then all cells have
to be lowered correctly again. In the worst case one therefore
has to look at the grid twice for every obstacle removed.

For our application we are interested in computing the
distance transform only out to a maximum distance dmax.
As such the incremental distance transform propagation can
be terminated once this distance is reached. This can save a
significant amount of computation if the Voronoi region that
changes is large.

B. Details
The algorithm pseudocode is split in two parts the helper

functions are shown in Fig. 3 and the main functions are
shown in Fig. 4.

In INITIALIZE all cell distances are set to d2max and the
obstacle pointer is emptied. As the environment changes
obstacles are removed and added with SETOBSTACLE and
REMOVEOBSTACLE. If an obstacle is added its distance is

performed to check if any of the distances is larger than the distance in the mask. In the case of
obstacle removal all non-obstacle cells that are in the mask of the obstacle are set to infinity and a
region of two times the size of the mask is scanned for all obstacles. The region inside the removed
obstacle is checked for any obstacle and the closest distance is restored. This algorithm serves as an
incremental algorithm that one could implement easily.

While the runtime of the Meijster et al. algorithm depends on the size of the grid and is therefore
non-incremental, the runtime of the mask algorithm depends on the number of obstacles added and
removed. The algorithm we propose also depends on the number of obstacles that changed however
if only a small number of distances changes less work has to be performed by the LIDT algorithm.

Kalra et al. [Kalra et al., 2006] developed an incremental algorithm to reconstruct the Generalized
Voronoi Diagram (GVD) in 2D. The GVD is based on a quasi-Euclidean distance transform of the
obstacles. The algorithm is the basis of the algorithm presented in this paper, however we have
modified the incremental GVD algorithm to make it suitable for C-space and cost function updates
and fixed a bug in their description of the algorithm. The presented algorithm also adds another
variable to keep track of the changes in the distance transform while it is being computed that can
then be used in an incremental planning algorithm. Furthermore we have generalized the algorithm
to be applicable for different distance metrics (such as the squared Euclidean distance metric) while
the original algorithm only allowed a quasi-Euclidean expansion. Also one can control the maximum
amount of computation per obstacle in the LIDT algorithm because one is only interested in an
obstacle expansion up to the maximum distance dmax.

4.2.2 Limited Incremental Distance Transform Algorithm
The Limited Incremental Distance Transform algorithm provides an efficient solution to keep an
updated distance transform for changes to the cost function in the environment.

The algorithm is an incremental version of the brushfire algorithm and, as with the original
brushfire algorithm it propagates a wavefront of distances to update the distance for each cell
to its closest obstacle. For a good explanation of the brushfire algorithm also see Choset et al.
[Choset et al., 2005]. The open list O keeps track of the wavefront and contains the cells that need
to be expanded. Initially if only obstacles are added, the values of cells are lowered from dmax to
consistent (or correct) distance values in the same way that brushfire would proceed. Since the values
are sorted by increasing distance the cells with the smallest distance get updated first. Finally, the
wavefront that is moving outwards terminates if the distance has reached a value that is larger than
any of the neighboring cells or if the grid boundary has been reached.

39

4.2 Approach

Algorithm 4.2 Limited Incremental Distance Transform Algorithm (Main functions).

If an obstacle is removed a similar sweep outward propagates the changes to cells whose previous
distance values are based on the removed obstacle and updates the distance for those cells since they
now have a too close distance value. The cost to each of these cells is then updated based on the
closest valid obstacle. Once the removal wavefront terminates each cell that does not have a valid
obstacle will be updated with a valid obstacle (up to dmax).

It is important to note that the size of the queue in the wavefront depends on the radius of
expansion. The number of cells in the queue is dependent on the radius r of the wavefront and grows
linearly with the radius O(r). However since we are calculating the expansion in 3D the number
of cells on the surface of the sphere grows with the square of the radius O(r2). Also the maximum
radius that has to be expanded depends on the size of the Voronoi region that is affected. One worst
case example is an empty grid with one obstacle that is removed. In that example first all the cells
going outward have to be invalidated and then all cells have to be lowered correctly again. In the
worst case it is necessary to look at the grid twice for every obstacle removed.

For our application we are interested in computing the distance transform only out to a maximum
distance dmax. As such the incremental distance transform propagation can be terminated once this
distance is reached. This can save a significant amount of computation if the Voronoi region that
changes is large.

The algorithm pseudocode is split in two parts the helper functions are shown in Alg. 4.1 and the
main functions are shown in Alg. 4.2.

In Initialize all cell distances are set to d2
max and the obstacle pointer is emptied. As the

environment changes obstacles are removed and added with SetObstacle and RemoveObstacle.
If an obstacle is added its distance is set to zero and the obstacle points to itself. Then the obstacle
is added to the queue to be expanded. Similarly a removed obstacles distance is set to d2

max and it is
added to the queue with the priority of the old distance it used to have.

Since the update to the grid should always be with increasing priority the key is calculated from the
smaller of the two distance values in CalculateKey and the heap is updated in UpdateVertex

with the new priority unless the element has an infinite priority.
Using our algorithm one can calculate a squared Euclidean distance in Distance or a quasi-

Euclidean distance that is the shortest distance on a 26-connected grid. It is possible to calculate the
squared Euclidean distance because we always keep track of the location of the closest obstacle in
obsts. The obsts pointer tells us if a grid cell needs to be updated because it points to an obstacle. If
that obstacle changes all cells pointing to that obstacle need to be updated.

The main work of updating the distance transform and keeping track of changed cells happens in
IncrementalDistanceTransform which returns a list of updated distances C. If we added or
removed obstacles the open list O will not be empty and so we take the first element of the list and
Lower the node if it is over-consistent and Raise it otherwise. Since all nodes have to be made
Lower eventually we can keep track of the changed distances in lines 7-9.

40

4.3 Experiments

Figure 4.1: The virtual campus environment of Carnegie Mellon University, Pittsburgh, PA that is
used in the simulation experiments. Buildings that were added to the digital elevation
model are shown in white. A hemispherical 200m range 3D range sensor is simulated to
update the environment map held by the robot.

Lower updates the distance of each adjacent node and adds it to the queue if the distance changed.
Also we update the associated obstacle if it changed.

Raise on the other hand propagates out a removed obstacle in WaveOut and so we first set the
distance to be infinity and try to get a new distance for an adjacent node. If the associated obstacle
changed we put the item back on the queue.

The algorithm terminates when the open list is empty. At this point all the cells in the grid have
consistent distance values and have a valid obstacle pointer if their distance is less than dmax. A list
of changed cells is in C.

We assume that the open list O has three operations: Insert inserts an element in the open list
with a given priority key, Update updates the key of an element already in the queue, and Pop

returns and removes the top element from the priority queue.
Even though one can implement the open list O as a binary heap there is a fast data structure

that can be used in our application because the maximum distance is limited to dmax and we are
operating on a grid with integer values of the keys. Since there is only a small range of key values we
create a hash table with the distances as key values. On every update we keep track of the lowest
distance element. If we pop an element we update the lowest distance if it changes. To insert we just
add the element to the list at the appropriate key value. This data structure allows O(1) for Insert,
Update, and Pop.

4.3 Experiments
There are certain tradeoffs between using an incremental and non-incremental algorithm that need
to be considered. In this section we examine parameters that influence the performance of the LIDT
algorithm and compare it to the fastest non-incremental algorithm and a simple incremental algorithm
we denote the “mask" approach (described in Section 4.2.1). A recent survey [Fabbri et al., 2008]
showed that the algorithm developed by Meijster [Meijster et al., 2000] is fastest in almost all test
cases over a variety of problems. We therefore also compare the incremental algorithms to a 3D
implementation of this algorithm.

4.3.1 Simulation
To determine the effectiveness of the limited incremental distance transform algorithm for aerial
vehicle planning we evaluated it for missions in a simulated environment and compared it with two

41

4.3 Experiments

Figure 4.2: The autonomous quad-rotor aerial vehicle used for testing. Here, the vehicle is close
to a typical pole and wire obstacle in the environment. The system is equipped with
a computer, a GPS, an inertial measurement unit, and a ladar scanner to sense the
environment. The size of the vehicle with rotors is less than one meter.

Meijster Mask Incremental

0

5

10

ti
m

e
 [
s
]

Figure 4.3: A comparison of running three distance transform algorithms in the environment shown
in Fig. 4.1. The algorithms are run with the same sensor inputs on a grid that was
initialized with an elevation model. Meijster is the non-incremental distance transform
algorithm by Meijster et al. Mask is a simple incremental algorithm that updates based
on a distance mask for each obstacle. Incremental is the limited incremental distance
transform algorithm. The environment map changes as the robot discovers new obstacles
and removes invalid obstacles from its initial map. dmax = 20. The mean of the number
of obstacles added was 370 ± 32.3. The mean of the number of obstacles removed was
14 ± 6.5. The grid size considered is 512x512x80. Box and whisker plot legend: The red
line is the median, the blue box extends from the lower quartile to the upper quartile,
and the whiskers extend to 1.5 of the interquartile range. Red crosses represent single
run outliers.

42

4.3 Experiments

other distance transform algorithms: the non-incremental distance transform algorithm by Meijster
et. al and the simple incremental ‘mask’ algorithm.

We want to simulate an algorithm load that is similar to a real extended mission of our micro
aerial vehicle in a simulated environment of the campus at Carnegie Mellon University, Pittsburgh,
PA, USA. See Fig. 4.1 for a screen shot from our simulation.

The simulation consists of a second order dynamic model of our quad-rotor helicopter shown in
Fig. 4.2, a hemispherical 3D range sensor with a range of 200m, and a geometric model of campus.

A path tracking algorithm controls the helicopter and regulates speed based on the distance to
the closest obstacle. As soon as a sensor measurement is received the evidence grid is updated and
changes are given to one of the three distance transform algorithms. The changes to the grid and the
cost function are then propagated to a D* Lite planning algorithm. The stimulus for the algorithms
is sensor data that is received as packets of 3D range images covering a 180 x 180 degree field of view
at 10 Hz. Each packet contains 961 points and the distance transform algorithms are updated after
each packet. All algorithms run on a 2.5GHz Intel Core 2 Duo processor.

The size of the evidence grid is set at 512x512x80 with a resolution of 2 meters. We picked these
dimensions because the size allows a typical plan length for micro aerial vehicle missions. Since there
is a significant height variation at Carnegie Mellon it is necessary to have at least 160 meters of
altitude change to enable climbing over obstacles as well as create plans that reach to the ground.
The D* lite planner operates within the whole grid because we have some prior knowledge about the
terrain as a digital elevation model that we update as we move. The cell size is set to two meters
since the accuracy of our sensor data registration is about the same.

We ran an experiment in this environment with the robot avoiding obstacles that it saw within
its range sensor and the three algorithms calculating the changes to the cost function for D* Lite.
The maximum expansion for the grid was set to dmax = 20 and the environment map was initialized
with the prior digital elevation model. During its traverse, a mean of 370 (standard deviation 32.3)
obstacles were added and 14 (standard deviation 6.5) obstacles were removed.

Overall the limited incremental distance algorithm performed over an order of magnitude better
than the competing approaches (Fig. 4.3 and Table 4.1), because the expansion distance is large
and a number of obstacles have to be removed each iteration. As the number of obstacles removed
decreases the ‘mask’ algorithm performs better because obstacle removal is an expensive operation
for this algorithm. The non-incremental Meijster et al. algorithm has to traverse the grid several
times and therefore cannot perform as well as the incremental algorithms which only have to update
a small local region.

As the expansion distance decreases there is a point at which the mask algorithm becomes more
efficient because it can use the processor cache better since it performs lots of sequential accesses.
However if dmax increases significantly the runtime of the mask algorithm will increase beyond the
non-incremental algorithm by Meijster because it must perform double work.

The runtime of the limited incremental distance transform depends on the size of the Voronoi
region affected and in many cases if obstacles are close to each other then the affected regions are
relatively small. In the case of the simulation and in realistic scenarios the changes to the map will
be local and in a neighborhood of existing obstacles. In this case since only a small number of cells
need to be updated the limited incremental distance transform has a significant advantage. One
factor that was held constant in these experiments is that one range image is calculated at each time.
However one could accumulate multiple measurements and if the same voronoi region is affected the
cumulative update time would be reduced.

The standard deviation in Table 4.1 indicates that the computation time for the LIDT algorithm
varies less than for the Mask algorithm. In a second experiment we evaluated the performance of the
maximum distance dmax on computation time for our campus environment.

We ran a total of 37461 updates with varying maximum expansion values for the limited incremental
distance transform. During testing we reset the environment map periodically and then recalculated
the incremental distance transform with obstacles based on the digital elevation model which
exemplifies the overhead cost of the incremental distance transform for starting from scratch.

The initial overhead of the incremental distance transform algorithm is significant if a large number
of obstacles already exist in the environment map since the expansion has to perform more work per
cell than the distance transform algorithm. A scatter plot of the overhead is shown in Fig. 4.4.

43

4.3 Experiments

Algorithm Incremental Mean calc. time Std. Dev.
Meijster No 13.05s 0.16s

Mask Yes 6.61s 2.21s
LIDT Yes 0.27s 0.12s

Table 4.1: Calculation times of one update for the algorithm by Meijster et al., the mask algorithm
and the limited incremental distance transform algorithm (LIDT). dmax = 20

0 50 100 150 200 250
0

20

40

60

d
max

 [cells]

ti
m

e
 [

s
]

Figure 4.4: Initial calculation times for an empty 512x512x80 grid initialized with obstacles from a
digital elevation model for different expansions. As the expansion increases so does the
initialization time because a lot of cells need to be updated for a large expansion in the
limited incremental distance transform.

After the initial overhead, however, subsequent updates are inexpensive. With an increase in the
distance dmax the median computation time increases as well as the overall spread in computation.
Since the potential number of cells affected by a change in the environment increases with dmax we
also see a larger variation in computation times. Even with a large expansion of 250 cells, however,
the limited incremental distance transform algorithm can still outperform the algorithm by Meijster.
At such an expansion distance the ‘mask’ algorithm would not be feasible because on every update it
essentially needs to check every cell in the grid.

4.3.2 Airrobot Quad-Rotor Vehicle
Our autonomous quad-rotor robot (Fig. 4.2) wants to avoid obstacles with a wide berth if possible
because it increases the safety of the path and gives a better perspective for sensing. The robot is
equipped with a regular GPS, IMU, and a ladar scanner to sense the environment. All computation
is performed on-board and a planning cycle is performed at about 3Hz. It can fly missions of up
to 20 minutes and can be given a series of waypoints it should reach. Since typically almost all of
the waypoints are low the straight line path to the goal is typically obstructed by obstacles. The
ladar scanner returns distances to obstacles and the information is processed into a global map as a
3D array in memory and a path is planned using a distance transform expansion. The position of
the robot typically has an uncertainty (2m) that is incorporated as part of the C-space expansion
by increasing the size of the vehicle. The robot can avoid obstacles in three dimensions since the
planning algorithm also operates in three dimensions.

Fig. 4.6 shows the quad-rotor avoiding a tree in its straight line path to the goal. The cost function
used for the planning algorithm in this case is the same as as in Eq. 4.3 with dmax = 11. Since that
expansion is large and we are planning in 3D it is beneficial to use an incremental distance transform
algorithm to update the changes to the cost function. The C-space expansion is set to 2 meters
but since it is expensive to go close to obstacles the path gives the obstacle a wide berth. In this
experiment the obstacle is avoided with a speed of 2m/s (Also see Extension 3).

44

4.3 Experiments

5 10 30 50 70 90 110130150170190210230250

0

2

4

6

8

10

ti
m

e
 [
s
]

d
max

 [cells]

Figure 4.5: A box and whisker plot of the computation time in seconds for an increasing value of
the maximum distance expanded dmax for the limited incremental distance transform.
The computation time spreads out more as dmax increases since a changed obstacle cell
can affect a larger Voronoi region however the region affected can also be small if the
obstacle added is close to existing obstacles. The grid size considered is 512x512x80. For
the legend of the box and whisker plot see Fig. 4.3.

Figure 4.6: Avoiding obstacles with a large obstacle expansion on a quad-rotor. This plot and picture
show our autonomous quad-rotor micro aerial vehicle (Fig. 4.2) avoiding a tree that is in
the straight line mission path to its goal. As soon as the robot detects the obstacle it
plans a path in 3D with a wide berth around the obstacle. The cost function is set up in
such a way that the robot will prefer to move laterally and therefore we only show a top
view. Since dmax = 11 the obstacle is avoided by a large margin. The mission path is
shown in black and the planned avoidance path is shown in red. The black line shows
the path of the vehicle as recorded by GPS. The tree obstacle is shown in green.

45

4.4 Discussion

4.3.3 Autonomous Helicopter
Recently we tested the LIDT algorithm on an autonomous helicopter. See Section 5.3.2.1 for details
on the setup off the Boeing Unmanned Little Bird helicopter. The helicopter has a rotor diameter of
8.3 meters and is manned with a pilot that can take control if necessary. The helicopter performed
a completely autonomous mission to fly and come to a hover at a goal location. The straight line
segment connecting the start and goal point intersected an obstacle. The helicopter had to avoid a
man-lift obstacle as shown in Fig. 4.7 with a wide berth. The vehicle has to immediately update the
limited incremental distance transform based on processing 83000 range measurements per second
and compute a new path using the D* lite path planner. The planner creates a new trajectory and
sends the new trajectory to the helicopter if it significantly changed since the last time a trajectory
was sent. We performed five experiments at two speeds (10 knots and 21 knots) and initially at two
altitudes 25 and 18 meters AGL. We initially tested at 10 knots and switched to 21 knots ground
speed. Figure 4.8 shows the resulting paths. We believe this to be the first demonstration of a
full-size autonomous helicopter avoiding obstacles. Extension 4 shows on of the obstacle avoidance
runs.

The 1 meter evidence grid is updated constantly to reflect the new environment and after each
update the distance transform is also updated to reflect the new distances to obstacles. The size
of the grid was set at 1024x1024x512 and the maximum expansion was set at dmax = 20. The
computation times for each of the updates to the incremental grid for five avoidance runs is shown
in Fig. 4.9. The computation time for updating the evidence grid is half of the the ladar packet
update interval (300ms). This ensures that we will not lag behind in processing and keeping the
most current maps.

Most of the updates are performed between 10-40 ms as can be seen in the box-and-whisker plot
in 4.9(a) and the computation time scales linearly with the number of changed cells as shown in Fig.
4.9(b). The times are not only on a line because the time measured is actual wall-time and not CPU
time. For example, sometimes the algorithm has to wait to acquire a synchronization lock to update
the data structure.

Overall the algorithm performed without problems and enabled the aircraft to avoid obstacles with
a wide berth.

4.4 Discussion
We have presented a completely incremental framework for planning paths in 3D that enables
recomputation of costs an order of magnitude faster than current approaches. This speed up is made
possible by using a novel limited incremental distance transform algorithm. This algorithm exploits
the local nature of cost function updates when obstacles are added or removed from the map and
enables autonomous aerial vehicles to respond to newly observed obstacles (or obstacles that no
longer exist) in real-time. We have provided results from simulation demonstrating the benefits of
the approach and illustrative examples from a physical implementation on a quad-rotor micro aerial
vehicle autonomously navigating in Pittsburgh, PA and an unmanned helicopter avoiding obstacles
in Mesa, AZ.

In future work we would like to further improve the computation time of the algorithm by reducing
the number of expansions required to guarantee calculating a Euclidean distance transform. One issue
that become apparent during testing on the Unmanned Little Bird was that the current algorithm
does not permit shifting the grid to a new center. Therefore for every new segment the obstacle
expansion had to be reinitialized which takes a significant amount of calculation time. In the future
shifting grids can be achieved by making the grid scroll based on a the current position.

46

4.4 Discussion

(a)

(b)

(c)

(d)

Figure 4.7: Obstacle Avoidance on the Boeing Unmanned Little Bird at 21 knots. In Fig. (a) the
vehicle has not yet detected the man-lift obstacle. (b) shows the point cloud that is used
as input for the evidence grid mapping. (c) shows the vehicle as it avoids the obstacle.
In (d) one can see the path the vehicle took to avoid the obstacle overlaid with the point
cloud and aerial imagery.

47

4.4 Discussion

Figure 4.8: Top-down view of five obstacle avoidance runs against a manlift obstacle. Runs 1 and 2
were at 10 knots groundspeed, and runs 3-5 were at 21 knots. Since 3-5 are at a higher
speed the vehicle reacts later to the obstacle.

48

4.4 Discussion

0

20

40

60

80

100

120

140

160

1

T
im

e
 [
m

s]

(a) Box and whisker plot. Legend in Fig. 4.3.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

100

120

140

160

of changed cells
T

im
e
 [
m

s]

Correlation between the changed cells and computation time

(b)

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160
Incremental LIDT update time for ULB obstacle avoidance

T
im

e
 [
m

s]

(c)

Figure 4.9: Incremental computation times for the LIDT algorithm on the Unmanned Little Bird
helicopter. The maximum obstacle expansion was set to dmax = 20. The results are
cumulative for five obstacle avoidance experiments. The initialization time was 5.9s. A
set of new ladar data is processed every 300ms and therefore the maximum update time
is less than half of the data frequency.

49

5 Evaluating Landing Sites
Assessing a landing zone (LZ) reliably is essential for safe operation of vertical takeoff and landing
(VTOL) aerial vehicles that land at unimproved locations. Currently an operator has to rely on
visual assessment to make an approach decision; however, visual information from afar is insufficient
to judge slope and detect small obstacles. Prior work has modeled LZ quality based on plane fitting,
which only partly represents the interaction between vehicle and ground. Additionally, we want to
be able to guide an unmanned rotorcraft to a safe landing location.

A NASA study by Harris et al. analyzed rotorcraft accidents from 1963-97 and found that 36.19%
of them were related to collision with objects, roll over, and hard landings[Harris et al., 2000]. A
partial cause for accidents is a lack of situational awareness of the pilot regarding the suitability of
landing sites. Reliable detection of landing sites will increase the safety of operation by presenting
vital information to the pilot or unmanned aerial vehicle before a landing approach.

Our approach consists of a coarse evaluation based on slope and roughness criteria, a fine evaluation
for skid contact, and body clearance of a location. Additionally we consider the ground path to a
goal location and approach paths to the landing site. Remaining potential locations of landing sites
are represented by an information gain map that is continually updated. We investigated whether
the evaluation is correct for using terrain maps collected from a helicopter and tested landing in
unknown environments. This chapter defines the problem of evaluation, describes our incremental
real-time algorithm and information gain map, and discusses the effectiveness of our approach.

In results from urban and natural environments from two different helicopter platforms, we were
able to successfully classify and land at LZs from point cloud maps collected on a helicopter in
real-time. The presented method enables detailed assessment of LZs without getting close, thereby
improving safety. Still, the method assumes low-noise point cloud data. We intend to increase
robustness to outliers while still detecting small obstacles in future work.

The main contributions of this chapter are

• an analysis of the problem of landing site evaluation.

• an incremental model-based method to calculate and evaluate landing sites for VTOL vehicles.

• an algorithm that creates a map of locations of potential future LZs.

• results based on ladar sensor data that show LZs found in real environments.

• results of the first helicopter that selects its own landing sites and lands.

This chapter first conveys the problem, our approach, and then presents results for the landing site
evaluation and landing.

5.1 Problem
The suitability of a landing zone depends to a large degree on the characteristics of the aircraft that
will be landing on it. We consider larger vehicles such as manned helicopters, however the problem
scales to smaller aircraft. Landing of a helicopter can roughly be separated into two independent
phases: an approach, and a ground contact. During the approach, the helicopter ideally keeps a
steady and relatively shallow descent angle in a straight line to come to a hover at some altitude
above the ground. Then it orients with respect to the ideal location on the ground and touches down.
In the particular problem we are considering a ground goal has to be reachable from the LZ so that
a human or robot could traverse the last segment.

51

5.2 Approach

Point CloudOverhead Image

Figure 5.1: The problem of finding good landing zones for rotorcraft. On the left is an overhead
image for reference. The input to the algorithm is an incrementally updated point cloud
that is evaluated in real-time to find suitable landing zones. An example is shown on the
right.

Assessment of a LZ needs to include two main factors: the ground conditions and the approach
conditions. The ground conditions are all factors that are relevant when the aircraft is contact with
the ground, while the approach conditions are related to moving to the LZ.

The ground conditions that need to be considered for assessing an LZ are

• minimum size of the site

• skid contact

• static stability on ground based on the center of gravity of the aircraft

• load bearing capability of the contact surface

• loose foreign objects (FOD) and vegetation surrounding the site

• clearance of aircraft/rotor with surrounding terrain and objects

while the approach conditions are the

• clearance of the path with respect to the terrain

• wind direction

• direction of the abort paths

The ground path needs to be evaluated for traversability cost and path length.
To ensure a reliable and successful landing it is necessary to consider all these factors in a landing

site evaluation algorithm. However some factors such as the load bearing capability, and foreign
objects are difficult to classify purely based on the geometric approach that we use. In our approach
we assume that a geometrically good site will be able to hold the load of the helicopter and FOD
objects will be classified as sufficient roughness to cause a rejection. Additionally, we want the
algorithm to return a map of good places to search.

52

5.2 Approach

List of good
landing sites

Coarse
Evaluation

Point Cloud (x,y,z)

Fine
Evaluation

(x,y)

Approach
Evaluation

Ground
Planning

Cost
Calculation

TriangulationTerrain Grid Map

Information
Gain

Map of
good places
to search

(x,y,z, , ,θ ψ φ)

Figure 5.2: The steps in our landing site evaluation algorithm. The input is a list of globally registered
points. The output is a sorted list of good landing sites that include location as well
as landing heading and a map of good places to search. Two representations of the
environment are created. One representation is based on a terrain grid map and the other
is based on a triangulation of the environment and is compared to a 3D model of the
helicopter.

5.2 Approach
The input to our algorithm is a set of 3D points {x1, x2, . . . , xn} ∈ R3 that are registered in a global
coordinate system. These points could be generated by a ladar range scanner and registered using an
inertial navigation system with GPS, for example. Additionally the current wind direction θwind

optionally is useful in choosing an approach into the wind. This avoids crosswind and reduces the
required groundspeed. Figure 5.2 shows the data flow in our approach where the raw measurements
are then processed to create a regular grid for the coarse evaluation of potential landing areas, and a
separate triangulation used for the fine evaluation. Any updated grid cell is reevaluated to reflect
changes in the available landing sites. A list of the available landing sites could be displayed to an
operator or could be transmitted to the guidance system of an autonomous vehicle. A touchdown
point is defined by a 3D position, an orientation, an approach and abort path direction, and a ground
path. Additionally we calculated a map of good places to search based on the sensor data already
collected.

5.2.1 Coarse Evaluation
The first step in our algorithm is a coarse evaluation of a regular terrain grid map. Each cell in
the map, roughly the size of the landing gear, tests how the vehicle would come into contact with
the ground. The map keeps a set of statistics in a two dimensional hash table of cells. The hash
key is calculated based on the northing-easting coordinate at a fixed resolution. This provides a
naturally scrolling implementation and cells can be set as data are measured. As the vehicles moves
and the map scrolls, old cells will be overwritten. This data structure allows the algorithm to quickly
add new data to the map. Each cell in the grid keeps a set of statistics: The mean, minimum, and
maximum z-value, the number of points, and the moments necessary to calculate the plane fit.

The statistics accumulated in each terrain cell are evaluated to assess a particular location. Based
on these tests a series of binary attributes and goodness values can be computed. The statistics can
be accumulated with neighboring cells which allows us to compute the suitability of larger regions.
The binary tests are designed to reject places where the ground is too rough or too step to be valid;

53

5.2 Approach

For Each

Patch

Are all binary

Attributes valid?
Bad Landing

Site
NoReturn

Goodness
YesCalculate the

goodness

Fit Plane to

Patch

Figure 5.3: A flow chart showing the control flow of evaluating a patch in the terrain grid map. Only
if all binary attributes shown in table 5.1 are valid a landing zone will be considered.

Description Symbol Operator Value
1 Do we have more than x points for a plane fit? c > 15
2 Is the spread of the points less than x cm? σn < 50
3 Was the plane fit successful? = True
4 Is the residual for the plane fit less than x? r < 4
5 Is the slope of the plane less than x degrees? α < 5

Table 5.1: The binary attributes considered in the coarse evaluation for landing site evaluation. Only
if all operations evaluate to true a landing site can be available.

furthermore, the algorithm cannot make a reliable estimate of a landing site, if not enough data is
available.

The binary attributes are computed as follows: First, we check if enough points are available to
perform a plane fit. We require at least 15 points per cell, which is an average density of one point
every 20 cm for a 3 m cell. This average density is the required density for the smallest obstacle we
consider; however, we make an optimistic assumption since points are not necessarily distributed
evenly. Next, we consider the standard deviation of the z-value. The algorithm rejects cells if the
vertical standard deviation is larger than 50 cm, rejecting any area with large altitude changes. The
value has to be large enough to avoid interfering with the results of the plane fitting since a large
change in altitude also characterizes a large slope. Finally, the slope and residual of a plane fit are
checked for a planar surface. The residual will be a good indicator for the roughness of the terrain
since it measures deviation from the plane. Currently the slope threshold is set at 5 degrees and the
residual threshold is set at 4.

The mean altitude and standard deviation of the plane is calculated based on Welford’s algorithm
by keeping the mean and the corrected sum of squares [Welford, 1962]. After receiving a new altitude
measurement in a patch the mean altitude µc and sum of squares Sc are updated:

µnew = µc−1 + (z − µc−1)/n (5.1)

Sc = Sc−1 + (z − µc−1) · (z − µnew) (5.2)

µc = µnew

The standard deviation σ can be calculated from S as follows:

σc =
�

Sc

c
(5.3)

54

5.2 Approach

Additionally we want to evaluate the slope and need to fit a plane with respect to the measurements.
A fast algorithm to calculate a least squares plane fit is a moment based calculation. The fit is a
least squares fit along z and therefore assumes no errors in x and y exist (Also see Templeton et
al.[Templeton, 2007]). We only have to keep track of the moments

M =

Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 (5.4)

and the offset vector

Mo =

Mx

My

Mz

 (5.5)

and the number of total points c. The moments can be updated for a new measurement (x, y, z)
by updating the moments starting from 0 for all initial values.

Mx = Mx + x, My = My + y, Mz = Mz + z (5.6)

Mxx = Mxx + x2, Myy = Myy + y2, Mzz = Mzz + z2 (5.7)

Mxy = Mxy + x · y, Mxz = Mxz + x · z, Myz = Myz + y · z (5.8)

c = c + 1 (5.9)

Consequently, an update is the constant time required to update the 10 values and the plane fit
is calculated in closed form. Another advantage is that we can accumulate the moments from the
neighboring cells to fit a larger region in the terrain that represents the whole area of the helicopter,
not just the landing skids. See Ahn [Joon Ahn, 2004] for more details on moment based fitting. The

plane normal n =

A
B
C

 and residual r are calculate as such:

Mn = M2
xyc − 2 · MxMxyMy, +M2

xMyy + (M2
y − cMyy)Mxx (5.10)

A = (M2
y Mxz − (MxMyz + MxyMz)My + c(−MxzMyy + MxyMyz) + XxMY Y Mz)/Mn (5.11)

B = (−(MxyMz + MxzMy)Mx + cMxyMxz + M2
xMyz + Mxx(−cMyz + MyMz))/Mn (5.12)

C = (−(MxMyz + MxzMy)Mxy + MxMxzMyy + M2
xyMz + Mxx(MY Myz − MyyMz))/Mn (5.13)

r =
�

|C2c + 2ACMx + A2Mxx + 2BCMx + 2ABMxy + B2MY Y − 2CMz − 2AMxz − 2BMyz + Mzz| /c

(5.14)
We can infer the slope and roughness based on the normal and residual. The slope can be calculated

as follows

α = arccos(vT

upn) (5.15)

where vup = (0, 0, −1) is the up vector and n is the plane normal.
If all the binary attributes shown in table 5.1 pass, the algorithm calculates the goodness attributes

used in the final evaluation. All potentially good landing sites are now evaluated with the fine

55

5.2 Approach

For Each

Position and

Heading

Too Close to

Ground Goal
Bad Landing

Site

Good Pose
Bad Landing

Site

Roll or Pitch

Angle >Threshold
Bad Landing

Site
Yes

Good Fit of 3D

Model
Bad Landing

Site
No

Return

Goodness of

Site
Calculate Roll,

Pitch and Altitude

Fit 3D Model

Figure 5.4: The flow chart of the fine evaluation algorithm. The pose of the helicopter is calculated
based on a (x, y, θ) position and heading. If the pose is calculated successfully a surface
model of the aerial vehicle is evaluated.

evaluation to decide if touching down is feasible.

5.2.2 Fine Evaluation
Once we have determined a list of general locations, we finely evaluate each potentially good site
with respect to a 2D Delaunay triangulation of all available data. A Delaunay triangulation is a
triangular network of points that can be constructed efficiently (See Preparate & Shamos for more
details[Preparata and Ian Shamos, 1985]). The reason for this staged processing is that it is easier
to know when to incrementally update a cell-based representation, and the incremental calculation
for the coarse grid is much faster than for the triangulation.

While the coarse evaluation considers the plane geometry and roughness of a landing site, the
triangulation tries to simulate the helicopter static contact with the surface. As a first step we
incrementally update a hierarchical triangulation with a maximum number of points per patch area.
For the implementation we use see Fabri et al. [Fabri et al., 1996]. If the point density is exceeded,
we randomly remove points from the triangulation to keep below a maximum amount of memory
used. Currently, the patch size is set to 3 meters and the maximum point density is set to 200
points/cell, which corresponds to an even point spacing of approximately 20cm.

Once the coarse evaluation calculates a list of potential (x, y) locations, the fine evaluation tries
to find the best orientation and determines if the chosen location is feasible. We test a series of
possible orientations θ of the helicopter (8 in our experiments) by intersecting the virtual landing
gear with the measured terrain to determine what the resulting pose of the helicopter would be (Also
see figure 5.4). Currently our algorithm only works for two landing skids, which is a very common
configuration of landing gear.

First we determine the intersections of the skids with the triangulation by walking along the two
lines representing the landing skids, and extract the height above ground as shown in figure 5.5. Now
we assume that the helicopter’s center of gravity is on top of the landing skids and calculate the two
highest points of the intersection. These two points will be the points that determine the position of
the skid in the static case. We repeat this process for all eight potential landing gear positions.

56

5.2 Approach

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x[m]

y[
m
]

!"#$%&'($)*%+,#-.+/0#12+

3"4$+54-,44%+/0#1+$%1+

6#%4+/4&74%-2+

8*24+*%+9"*'%1:+

;*((+$%1+8#-<.+="*7+/0#12+

8#-<.+
3"4$+

/0#1+

!4""$#%+

9**1+>*%-$<-+

?$1+>*%-$<-+

Figure 5.5: Illustration of skid - triangulation contact. The skids in contact with the triangulation
determine the roll and pitch of the vehicle. A good contact is characterized by a small
angle and small area between the skid and triangulation.

!"##$%&'(&)"#*+),'-%./'0+.+#'1%23'

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x[m]

y
[m
]4'

5'6+789"'

Figure 5.6: Underbody volume between model and triangulation. The underbody model is positioned
with the pose calculated in Figure 5.5. The volume between the body surface (top-left)
and triangulation (top-right) is used to check for collision and calculate a goodness
measure of a landing site (bottom-right).

57

5.2 Approach

The algorithm to position the landing gear is as follows: First we determine all intersection points

pl

i = (xl

i, yl

i, zl

i) (5.16)

where

pl

i ∈ R3, i ∈ {1, . . . , n} (5.17)

between the landing gear l and the triangulation and partition the points into two sets: Points aft
al

i
and in front f l

i
of a distance along the landing gear. Currently we set the distance to be half

the length of the landing gear because we assume that the center of mass is centered on top of the
landing gear; however. this position can be changed depending on the mass distribution.

Next we look at the z-values and find the maximum z-value in the first and in the second half of
the landing skid for each side.

pl

aft = argmax(al

i) (5.18)

pl

front = argmax(f l

i) (5.19)

A minimum distance between paft and pfront is set to ensure that the slope will fit to a stable
value. Now that we know how the landing gear will be positioned, we calculate the area between the
line of the skid and the triangulation to get a measure of contact area. For example, if we were to
land centered on railroad tracks at an 90 degree angle our skids would rest on the rails because they
are the highest points above the ground. In this case even though the roll, pitch, and roughness will
be small (rails are very small deviations from the ground and usually level) the integral of the area
under the landing skids will have a large value because most of the landing skid is elevated above the
ground. For skids in full contact with the ground the integral would be zero.

The next step is to determine the roll and pitch of the helicopter when it is in contact with the
ground. We use the center of the two landing skid lines to determine the roll angle. Finally we use
the lower landing gear line to calculate pitch because the center of gravity will shift towards that
line. Using this algorithm we are now able to predict the position and orientation of the helicopter
when it is in contact with the ground. The roll angle α is calculated from the interpolated centers pl

c

of the skids

pl

c = pl
n − pl

1
2 (5.20)

α = arctan 2(z2
c − z1

c ,
�

(x2
c − x1

c)2 + (y2
c − y1

c)2) (5.21)

The pitch of the helicopter depends on the roll angle since more weight will shift towards the lower
skid. The pitch angle β is calculated as

λ =
�

1 if θroll > 0
2 otherwise

(5.22)

β = arctan 2(zλ

front − zλ

aft,
�

(xλ

front
− xλ

aft
)2 + (yλ

front
− yλ

aft
)2) (5.23)

With the orientation and position, we now calculate the volume between the undersurface of a 3D
model of the helicopter with the triangulation of the terrain as shown in figure 5.6. This volume
allows us to predict if a tail strike or similar bad contact with the ground would occur given the
predicted position and orientation of the helicopter. It also gives us a measure of goodness that will
maximize the volume under the helicopter. The calculation of the volume is simplified by taking a
regular sample of points on the surface of the helicopter at an interval e. Even though some errors

58

5.2 Approach

can occur we can over-approximate this regular sampling when we create the model. Given the
sampled surface as a set of points on the underbody of the helicopter ps, we first have to transform
the points given the pose of the helicopter ph

c and the orientation (α, β, θ). The transformed points
p

�

s are then compared to the intersected point pt of the triangulation. The volume is defined as

vj =
�

e2(z�

s − zt) if z
�

s − zt > 0
−∞ otherwise

(5.24)

Vunderbody =
m�

j=0
vj (5.25)

If the underbody surface intersects with the triangulation, the volume becomes −∞ because we
have a collision with the terrain.

5.2.3 Approach and Abort Path Evaluation
Once we have all the measures related to the goodness of landing sites we also need to verify that
a landing approach is feasible. We therefore utilize the coarse terrain evaluation to check a linear
landing approach path at the desired glide slope and final height above ground for clearance of
obstacles. Additionally the algorithm also checks that an abort path that deviates by at most 45
degrees from the approach is obstacle free. This is an added measure of safety because we can abort
an approach at any time by following the abort path from the current altitude.

The approach path is defined to start at some altitude a above ground with a glide slope κ and end
at a final hover point. However we also want to ensure that there is some margin for the waypoint
controller to converge onto the approach path and glide slope. Typically one can just expand the
obstacles by a constant amount to keep a buffer. However since at the end of the glide path we want
to be very close to the ground (1-3 meters) this approach will not work. Instead the glide slope is
offset by a lower glide slope κC−space < κ. This lower glide slope provides a one-sided funnel for the
path controller to converge on the correct glide slope.

From these parameters we can define the path as a line segment starting at pstart going to phover.
Let the distance of a point pkbe given by the Euclidean distances. Additionally depending on the
vehicle and control accuracy a lateral safety-buffer is defined as blateral and a vertical safety-buffer is
defined as 0 < bvertical < a. Now all cells on the approach path that are in the range of the vertical
safety buffer ck ∈ {1, . . . , o} are checked.

The simple volume as a goodness measure of an approach path places an equal cost independent of
the distance clearance from obstacles. Therefore the cost of being close to an approach path decreases
exponentially as the distance increases.

b�
lateral = min(blateral, dist(phover, pk) sin(κC−space)) (5.26)

ck =
�

exp(− |zck − zk|) if (zck − zk − b�
lateral

) > 0
∞ otherwise

(5.27)

Capproach =
o�

k=1
ck (5.28)

The lateral buffer is reduced once the helicopter comes close to the hover point because a collision
with the terrain would be detected otherwise. The approach path is checked for a set of headings
and the goodness is based on the risk of the approach and abort path.

5.2.4 Ground Path Planning
The final factor in landing site evaluation is the path length from the goal location to the landing
site on the ground. This planning is performed assuming that a human or robot has to be able to

59

5.2 Approach

Description Function Weight
Goodness from Rough Evaluation wsα + wrr ω1

Area under the landing gears 1
Agear

ω2
Volume under the Helicopter Vheli ω3

Distance from the closest bad landing site dl ω4
Distance to the ground goal point dg ω5

Cost of the approach and abort path Capproach ω6
Cost of the ground path Cground ω7

Table 5.2: A linear combination of factors determines the goodness of a landing site. The weights
needs to be set or learned based on user preference to determine which of the acceptable
sites is the best.

reach the goal location from our landing location. This cost-to-go is another factor for our final cost
function.

It is important that the traversability planner is robust to missing and some wrong cost estimates
since the plan dictates if a site is reachable and will even be considered for landing. For instance,
a skipped ladar packet at a pinch point will cause a hole in the terrain map making the any other
landing site inaccessible.

The cost of traversability is therefore continuous with optimistic binary thresholds for non-
traversability and optimistic estimates for missing data. The cost function is estimated from the
standard deviation σc and the altitude difference between the mean of neighboring cells ∆µc =
maxn∈Neighbors(c) |µc − µn|). The cost is calculated as follows

Cground =
�

max(σscale(σc − σmin), ∆µscale(∆µc − ∆µmin)
∞ if Known Obstacle

(5.29)

The cost-to-go is then repeatedly computed using a dynamic-programming wavefront algorithm
[Choset et al., 2005] from the ground goal location pgoal up to a maximum cost-to-go that we consider.
In very rough terrain or with lots of missing cells only short paths will be generated while on smooth
terrain such as roads long paths will be found which represents the time to traverse. The cumulative
cost is then used as another factor in the goodness evaluation.

5.2.5 Goodness Assessment
Landing site selection is a problem where many factors need to be considered to evaluate the cost of a
site. Depending on the weights for the goodness calculation, different sites will be chosen as best sites.
A linear combination of the factors described in Table 5.2 is considered to calculate the goodness of
a landing site. Currently we manually set the weights ω1, . . . , ω7 to determine a goodness.

5.2.6 A 1D Example
Next we will show a simple 1D example of how the coarse and fine evaluation algorithm works in
Figure 5.7. We start out with a set of 1D points that we want to evaluate. The points were generated
from a 10 degree sloped line with added Gaussian noise. From this simulated terrain we can calculate
the statistics and fit a plane. If the slope is sufficiently small the fine evaluation algorithm selects
two points from the triangulation of the terrain. Since this is a 1D example it will be just the same
line. Based on these two points we can calculate the pitch of the helicopter and fit the underbody.

Based on the result of the fit for the data set we have the following values

• Slope α = 9.6,

• Spread s = 17.2

• Residual r = 4.2

60

5.2 Approach

−100 0 100

−100

−50

0

50

100

x [cm]

H
e
ig

h
t

[c
m

]

Point Cloud

(a)

−100 0 100

−100

−50

0

50

100

x [cm]

H
e
ig

h
t

[c
m

]

Rough Evaluation
Slope angle 9.6 deg. Residual = 4.2 Spread = 17.2

(b)

−100 0 100

−100

−50

0

50

100

x [cm]

H
e
ig

h
t
[c

m
]

Fine Evaluation Selected Points

(c)

−100 0 100

−100

−50

0

50

100

x [cm]

H
e
ig

h
t
[c

m
]

Fine Evaluation
Pitch angle = 5.65 deg. Area =3728

(d)

−600 −400 −200 0 200 400

−200

0

200

400

600

x [cm]

H
e
ig

h
t
[c

m
]

Underbody of Helicopter

(e)

−500 0 500

−400

−200

0

200

400

600

x [cm]

H
e
ig

h
t
[c

m
]

Fine Evaluation. Underbody volume = 36605

(f)

Figure 5.7: A 1D example of evaluating a landing zone. The input to the algorithm is a set of points
(in (a)) that are then used in the coarse evaluation to fit a plane and calculate the point
spread in (b). If the slope is sufficiently small and the spread is small enough the fine
evaluation is performed in (c) where first the two highest points in the left and right half
are found. These points determine how the landing gear will interact with the ground.
In Fig. (d) we calculate the area and pitch angle. The final step is to take a set of
sample points from the underbody of the helicopter in (e) and calculate the volume of
the underbody with respect to the triangulation.

61

5.2 Approach

Factor Term Value
Basic Information Gain Il

No data 0.5
Observed 0.05
Prior Knowledge 0.75
Time since last visit e− t

β β = 100
Additional Factors:
Distance from ground goal Ig = f(dmax − d(x, xgoal)) f = 0.022
Unknown approach path cells Iapp 0.15
Unknown cells between ground goal and a
potentially good landing site

Ihole 0.03

Exploration frontier for ground path Ifrontier 0.7

Table 5.3: The factors that are incorporated into the information gain map. All information gain
terms are added to determine the final information gain map that is used for planning.

• Pitch β = 5.65

• Area Agear = 3728

• Underbody volume Vheli = 36605

If we consider the binary attributes in table 5.1 we can assume that attributes 1,3, and 6 are successful.
The point spread (2) is less than the threshold. However the slope (5) is larger than the threshold.
So in this case we would not even consider the fine evaluation. If we look at the fine evaluation values
we can see that we would also reject the landing site in the flow chart shown in figure 5.4because the
calculated pitch value is larger than the threshold. The volume and area would not be considered
given that we would reject the landing site.

5.2.7 Information Gain Map
The only possibility to get a current assessment of the terrain is to actively collect ladar data that
we can use the build the map. However building a map is challenging, since we will have sensor
occlusions with the terrain. Additionally, since we require a landing site to be reachable on the
ground some locations are more important to search because they could enable new landing sites to
become valid. Once a good site is known there is still some value to keep exploring, because we can
discover more information about approach and landing paths.

According to each of the factors considered in the above cost function we construct an information
gain map based on the factors shown in Table 5.3. Each of the sub-functions is a different term that
adds to the information gain. The total information gain is expressed as

info(P) = Il + Ig + Iapp + Ihole + Ifrontier (5.30)

First we discourage visiting already observed sites if the time difference of the last visit to now is
small (Il). Next we also explore sites that are close to the ground goal first (Ig) and also try to
fill in cells that are not visited and are between potentially good landing sites and the ground goal
(Ihole). Also we encourage exploring cells that are on the frontier between unknown cells and cells
with a path to the ground goal (Ifrontier). Finally we also value approach paths higher to encourage
exploration along approach paths (Iapp).

The information gain map is qualitatively based on how the sensor observes and how the landing
site evaluation algorithm behaves. Even though we get good results with this approach, in future
work we would like to improve the map by throughly modeling the mutual information of the different
factors and dependencies to calculate the information gain map. A proper modeling of the map will
also provide us with the expected information gain depending on speed, and altitude. We smooth

62

5.2 Approach

the initial information gain map with a Gaussian to account for uncertainty in the sweep width of
the ladar scanner and the lack of modeling the orientation. The information gain map is updated
as we get new information and is one of the objective functions considered for motion planning in
Chapter 6.

Additionally to representing the current state of information we need a way to predict the outcome
of sensing to enable long range planning. We can define a prediction action actioninfo(P) that takes
as input the path P = {p1, . . . , pn}. The prediction assumes that everything was sensed and no
ground path was found. The area updated is a line along the current path direction. The sweep
width is determined based on the field of view αscanner of the scanner and the current altitude pz

above ground:

lsweep = 2 tan(αscanner

2)(pz − zdem(p)) (5.31)

In order to evaluate the effectiveness of the information gain map in guiding the aerial vehicle we
tested the information gain mapping in simulation. Our simulation provides similar inputs (ladar and
pose measurements) that one would expect on a real vehicle and therefore it is used to demonstrate
the information gain mapping algorithm. As more information is sensed about the terrain the
information gain map updates to reflect the changes in sensed information. Since sensor data is used
to estimate the available information gain the algorithm is able to include the occlusion information
and other factors in the evaluation.

In Fig. 5.8 we show one example of the helicopter using the information gain map to explore the
environment. As it explores the environment more areas become known. As soon as a path from the
location on the ground becomes available in Fig. 5.8c the cells on the frontier become valuable. In
Fig. 5.8d the approach path to the landing site is an valuable area to explore.

Our information gain mapping is based on the terrain evaluation and represents an estimate of the
available information left in the world. The function is non-trivial because the landing approach can
add valleys of desirable information that need to be explored and many other factors contribute to
the final value.

5.2.8 Computational Efficiency
A naive online implementation of the algorithms above will be infeasible to evaluate in real-time. We
parallelize and incrementally compute updates to enable a real-time implementation. The following
techniques enable real-time computation on a multi-core processor:

• All trivial parallel evaluations are spread across multiple cores. This includes evaluating

– the fine evaluation of a set of sites.
– the detection if any landing approaches need to be recomputed.
– a series of landing approach directions.

• A triangulation is only created if a fine evaluation is performed in that region.

• A fine evaluation is only performed if any of the rough terrain cells change.

• Fine evaluations are performed radially outward from the ground goal location pgoal. As
computation time permits landing sites further and further away will be checked.

• An approach path is only evaluated if the terrain cells related to it have changed.

• Only a fixed number of approach and abort directions are evaluated.

Our current implementation will use as many cores as are available and can use those cores efficiently.
Using this approach we are able to calculated landing sites in real-time at normal helicopter speeds.

63

5.2 Approach

(a) (b)

(c) (d)

Figure 5.8: An example information gain map in simulation for the environment shown in (a). The
only available landing sites are at the “H” and the helicopter should land close to the
red cross. The only path to the landing sites is the gray area between the red cross and
the H. As the helicopter flies through the environment it accumulates more information.
Available information is shown in green already gathered information is shown in red. In
(c) we can see that the frontier of locations with a path to the ground location have a
large amount of information to be gained. Since no more frontier exists the approach
path in (d) has become a valuable location for exploration.

64

5.3 Experiments

5.3 Experiments
We present two experimental results in this section. The first set of results evaluates only the coarse
and fine landing site evaluation algorithm in a variety of different urban and vegetated environments.
The second set of results demonstrates the autonomous landing of the unmanned little bird helicopter
in an unknown environment that includes ground path planning, approach path generation, and
calculating the information gain map.

5.3.1 Fine and Coarse Landing Zone Evaluation
In this section we show results for the coarse and fine evaluation based on 3D point-cloud datasets
we collected. In these results we assume a straight line path from the landing site to a ground
goal location. The results are shown for natural and man-made environments to illustrate several
environments and varying cost weights.

5.3.1.1 Setup

For our first experiment we collected point cloud datasets at various locations around Pittsburgh, PA,
USA. We overflew the areas in approximately straight lines with speeds between 10-20 knots. On the
bottom of the helicopter we mounted a laser scanner, inertial navigation system, and a documentation
camera (See figure 5.9). The Riegl LMS-Q140i-60 scans a line perpendicular to the flight direction at
8000 points per second. The scan frequency of the ladar is 60 Hz. The data are fused by a Novatel
SPAN INS/GPS to calculate a globally registered point cloud. The inertial measurement unit has
a drift rate of 10 degrees/hour (0.02 degrees reported accuracy) and the GPS is corrected with a
base station to a reported 1 cm accuracy. In total we collected data on 9 sites with a flight time of 8
hours. We discuss results from three representative sites.

The coarse evaluation is robust to errors in z since it performs a least squares fit to determine the
slope. The fine evaluation relies on a good point cloud registration and is not robust to misregistered
points. Nevertheless, other methods exist to improve point cloud registration to get a better input
point cloud from lower performance INS systems (See for Example [Thrun et al., 2003]).

5.3.1.2 Results

The first site was scanned at an altitude of about 100 meters (Fig. 5.10). It is a field, and our
ground goal point is located next to the slope on the hill (see Fig. 5.10d for exact goal location).
The result shows the coarse and fine evaluation of landing sites in the environment. Several possibly
good landing sites in the coarse evaluation are rejected in the fine evaluation phase. Finally, the best
landing site is picked in a spot with small slope and a large clearance from obstacles.

In the “sloped field” dataset (Fig. 5.11) we have a slightly more complex scenario because a lot
of landing sites exist and we must choose a best one. Also a large number of smooth slopes need
to be rejected based on the plane fitting. The next dataset (Fig. 5.12) is very tight and a possible
landing site needs to be chosen that still fulfills all the constraints. We also scanned this dataset at
an altitude of about 100 meters. Just based on the coarse evaluation one can see that most points
are not suitable and only a small area exists that can be considered suitable for landing. In the fine
evaluation some too optimistic locations from the coarse evaluation are rejected. The main reason
for the rejection is that the landing gears cannot be placed successfully. After evaluating the cost a
point in the middle of the open area that is closer to the ground goal location is picked.

While the previous dataset was mostly in vegetated terrain we also collected a dataset at a coal
power plant (Fig. 5.13) at 150m elevation above ground. The geometry of obstacles at the power
plant is very different from vegetation, but the algorithm is still able to determine good landing sites.
The ground goal location is close to a car, and one can see how the fine evaluation rejects the car and
the red region around the ground goal. The red region is a safety buffer that prevents landing directly
on top of the ground goal. Extension 5 shows the overflight and real-time evaluation of landing sites.

As a final experiment, we varied the weights for our evaluation function for four different parameters
in the same terrain (Fig. 5.14). First we changed the weight for slope and roughness (Fig. 5.14a).

65

5.3 Experiments

(a) (b)

(c)

Figure 5.9: The experimental setup for data collection on a EC 135 helicopter in Pittsburgh, PA,
USA. We mounted a ladar, and inertial navigation system on a helicopter as shown in
Fig. (a). The sensor platform is shown in Fig. (b). The inertial measurement unit was
mounted next to the ladar to minimize errors in the registration of the data. In Fig. (c)
one can see the data flow for terrain evaluation. We register the data into a global 3D
point cloud and evaluate data based on the point cloud.

66

5.3 Experiments

(a) Picture (b) Input point cloud

(c) Coarse evaluation

(d) Fine evaluation

Figure 5.10: Results from the “three trees” area. Fig. (a) shows an aerial view of the scanned
area and (b) shows the point cloud at the end of the scan. The legend for the coarse
evaluation (c) is as follows: Red = slope & roughness exceeded, orange = roughness
exceeded, pink = slope exceeded, light orange = large spread, purple = large residual,
dark purple = bad fit. The legend for the fine evaluation (d) is as follows: Red = bad
site, yellow to green = goodness of site, white circles = best site, red circle = no land
zone, white box = goal location.

67

5.3 Experiments

(a) Picture

(b) Input point cloud

(c) Coarse evaluation

(d) Fine evaluation

Figure 5.11: Results from the “sloped field” area. For a legend of the results see Fig. 5.10.

68

5.3 Experiments

(a) Picture

(b) Input point cloud

(c) Coarse evaluation

(d) Fine evaluation

Figure 5.12: Results from the “wooded intersection” area. For a legend of the results see Fig. 5.10.

69

5.3 Experiments

(a) Picture (b) Coarse evaluation

(c) Input point cloud

(d) Fine evaluation

Figure 5.13: Results from the “power plant” area. For a legend of the results see Fig. 5.10.

70

5.3 Experiments

(a) 1000 · w1 (b) 1000 · w3

(c) 100 · w6 (d)
1

1000 · w4

Figure 5.14: The result of varying the weights for the final decision on selecting the best landing site.
For a legend of the results see Fig. 5.10. In this plot we keep the function constant and
vary the weight for some of the factors described in Tab. 5.2. In (a) we increase the
weight of 1000 · w1 - the slope and roughness, for (b) we increase 1000 · w3 to emphasize
the clearance of the helicopter above the terrain, for (c) we try to minimize the distance
to the casualty by increasing 100 · w6, and in (d) we decrease the weight of the distance
to the closet obstacles by changing 1

1000 · w4. One can see that depending on the cost
function the distribution of good sites changes, as well as the best picked landing site.
The weighting does not influence the binary decision of acceptable sites because it is
based on hard thresholds of the helicopters constraints.

71

5.3 Experiments

Figure 5.15: System setup on the Boeing Unmanned Little Bird Helicopter. The sensor and IMU are
shock mounted to the helicopter in the front. The GPS antenna is located in the tail
and the computing and flight controller are located in the cargo bay. The rotor diameter
is 8.3 meters.

Compared to the nominal evaluation, one can see that we now choose a landing site further away
from the ground goal point because it is in smoother and less sloped terrain. A similar location is
chosen in Fig. 5.14b; however, since we try to emphasize the volume of the underbody, the shape of
the LZ is actually more convex than the evaluation in Fig. 5.14a.

If we give a large weight to the distances to the casualty, we expect the distance to be small. We
can see in the evaluation for Fig. 5.14c that far points have low weight and close points have the
lowest weight. In Fig. 5.14d, the result is almost the same as Fig. 5.14c, except that now points
close to the boundary also have a low value. Varying the weights, one notices that the weight vector
has a large influence on the resulting chosen landing site.

5.3.2 Landing the Unmanned Little Bird Helicopter
In the previous section we presented landing site evaluation results in a large variety of terrain around
Pittsburgh, PA. In this section we present results from Mesa, AZ. In this environment we tested
the approach and ground path planning in addition to the coarse and fine evaluation. The ground
path planning was performed to a ground goal location. Furthermore, the helicopter was completely
autonomous and was able to land itself based on the evaluation.

5.3.2.1 Setup

We equipped the Boeing Unmanned Little Bird Helicopter [Boeing, 2010] with a custom scanning
LADAR that operates in two modes: Forward-scanning for obstacle detection and downward-looking
for landing zone evaluation. The scanner has a 100Hz, 100-degree fast horizontal scan and a
controllable slower nodding scan at about 1 Hz. For landing zone evaluation it was pointed down
and did not oscillate on the slow axis. The Riegl VQ180 pulses at about 85kHz with full-waveform
analysis and has a range of 150 meters. The scanner is rigidly coupled to a Novatel SPAN INS/GPS
to calculate a globally registered point cloud. The inertial measurement unit has a drift rate of
10 degrees/hour and the GPS is corrected with a base station to a reported 1 cm accuracy. The
helicopter and main system components are shown in Fig. 5.15. The scanning Ladar is mounted

72

5.3 Experiments

in the front with the IMU and the GPS antenna is located on the tail. The computing and flight
control computers are located in the cargo bay. We discuss results from test flights at Boeing in
Mesa, AZ (USA). The experiments were performed completely autonomously, however a test pilot
and flight test engineer were onboard at all times to supervise and initiate the tests.

Our test site was located in a busy airspace and we had to fly certain paths to avoid populated
areas. A fixed search pattern was set that would overfly the ground goal and an area with good
landing sites.

5.3.2.2 Results

The following scenario was tested: An injured person (casualty) needs to be picked up and is located
somewhere near a possible landing site as shown in Fig. 5.19(c). We want the vehicle to find a good
landing site that is close to the ground location such that the ground goal can be reached from the
landing site.

The helicopter takes off autonomously, is guided to a fixed search path and creates a terrain map.
After the helicopter takes off the landing pads were made inaccessible. Figure 5.16 shows pictures
from observer and onboard cameras and views from the input data that show small obstacles such as
crates, and black plastic cases that need to be avoided as landing sites. The landing site evaluation
is performed as the vehicle flies over. The final landing site is picked after the ground traversability
plans are not changing because if we still have potentially good landing sites that might be available
we should keep searching for landing sites for a while.

After the overflight the landing site is picked as shown in Fig. 5.17. The coarse evaluation shows
that crates, pelican cases, and a cart that are parked on the helipads are detected and rejected. After
the landing sites are found with the fine evaluation in Fig.5.17(c) the approach and abort paths are
evaluated in (d). The path to the ground goal is shown in (e). Extension 6 is a video that shows one
of the landing site search and landing runs.

Even though it was not utilized for planning in the real experiments the landing site evaluation
algorithm was updating the information gain map as shown in Fig. 5.18 (Also see Extension 7).
Initially no landing sites are known so there is a bias toward the ground goal. As landing sites are
found in the red region (5.18b) the approach path becomes valuable to search. In Fig. 5.18c a ground
path has been found and therefore all locations that are at the boundary between the ground path
and unexplored cells become valuable since landing sites might exist that have a ground path. One
can see that in south-east there is a large frontier because the area is flat (Also compare to the
aerial image in Fig. 5.16a). In the north-west direction the area is blocked by a fence that the ladar
detected and therefore no frontier is found. The information gain map is utilized in Chapter 6 for
planning in simulation.

From the parameters of the lowest cost landing site an approach path is computed and sent to the
vehicle. On this trajectory the vehicle turns around and descends at the desired sink rate and comes
to a hover about 3 meters above the ground. After coming to a hover the vehicle orients itself to the
optimal heading and then executes a touchdown. Part of the final approach segment is shown in Fig.
5.19 where the helicopter is close to the final landing site. The first view is a cockpit view of the
clutter on the runway and vehicle on its way down to land. The second view shows the selected final
landing site and other potential sites to land. The last picture shows the helicopter and the location
of the ground goal. After a stable hover is achieved above the final goal location the vehicle touches
down at the landing site.

After system integration and testing runs, a total of 8 landing missions were demonstrated with
varying ground clutter and approach directions. Figure 5.20 shows two typical landing missions.
After an autonomous takeoff and climb out, the aircraft approaches the flight line from the south-west.
It overflies the landing area at 40 knots and 150 ft AGL to search for acceptable landing sites. The
computation time for landing zone evaluation is low enough that the vehicle can pick landing zones,

73

5.3 Experiments

(a) (b)

(c) (d)

Figure 5.16: The problem setup and input sample data. In (a) one can see the straight line search
path that was performed to look for landing sites. A ground goal was given by a
“casualty” that needs to be picked up. In (b) one can see a downward looking view from
the helicopter looking at some obstacles on the runway. (c) shows an example obstacle
and (d) shows a set of obstacles. (d) shows a the correlation between obstacles (pallets,
and plastic storage boxes) and the point cloud which is the input to the algorithm. The
data was collected at 40 knots from 150 feet AGL.

74

5.3 Experiments

(a) (b)

(c) (d)

(e)

Figure 5.17: Example results for the landing site evaluation in Phoenix, AZ. (a) is the input point
cloud. (b) shows the coarse evaluation. For a legend see Fig. 5.10. (c) shows good
landing sites that were discovered by the vehicle and (d) shows the approach paths
in green and the abort paths in grey. (e) shows the best site that is accessible from
the ground goal. The purple trajectory shows the ground path to the ground goal
(“casualty”).

75

5.3 Experiments

(a)

(b)

(c)

Figure 5.18: Information gain map for the problem setup from Fig. 5.16a. In (a) the robot has not
yet discovered landing sites and the lowest cost is at the goal location (circle). In (b)
landing sites without a path have been found and therefore the approach paths become
more interesting to explore. In (c) a path has been found and there is a large frontier of
places that are now valuable to search because a ground path could be found. Approach
paths and holes in the map around the ground goal also have a higher information gain
value.

76

5.3 Experiments

(a)

(b)

(c)

Figure 5.19: Landing approach and touchdown. Figure (a) shows a pilots view during the approach
and (b) shows a similar view in the data. In (c) one can see a picture of the helicopter
after touchdown and the ground goal location.

77

5.3 Experiments

(a) (b)

Figure 5.20: Typical landing missions including survey overflight, descent on final and touchdown.
In Fig. (a) the system is not penalized for flying the final approach through unsurveyed
terrain and chooses to land from the north. In Fig. (b) the system is penalized for
descending through unsurveyed terrain and therefore chooses an approach that maximizes
coverage of already seen areas.

Figure 5.21: Example of chosen landing sites for two test cases. The ground goal is shown as a red
cross and the approach direction and touchdown point are indicated with a green arrow
and green circle respectively. Fig. (a) shows a landing without obstacles where the
vehicle picked a location on the runway since it has the lowest cost. In Fig. (b) the
runway is cluttered with obstacles (red x’s. See Fig. 5.16d). The vehicle selected to
land closer to the casualty instead even though the clearance is smaller.

78

5.3 Experiments

Figure 5.22: Example of chosen landing sites with the system preferring known approach directions.
In Fig. (a) the system selects a site on the runway that is reachable with a low-cost
path the site selected is similar to Fig. 5.21a. In Fig. (b) the vehicle will still prefer
an approach through measured terrain. It picks a landing zone that is on the runway
further away from the ground goal since it is the only clear-area that has an obstacle
clear glide slope. The area close to the ground goal is free and clear however it is not
chosen as a landing site since a hill (Bright area in lower-left) increases the approach
cost and the approach is not known to be free.

79

5.4 Discussion

Mean Total
Algorithm Time Units Time(ms) Count(#) Units

Adding Points 17 ms / 100000 points 2723 15826707 points
Coarse Evaluation 699 ms / 100000 cells 7575 10843248 cells
Fine Evaluation 4578 ms / 100000 sites 5446 118951 sites

Approach Evaluation 7663 ms / 100000 paths 9116 118951 paths
Approach Change Detection 21 ms / cycle

Traversability Planner 113 ms / cycle
CPU Utilization 30 percent

Table 5.4: Computation times for five successful landing runs of the autonomous helicopter.

and approach paths in real-time. The point cloud, aerial image and resulting path is shown in Fig.
5.20 for two typical missions. The approach cost ω6 was varied between Fig. 5.20a and 5.20b to
penalize for an unknown approach cost.

A close-up of two missions flown with a low ω6 (approach cost) weight are shown in Fig. 5.21.
Since no obstacles are present in Fig. 5.21a the vehicle prefers a landing site on the runway since it
is a wide open area with a low landing site cost. As we cluttered the runway Fig. 5.21b the vehicle
instead now prefers a closer site with a shorter path. This result was unexpected since we expected
the vehicle to land on the runway instead because there was a no-fly zone to the north. However, the
approach it found went east of the no-fly zone and landed in a feasible location.

In the next two experiments the approach cost weight was increased (Fig. 5.22). This did not
change the outcome of landing without obstacles since it also previously landed on the runway. In
the case of obstacle clutter however the vehicle now preferred an approach that flew over the scanned
area. Since most of the obstacles were low it was able to overfly the obstacles before landing.

Table 5.4 shows the computation times for the optimized algorithms that minimize re-computation
of new data. The computation was performed onboard with Intel 2.6 GHz Core 2 Quad computers
Adding new data is fast and takes currently about 17 ms/100000 points which is much faster than
realtime. The coarse evaluation is very fast at 699ms/100000 cells. The fine evaluation is much slower
which justifies the coarse evaluation to limit the number of fine evaluations performed. Approach
evaluation also requires many evaluations and is therefore slower.

5.4 Discussion
We presented, to our knowledge, the first geometric model-based algorithm that gives estimates of
available landing sites for VTOL aerial vehicles. In our algorithm we are able to incorporate many
constraints that have to be fulfilled for a helicopter to be able to land. While the current state of the
art is similar to our coarse evaluation algorithm, the fine evaluation allows us to consider more aerial-
vehicle-relevant constraints and reject false positives in the coarse evaluation. Furthermore, since
the two paths of evaluation are based on two different representations of the terrain, we conjecture
that the combined system will be more robust to failure cases of a pure cell-based representation.
Additionally, we include constraints based on the approach, abort and ground paths to determine
the feasibility of a landing sites.

We also presented results based on real sensor data for landing site evaluation at vegetated and
urban sites. All of the hard constraints on accepting or rejecting a landing site are based on the
actual constraints of the vehicle geometry and weight distribution. However, which of the good
landing sites is preferable is an open problem because combining the different metrics is non-trivial.
In future work we propose to learn the weight vector of the landing site evaluation based on human
preferences or self-supervised learning in simulation.

Results of tests for the first autonomous helicopter that is able to select its own landing sites was
presented in this chapter. Results are shown in the context of a casualty evacuation mission where
the path to a ground goal also has to be found.

80

5.4 Discussion

Even though the inertial navigation system we are using has a high accuracy (0.01 degree reported
accuracy IMU, 1cm GPS) it is not sufficient to register the points with high enough accuracy to
evaluate landing sites in front of the helicopter at the glide slope, because the smallest potentially
lethal obstacle we consider is the height of a rail (10cm). One could apply scan matching techniques
such as the one proposed by Thrun et al. [Thrun et al., 2003] to smooth the matching of adjacent
scans, however, in the process one might smooth over important obstacles.

Currently our algorithm will accept water as a potentially good landing site since it is flat and
smooth. We have observed two behaviors of water with our ladar scanner: In some water the beam is
reflected and we get a smooth surface, and in other situations we do not get a reflection and therefore
no measurement. No measurement in this case is good because we will reject such areas. On the
other hand, we might keep searching the water areas because we are not able to gather data on
them. Some ways to directly sense water would be with other sensor modalities such as a camera of
a suitable spectrum, or a radar.

While water is a false positive, we will also reject potentially good landing sites (false negatives)
because we currently classify vegetation as roughness. We have no information that allows us to
distinguish grass from steel wire, for instance, and therefore we take a pessimistic approach.

We are making several assumptions that might not hold in all conditions: the algorithm assumes
that small objects will not damage aircraft (no FOD), and the evaluation assumes that the terrain
can bear the load of the helicopter. These assumptions could be relaxed by incorporating secondary
sensors such as cameras that can classify the material of the terrain.

In future work one could encode the concept of prior known helipads as low cost regions in the
landing site cost calculation. The only landing gear we model in the fine evaluation are two skids. In
future work we would like to make the algorithm more flexible to be applicable to different kinds of
landing gear.

81

6 Multiple-Objective Motion Planning
Unmanned rotorcraft are being considered for a variety of missions such as continuous surveillance,
cargo transport and casualty evacuation in battlefields as well as at sites of natural disaster. As
opposed to fixed wing unmanned air vehicles which typically fly high enough to safely operate blind,
low-flying rotorcraft, especially those that must land on unimproved terrain, must fly with onboard
perception to enable safe operation. However, since safe landing sites are not readily apparent a
priori, they must be actively found by the unmanned rotorcraft. In such cases, the missions requires
motion planning that cannot naturally be expressed as safe navigation to a goal point. Instead we
need need a framework that can combine multiple objectives that need to be discovered and might
change over the course of a single mission.

In the previous chapters we examined the case where a vehicle has to perform one particular
mission. Either avoid obstacles while visiting a sequence of goal points or searching for landing sites
and landing automatically. However, even though problems are relevant, the planning algorithm
should be agnostic to the particular mission type.

The safety of a reactive landing site search cannot be guaranteed for full-size helicopters because
one can no longer assume that stopping is possible in time. One reason is that a strong braking
acceleration can cause two dangerous conditions: low-rotor RPM and a vortex ring state. Therefore,
it becomes infeasible to guarantee safety by decreasing the speed if the search behavior would cause
a collision. Instead the algorithm’s commands have to be safe by construction and combinations of
different objectives should not influence the safety.

Here we propose a framework (Fig. 6.1) that generalizes from point goals to a more general form
of mission specification as objective functions. Examples of objectives are specifications such as the
minimum distance to sensed obstacles, smoothness of the path and deviation from desired altitude.
The trouble with consideration of a large number of potentially changing preferences is that they are
difficult to optimize in realtime.

We present a formalism where elementary objective functions are augmented with additional
attributes that enable a compact and consistent specification of planning problems. These attributes
are exploited by planning algorithms to increase the planning horizon and plan in real-time.

In summary the main contributions of this chapter are a

• a formalization of the problem of motion planning with multiple changing objectives,

• a definition of augmented cost functions that enables planning with a longer horizon due to
action prediction,

• a decomposition of the problem into a local and coarse planning architecture to enable real-time
planning.

Below we describe the general problem (6.1) and then show the approach(6.2). We conclude with an
application of the framework to multiple missions on an unmanned helicopter(6.3) and discuss (6.4).

6.1 Problem
The problem of planning with changing objective functions is formally defined here. While the
formulation below is general, in Sec. 6.2.5 we give the specific details of the problem instance for
different missions of an autonomous helicopter.

83

6.1 Problem

Motion
Planning

State
Machine

Objective
Functions

((SearchLZ, x),
(ReachGoal, x))

Figure 6.1: A high-level overview of the planning framework. The input to the motion planner is
a objective function that is set through a state machine based on user commands. The
particular missions we address in this paper are “search for landing zones close to x,”
“approach a landing zone,” and “reach goal x.”

Continuous Definitions The vehicle state is defined as x ∈ X with x0 as the initial state and xt
is the state at time t ∈ T = R+

0 . The path points P = R3 × R+
0 are a subset of X that contains

the position p of X and the magnitude of the velocity s. The trajectory through a set of n points
is denoted as P = {p0, . . . , pn}. Alternatively we will refer to the trajectory by time steps as
{p(0), . . . , p(tf)} where tf is the final time. The length of the trajectory is denoted as |P|. The
command vector is denoted as Pc and the resulting vector denoted as Pr. dist(p1, p2) is the Euclidean
distance between the two points.

Discrete Mapping Finding global solutions in continuos problems with many minima is difficult and
therefore it is necessary to discretize the problem to plan on a discrete graph G = (V, E) representing
the state instead. V is the set of vertices and E is the set of edges. We can convert between the
continuos and discrete states with the following functions:

v = node(x), x = state(v) (6.1)

Since we are not guaranteed to have a single goal we define the search of the graph for a path with
a set of start vertices Vs ⊆ V and a set of goal vertices Vg ⊆ V. The transition from one vertex to
the next is given by the successor function Vsucc = succ(v). The successors are determined by the
direction which can be calculated from the state by d = dir(x).

The cost of an edge is given by J(ei) and the cost of a path B = {v0, e0, . . . , vn−1, en−1, vn} is
given similarly as J(B).

Motion Model The forward motion model is defined as a differential equation as

ẋ(x, u, t) = f(x(t), u(x, t, Pc), t) (6.2)

with the command input
u(x, t, Pc) (6.3)

defined by the state, time, and command vector Pc. We explicitly specify Pc since it is the command
vector that is optimized. The initial state is given by x(0) = x0 and the equation of motion is
integrated as follows:

x(tf) = x(0) +
� tf

0
ẋ(x(t), u(x, t, Pc), t)dt (6.4)

Optimization Problem A frequently addressed motion planning problem is the two-sided boundary
value problem with an initial and final condition. However, we do not necessarily have an end point
constraint and consequently the problem is a one-sided optimization problem. The functional is the
integrated cost over the length of the trajectory:

J(x(t), u(x, t, Pc), tf) =
� tf

0
c(x(t))dt (6.5)

The general formulation of the optimization problem that needs to be addressed to allow flexible
motion planning is to

84

6.1 Problem

minimize: J(x(t), u(x, t, Pc), tf)
subject to: ẋ = f(x(t), u(x, t, Pc), t)

x(0) = x0
J(x(t), u(x, t, Pc), tf) < ∞

(6.6)

Since there is a constraint that the functional is less than ∞, we have an implicit method of adding
constraints from the objective function.

Mission State Machine The operator (or higher level mission planning) can specify the mission
through a string over an input dictionary. The words from the dictionary express the command
to perform a state transition. However a state transition will only be completed if the associated
guard is true or in other words the cost function associated with each state is below the threshold or
the segment has timed out. The definition of the state machine is similar to a hybrid automaton
[Henzinger, 1996] however since this is a different problem some unnecessary fields have been removed
and others added.

The state machine is part of the cost function and therefore it is possible to change mission states
during an optimization problem. In the next paragraph we explain how the state machine interfaces
with cost functions. The state machine is defined as follows H = (Σ, S, X , T , C, M, D).

• Σ is the input mission dictionary that defines commands that the operator can give to influence
the state machine.

• S is the discrete set of modes.

• X is the state space in the continuous system.

• T is the time.

• C := {cs, s ∈ S} is the set of cost functions associated with each state.

• M := {mi, . . . , mm ∈ (Σ × P)} is a list of mission tuples consisting of an item from the input
dictionary and a position.

• D := S × M × C × T → S is the state transition function.

Objective Functions Traditionally an objective function only represents the cost of being in a
certain state that is optimized. This limited definition however makes optimizing changing objective
functions directly an infeasible problem because we cannot directly find the minima of many cost
functions. In many cases we have to numerically search over a limited domain to find the minima.
However, if we augment the cost function with a method for us to directly tell us its minima, we can
exploit the structure of certain cost functions. Consider for example a goal cost function which has
exactly one minimum at the goal:

c(p) = (pgoal − p)2 (6.7)

Since we allow non-continuous cost functions it is not possible to analytically determine the
minimum, however we can exploit the augmented representation to directly return the minimum
M = {pgoal} without having to check all the values of c(p) over the domain of the cost function.
Additionally we define the subgradient of the objective function separate from the cost because a
gradient can be defined even if the cost is infinite. This enables a separation of constraints from the
gradient. The last method is a prediction action a that can be performed on the objective function
which will enable us to increase the planning horizon beyond assuming that the cost functions remain
static.

More formally we can define the cost functions as a tuple and a grammar of how the functions can
be combined. The cost function tuple is C = (f, g, M, a, D) where

85

6.1 Problem

S

+

min

Scaling

Find minima of
objective costs

Addition

Select state from the
state machine

Graphical Symbology of
Objective Operations

limit Limit the gradient

smooth Smooth the gradient

(a) Operations on objective functions.

Subgradient g

Cost f

Action Prediction a

Minima M

Objective

Domain D

Planner

c
2

c
1

. . .

c

(b) Interface to planner.

Figure 6.2: Objective functions define the planning interface. An objective function is a combination
of several primitive objective functions with the operations shown in (a). Additionally
each objective allows queries not only to the cost and gradient at a location, but also to
the minima, domain as shown in (b). Since the objectives are not static we also have the
function a that allows predicting the outcome of an action.

• f := P × T → R+
0 is the cost of being at a certain position in a certain time.

• g := P × T × N → P is the subgradient of g at the position, time, and index of the path.

• M := {pm ∈ D} is the set of global minima in D.

• D := P × R3 is the compact set of states with resolution r in each dimension.

The following operations are defined on cost functions to allow us to express multiple-objectives and
flexible missions:

• c� = ωc: Scales the cost function c by ω.

c� = (ωf, ωg, M, a, D)

• c� = c1 + c2: Adds two cost functions.

c� = (f1 + f2, g1 + g2, M1 ∪ M2, {a1, a2}, D1 ∩ D2)

• c� = min c: Finds the minimum function values as minima. This operator ignores minima from
c and evaluates the cost function f instead.

c� = (f, g, min(f), a, D)

• c� = c[h] : Selects the best function based on the associated state in the state machine. Note
that the switching occurs as part of the optimization problem and therefore it is possible to
optimize a path across switching states.

c� = (f [h], g[h], M[h], a[h], D[h])

86

6.2 Approach

• c� = limit(c, ω): Limits the subgradient of c to ω.

c� = (f, min(1,
ω

|g|
) g, M, a, D)

• c� = smooth(c, W): Distributes the gradient update with a smoothing matrix W . This changes
the trajectory smoothly to account for the fact that a gradient at one location can affect the
whole resulting path.

c� = (f, Wg, M, a, D)

Now that we have defined the elements and elementary operations on the cost function we need to
define a language. Expressions in this language can be parsed and the language permits a graphical
or textual expression of an optimization problem. The combination of cost functions is defined as a
context-free grammar G =< T, N, S, R >. The terminal symbols T are defined as the cost functions
ci, scale factors ωi,and operations:

T = {c1, . . . , cn, ωi, . . . , ωm, h1, . . . , hp, , , +, min, [], limit, smooth,W}

The non-terminal symbols and the start symbol are

N = {C, D, W, S, L, M}, S = S

Now the rules for the grammar can be defined as:

R ={S → C

S → WS

S → +(L)
L → S, M

M → L

M → ∅

S → min(S)
S → S[H]
H → h1| . . . |hp

S → limit(S, W)
S → smooth(S, W)
C → c1| . . . |cn

W → ω1| . . . |ωm}

Using this grammar cost function expressions can be succinctly defined and parsed. As illustrated
in Fig. 6.2a, one can also express the cost functions graphically in a tree like structure.

6.2 Approach
Our approach makes the problem feasible by using a hybrid approach with a discrete initial guess
planner and a continuous optimization algorithm. The discrete algorithm searches an approximation
and calculates a finite number of distinct initial guesses while the continuous part optimizes within a
local perturbation around the guess. Since a trajectory optimization algorithm can fail we always
consider a set of initial guesses.

First a coarse-planner is used to create a kinematic initial guess that is resolution-optimal and in
the second step a trajectory optimization algorithm optimizes the initial guess based on the cost
function gradient and dynamics of the vehicle. The motivation for using a coarse planner in the

87

6.2 Approach

Initial
Guess P

r,0

Commands
P

c,0

Trajectory P
r,i

Objective c
Initial state x

0

Coarse
Planner

Trajectory
Optimization

Dynamic
Model

Figure 6.3: Detailed planning architecture. The input to the planning algorithm is the objective and
the initial state and the output is the command given to the vehicle. In our approach a
coarse initial guess is determined based on the minima and cost of the objective and the
coarse planner plans in a discretized state space.

first step is that the resulting trajectory will be modified anyway and there is no advantage in
incorporating the dynamics at this planning stage.

A pure gradient-based approach will work only if a consistent gradient from the initial state to an
optimum exists. Sometimes this is the case in tracking applications or very reactive search scenarios
however for more structured cost functions we need to consider the optima of the cost function to be
able to achieve a reasonable behavior. It is therefore necessary, to optimize over a trajectory planning
horizon instead of only looking at the local gradient.

Minima of a cost function defined over a fixed domain are found easily and are good places to
reach because the cost incurred by being at them is minimal since the planning horizon is infinite
with non-negative costs. Therefore, an initial guess has to make progress towards a minimum, while
the trajectory optimization has to minimize the cost incurred along the way.

The input to the planning algorithm is an initial state x(0) and an objective c which is a combined
expression of objectives. The result after planning is a command trajectory Pc in the planning
domain D that is given to the vehicle. The trajectory is optimized based on the forward dynamics
and the cost function. The overall planning architecture is illustrated in Fig. 6.3.

6.2.1 Problem Approximation
An intuitive method to express the planning problem is in terms of an optimal control policy which
minimizes the cost integral over the planning horizon. However since the cost function c can have
many minima and the set of functions u is uncountable we look at a reduced set of parameters Pc.
The set of parameters makes the problem feasible since only a discrete set of parameters need to be
found. Unfortunately Pc cannot be precomputed since it is changing in length and a lookup table
would be too large for the number of degrees of freedom. We make the problem of finding an initial
guess feasible with the following assumptions:

• The minima M in the cost function c are limited by the domain D in size and resolution and
therefore it becomes feasible to calculate global minima over the finite grid domain.

• Based on the finite domain D we can defined a finite planning graph G to find a best initial
guess to start our optimization algorithm.

• Since the planning space of the graph is still large we assume that we always want to reach a
minimum in M because it has the lowest cost if we stay at it for infinite time.

• During planning on the graph G we assume the costs stay fixed to improve planning performance.
After reaching the minimum the cost function is updated with the effect of traversing the path
Pc.

88

6.2 Approach

Best Trajectory
P

c

New commands

Min Cost

Initial state x
0

Objective c Gradient

Dynamics

Calculate
Costs

Trajectory

Initial Guess P
r,0

Figure 6.4: The trajectory optimization algorithm flow chart. After we are given an initial guess,
state, and objective the algorithm changes the command trajectory to minimize the
resulting cost of the trajectory.

These approximations of the original problem allow us to find the minima of the objective in real-time.

6.2.2 Trajectory Optimization
Improving a trajectory based on an initial guess has been used in prior work to optimize paths to
be dynamically feasible, short, and clear of obstacles. However in our framework the trajectory
optimization algorithm actually optimizes over an arbitrary smooth cost objective that is defined
as a cost function expression. The trajectory optimization algorithm has to create a dynamically
feasible trajectory based on the initial state, the objective, and an initial guess and has to be able to
handle a wide variety of objective gradients.

The trajectory optimization algorithm performs a gradient descent in the command trajectory
space based on the gradient of the resulting trajectory. Since the gradient at a particular location
also influences the overall shape of the trajectory the gradient is distributed over the trajectory.
The change to the trajectory is then mapped to the command trajectory and the new command
trajectory is updated. The cost of the new trajectory is calculated and a set of cost values is stored.
Optimizing the trajectory with respect to the gradient does not necessarily optimize the overall cost
and smoothness of the trajectory. Therefore after convergence the best trajectory is picked from the
set of all the optimized trajectories and sent to the robot.

The algorithm for trajectory optimization is shown in Alg. 6.1. The trajectory optimization starts
from an initial guess Pr,0 and performs gradient descent until the trajectory does not improve or the
maximum number of optimization steps has been exhausted. The command trajectory is updated
with the gradient gc(Pr,i) of the cost function via the map function. The map function depends on
the application and is a mapping between the changes to the resulting path Pr and the commands Pc.
This mapping could be the Jacobian between the two parameterizations, for example. The updated
trajectory is predicted with the forward motion model ḟ and the cost of the resulting trajectory
is stored. At the end of the optimization the best trajectory Pc is returned since optimizing the
trajectory with respect to the gradient does not necessarily optimize the overall cost and smoothness
of the trajectory.

89

6.2 Approach

Algorithm 6.1 Pc=TrajectoryOptimization(ḟ , x0, c, Pr,0).
Input: ḟ= dynamics, x0=initial state, c= cost function,Pr,0= initial reference trajectory, Pc,0=
initial command trajectory.
Output: Pc is the command trajectory

for i = {1, . . . , m} do

Pc,i = map(λ · gc(Pr,i−1)) + Pc,i−1
Pr,i =

� tf

0 ḟ(x(t), u(x(t), t, Pc,i)dt
ti = c(Pr,i)

end for

b = argmin∀i∈{0,...,m}ti

Pc = Pc,b

Algorithm 6.2 Qc=InitialGuess(G, x0,c)
Input: G=a discrete set of valid motions in D, x0=initial state, c= cost function
Output: Qc ={Pc,0, . . . , Pc,m} is the set of command initial command trajectories.

Qc = recGuess(0, G, x0, c)

6.2.3 Initial Guess Generation
A trajectory optimization algorithm can fail because it optimizes the trajectory in a continuous

fashion locally. Especially hard constraints such as obstacles separate the solution space and create
minima for the cost functional J . Since there is a possibility that the algorithm can fail we need to
be able to recover by considering multiple hypothesis. In the following we describe two methods to
initialize the trajectory optimization algorithm.

We want to optimize behavior in the limit and would like to eventually reach global minima.
Therefore, a good initial guess should try to reach one of the minima M = {p1, . . . , pn}. After
the plan has reached a minimum it should progress to the next minimum, if the action prediction
removes the current minimum. The action prediction allows us to increase the planning horizon by
predicting the outcome of each path segment. The next path segments are found recursively. The
algorithm starts with a call to recGuess in Alg. 6.2. The recGuess recursively explores the outcome
of predicting actions to increase the planning horizon in Alg. 6.3.

If, for example, a minimum is close we would like to explore where the next good position might
be, to have a sufficiently long path segment to optimize. At least two initial guesses are added: A
simple and a planned initial guess. The simple initial guess does not consider the cost of traversing a
cell while the planned initial guess tries to optimize the cost for planning.

Simple Initial Guess The first algorithm is the “simple” initial guess that just connects a start
configuration x0 with the a minimum in pi ∈ M and is always available. The shape of this kind of
initial guess depends on the motion model and in Sec. 6.2.5 we show how the initial guess function
simple(x,pi) was implemented for the example. The guess does not consider the cost of the trajectory
and therefore can intersect with obstacles.

Plan Initial Guess The second algorithm searches the planning graph of valid trajectories. One
could find the optimal path using a A* graph search. However, since we want to calculate a set of
initial guesses we formulate the problem as an alternative route planning problem. Our approach is
similar to Abraham et al.[Abraham et al., 2010] adapted to a grid planning scenario.

An admissible alternative path needs to share as little as possible with the prior paths so the
length that the alternative path Bi shares with the optimal path B0 should be small compared to
the length of the optimal path. We also want to share as little as possible with other alternative
paths that might be added later to get a large set of alternative routes and therefore the sharing
between prior alternative routes also has to be small.

90

6.2 Approach

Algorithm 6.3 Qc=recGuess(l, G, x0,c)
Input: l ∈ N is the level of the recursion,G=a discrete of valid motions in D,x0=initial state, c=
cost function
Output: Qc ={Pc,0, . . . , Pc,m} is the set of command initial command trajectories.

Qc = ∅

if l < lmax then

Qt1 = PlanInitialGuess(G, x, c) ∪ SimpleInitialGuess(x, c)
for all Pc,i ∈ Qt1 do

if J(Pc,i) �= ∞ then

if |Pc,i| > lmin then

Qc = Qc ∪ Pc,i

else

cnew = c
acnew (Pc,i)
Qt2 = recGuess(l + 1, G, pc,i[n], cnew)
j = argmax∀Pt2,i∈Qt2 |Pt2,i| {(}Reduce search space by greedily picking longest.)
Qc = Qc ∪ Pt2,j

end if

end if

end for

end if

Algorithm 6.4 Qc=SimpleInitalGuess(x0, c).
Input: x0=initial state, c= cost function
Output: Qc ={Pc,0, . . . , Pc,m} is the set of command initial command trajectories.

Qc = {}

for all Pi ∈ Mc do

Qc = Q ∪ simple(x0, Pi)
end for

91

6.2 Approach

Algorithm 6.5 Pc=PlanInitialGuess(G, x0,c)
Input: G=a discrete of valid motions in D,x0=initial state, c= cost function
Output: Qc ={Pc,0, . . . , Pc,m} is the set of command initial command trajectories.

v0 = node(x0), d = dir(x0), Q = ∅

(gf , vf) = astar({v0, d}, node(Mc))
(gb, vb) = astar(node(Mc), {v0, d})
B0 = createPath(vb, gf)
Q = B0
if B0 �= ∅ ∧ J(B0) �= ∞ then

g = gf + gb

c = 0, i = 0
while |Q| < ndesiredpaths do

v = samplePoint(c + +)
if g(v) ≥ J(B0) ∧ g(v) ≤ αJ(B0) then

Bi = createPath(gf , v) ∪ reversechop(createPath(gb, v)
if Bi ∩ Q < γ ∧ |Bi| < (1 + �)|B0| then

if locallyOptimal((B)i) then

i + +
Q

� = Q ∪ Bi

Q
�
c = Bc ∪ state(Bi)

end if

end if

end if

end while

end if

Each subpath of the alternative route has to be locally-optimal path (or T -locally optimal).
The third condition is defined as uniformly bounded stretch. This refers to the fact that every
increase in the total path cost should also be only a small fraction of the optimal path cost to avoid
unnecessary detours. The stretch can be defined with every subpath having a stretch of at most
(1 + �). Additionally since two parallel grid paths are essentially the same except offset by one grid
paths we require at least one node to be at least β cells away. To summarize we define a path to be
admissible if

1. l((B0 ∪ . . . ∪ Bi−1) ∩ Bi) ≤ γ · |P0| (Limited sharing of new alternative and previous alternative
paths);

2. Bi is T -locally optimal for T = α · J(P0);

3. Bi is (1 + �)-UBS (Uniformly bounded stretch);

4. max(min(dist(pk, pj)) ≥ β, ∀k ∈ Bi ∧ ∀j ∈ B0 (Minimum distance separation)

The set of alternative admissible paths is still very large and to enable a real-time algorithm let us
consider a subset of the admissible paths called single via paths. These are paths that go through an
intermediate vertex v and are the concatenation of shortest paths from s − v and v − t.

The algorithm (Fig. 6.5) first computes a bi-directional A* cost grid up to the closest goal from
the current location to the minima and for the minima to the start. The result are the forward cost
grid gf and the backward cost grid gb that give the cost from each location to the start and the
minima respectively. If an optimal route exists we calculate the joint cost grid g = gf + gb. Now we
approximate condition 4 by sampling points with a quasi-random sequence [Niederreiter, 1988]. The
probability of picking vertices that are adjacent to a previous path is low because the next sample
will be as far away from the previous samples as possible.

If the picked sample cost is less than g(v) ≤ αJ(B0) a new path is created. The new path is then
checked for sharing (condition 1) and if the uniformly bounded stretch is within (1 + �) (condition 3) .

92

6.2 Approach

Since we need to check if the created path is T -locally optimal (condition 2) we check if the shortest
path that starts halfway between s − v and ends halfway between v − t is at most T more expensive.
It is a reasonable assumption to only check this subpath, because the only place the detour can occur
is somewhere around v . If the path fulfills the conditions it is added to the set Q of paths that is
checked for sharing.

The algorithm PlanInitialGuess will conduct a resolution-optimal and complete search between
x0 and the minimum in c and at least the optimal path if it exists will be returned. Since the
locally-optimal and minimum distance separation conditions have to be approximated it is possible
that some non admissible paths might be admitted. However the likelihood is low and the only
impact is an increase in computation time for the trajectory optimization.

In future work it would be desirable to plan in a D* like fashion incrementally and reuse as much
precomputation as possible. However in this algorithm it is difficult to enable D* like optimizations
because we have to use a bi-directional search to enable finding alternative routes. Furthermore the
locallyOptimal function requires another A* search that is different for every path that is checked.

6.2.4 Base Cost Function Definition
The following cost functions form a vocabulary that is used to express missions. Some of these
functions might only be useful for aerial vehicle applications. The first objective considered is the
obstacle objective. In Chapter 4 we demonstrated an algorithm that efficiently updates the distance
to the closest obstacle using the limited incremental distance transform. Using the distance function
d(P) we can express the obstacle objective as

cobst = (gobst, fobst, Mobst, aobst, Dobst),

• obst(P) = max(0, d2
max − d(P)) where d(P) is the distance to the closest obstacle.

• gobst = ∇obst(P) where obst is the obstacle objective function,

• fobst =
�

obst(P)
∞ if d2(P) < d2

obst

,

• Mobst = ∅, aobst = ∅

• Dobst is the domain and resolution of the grid used by the LIDT.

The next cost function is setting a desired altitude above ground (AGL) based on a digital elevation
model (DEM). The cost depends on the altitude and the gradient is only along one dimension. The
domain of the function is either all of P or one could limit it to the extend of the available DEM.
The tuple of the altitude cost function is expressed as

calt(P) = (galt, falt, Malt, aalt, Dalt)

• galt =

0
0

zdem(P) + zalt − pz‘

 where zdem(P) is the altitude of the DEM and zalt is the

desired altitude above ground.

• falt = |(zdem(P) + zalt − pz‘)|2

• Malt = ∅

• aalt = ∅

• Dalt = P

So far we have only expressed what we would like to stay away from but have not explicitly expressed
a goal waypoint. The waypoint function defines the cost as the squared distance from the goal at
the final point of the path. Similarly, the only gradient is defined at the final point on the path to
pull the trajectory towards the desired goal. A minimum is located at the goal since this would be

93

6.2 Approach

a point we would like to reach. The action prediction might remove that minimum if we are close
enough or too much time has passed.

cwp(P) = (gwp, fwp, Mwp, awp, Dwp)

• gwp =
�

0 if i �= n

pgoal − pi otherwise
where pgoal is the goal position.

• fwp = |g2
wp|

• Mwp = {pgoal}

• awp = actiongoal(P, T, pgoal)

• Dwp = P

Another behavior we would like to be able to express is an exploration behavior which can be
expressed in terms of the information gain at a location. As we traverse the value might change
however it is not necessarily the case. We assume that the information gain is represented as a grid
in the state space of the vehicle and that we can predict the outcome using actioninfo for planning
purposes. The information gain is defined in terms of the following tuple:

cinfo(P) = (ginfo, finfo, Minfo, ainfo, Dinfo)
• info(P) is the information gain function. See Sec. 5.2.7 for details.

• ginfo = ∇info(P)

• finfo = info(P)

• Minfo = min∀p∈D info(p)

• ainfo = actioninfo(P)

• Dinfo is the domain and resolution of the information gain grid.
During an approach the helicopter needs to fly along a certain path and only deviate from it if
necessary. The closer the helicopter is to the endpoint the more it should follow the approach path.
The goal is set based on the reference path Pref and therefore we have a single minimum at pref,n.

Approach Path:
capp = (gapp, fapp, Mapp, aapp, Dapp)

• gapp = (pref ,i − pi) max(0, (1.0 −
dist(pref,n,pi)

dapproach
))

• fapp = g2
app

• Mapp = pref ,n

• aapp = ∅

• Dapp = P

The last objective is a measure of how much energy is necessary to follow a given trajectory. This
objective will compete with the other objectives since it resists motion and will try to straighten the
path. The implementation of this objective depends on the specific vehicle and will be addressed in
the next section.

cenergy = (genergy, fenergy, Menergy, aenergy, Denergy)
• genergy = ∇energy(P)

• fenergy = energy(P)

• Menergy = ∅, aenergy = ∅, Denergy = P

We defined a set of six generally useful objectives that form the basic vocabulary of operating a
UAV close to obstacles. These base functions can be combined with the operations in the language
defined above to form missions that can be performed. Together all these functions form a set of
optimization problems that the planning algorithms will optimize.

94

6.2 Approach

Figure 6.5: The state machine for the example unmanned helicopter. The available missions are
takeoff, search for landing sites, land, and reach a goal point. The state transitions
depend on events and the current cost.

Snew S M C T Label Description
Takeoff Touchd Takeoff a Initiate take off
Search Takeoff Search fto < λto b Search for LZ & Reached Min. Alt.
Search Goal Search foa < λoa c Search for LZ & Close to goal
Search Land NoLZ d No valid LZ anymore
Goal Takeoff Goal fto < λto e Reach goal & Reached Min. Alt.
Land Search HaveLZ t > tminsearch f Have LZ: Approach next

Touchd Land flz < λlz g Close enough to LZ

Table 6.1: Finite state machine transition events with the guard C ∨ T for the state machine shown
in Fig. 6.5.

6.2.5 Autonomous Helicopter Example
In this section we consider the example of emergency medical evacuation as an application of the
planning algorithm. The problem of landing at an unknown location is difficult to execute efficiently
because the cost functions such as obstacles and landing sites are discovered in real-time and are
changing. Therefore, we have to replan continuously based on the current discovered state of the
environment.

6.2.5.1 Defined Missions

The state machine that we consider in this problem switches between takeoff, reaching a goal, search
for landing zones (LZs), landing, and touchdown and is shown in Fig. 6.5. The transition between
the different states depends on the input string (events) given by the user and robot internal strings.

State Obst Info Alti Goal Appr
Takeoff 1

Touchdown 1
Land 1 1

Search 1 1 1
Goal 1 1 1

Table 6.2: Activated sub-objective functions for different states in the state machine shown in Fig.
6.5.

95

6.2 Approach

+Waypoint c
wp

ω
2

ω
3

Desired Altitude c
alt

ω
1

Obstacles c
obst

Figure 6.6: Graphical representation of the obstacle avoidance objective.

+Information Gain c
info

Desired Altitude c
alt

ω
2

ω
3

Min

ω
1

Obstacles c
obst

Figure 6.7: Graphical representation of the search for landing sites objective.

+

ω
1

Obstacles c
obst

Approach Path c
app

ω
2

Figure 6.8: Graphical representation of the planning objective for approaching a landing site.

96

6.2 Approach

The availability of landing sites is received as an internal string of HaveLZ or NoLZ. A HaveLZ
word is produced if a landing site is available by the landing zone evaluation algorithm. The state
is then switched to land if enough search time has passed. If for some reason all the landing sites
should be infeasible the algorithm can switch back to search. The complete state transition table is
shown Tab. 6.1. For each state a different set of objective functions will be used (See Tab. 6.2).

For the autonomous helicopter there are several possible missions. We can try to land close to a
goal location (Search), reach a goal point (Goal), and takeoff (Takeoff). For these three commands
we can be in five states S with the corresponding cost functions. In summary one can define the
state machine H = (Σ, S, X , T , C, M, D) as

• Σ := {Takeoff, Goal, Search, HaveLZ, NoLZ},

• S: = {Goal, Search, Land, Takeoff, Touchd},

• X is the state space of the dynamics,

• T is the time starting at 0,

• C := {coa, clz, capp, ctd, cto},

• M := {mi, . . . , mm ∈ (Σ × P)} is the input string (events) of the mission defining the next
desired state and position if required,

• D := S × M × C × T → S is the state transition function and is shown in Tab. 6.1.

The cost function cs that is given to the planning algorithm represents the overall mission, expressing
the cost and trajectory energy. The function is rescaling the gradient up to a limit to equalize the
weights of the smoothed combined cost ccombined and the energy cost function cenergy :

cs, = limit(smooth(ccombined, W), w1) + limit(cenergy, w2) (6.8)

The combined function contains the cost function selector based on the state machine H which
selects from the sub objective functions described below. Each of these objective functions is enabled
if the state machine is in a certain state S:

ccombined = c[H] = {cto, ctd, capp, clz, coa}[H] (6.9)

For each mission state the cost function expression that is optimized is different. For example,
for reaching a goal point, one has to avoid obstacles cobst while reaching a goal point cwp. Usually
for aerial vehicles it is also desirable to hold an altitude to minimize energy usage and therefore
additionally the cost function includes a desired altitude above ground with calt. A graphical
representation of the cost function is shown in Fig. 6.6 and it can be expressed as follows:

coa = w1cobst + w2cwp + w3calt (6.10)

The next mission is to search for landing sites where we still want to avoid obstacles and keep an
altitude. This time the altitude is set by the optimal height of sensing for the sensor which depends
on the range and field of view. The main objective that steers the vehicle to different locations is the
information gain cinfo . It will have several minima and represents the knowledge about landing
sites. Since we have to combine the cost of obstacles, altitude, and information we cannot gain an
efficiency advantage in asking for the minima and have to use the min operation to calculate the
actual cost function minima over the domain to generate the initial guess as shown in Fig. 6.7 and
as an expression:

clz = min(w1cobst + w2cinfo + w3calt) (6.11)

During the approach the algorithms needs to reach a final goal and also follow a preplanned path
that we know was obstacle free and will guide the vehicle smoothly to a hover location above the

97

6.2 Approach

ground. Therefore two objectives the cobst obstacle objective and the capp approach objective are
combined to guide the vehicle as shown in Fig. 6.8 and as a combined cost function like this:

capp = w1cobst + w2capp (6.12)

During takeoff and touch down only the waypoint objective is activated since it is a controlled
interaction with the terrain. It is assumed that the vehicle will try to slowly move towards a
touch-down position or a final take-off hover location:

ctd = w1cwp, cto = ctd (6.13)

The consistent and compact representation of the problem using the cost function language enables
the operator to specify flexible missions and enables further reasoning on the behavior of the system.

6.2.5.2 Vehicle Model

The dynamical model of the Unmanned Little Bird helicopter is too detailed and is therefore not
suitable to be initialized by motion planning. Instead we developed a simplified idealized model that
produces a behavior similar to the more detailed model when comparing resulting paths.

Dynamics The state and input to the forward are expressed as

x =

px

py

pz

vx

vy

vz

θ
θ̇
γ̇

, u =

vxc

vyc

vzc

θ̇c

 (6.14)

where p is the position, v is the body local velocity, θ, θ̇ are the heading and rate respectively,
and γ̇ is the roll rate. vc is the command velocity, and θ̇c is the desired heading rate. Formally we
can express the model as the ordinary differential equation (ODE)

ẋ(x, u, t) = f(x(t), u(x, t, Pc), t) (6.15)

and the controller can be expressed as

u(x, t, Pc) (6.16)

Since helicopters behave different for different speeds there is a switching point where the behavior
of the control changes. At high speed (above 20 knots) the vehicle will execute coordinated turns
and couple the roll and yaw commands. At low speed each axis is decoupled and the vehicle can be
positioned anywhere in space. The position and velocity integration is common between the two
models:

ṗ = Rv, v̇ = Gvn(vc − v) (6.17)

At low speed the heading rate is directly commanded:

θ̈ = G
θ̇
(θ̇c − θ̇) (6.18)

The high speed model assumes that the vehicle is performing a coordinated turn and therefore
instead of integrating the heading rate directly the heading rate is converted to a bank angle and the
operations are performed on a bank angle control:

98

6.2 Approach

γdes = tan(θ̇c · vx

g
), γcurr = tan(θ̇ · vx

g
) (6.19)

γdes is limited to 30 degree bank angle.

γ̈ = Gγ̇(γdes − γcurr) (6.20)

and we convert the bank angle back to a heading rate change command to integrate:

θ̈ = g

vx

· tan(γ) (6.21)

Overall the model can be summarized as follows:

f(x(t), u(x, t, Pc), t) = δ

δt

p

v

θ
θ̇
γ̇

=

limit(Rv, vmax)
limit(Gv(vc − v), amax)

limit(θ̇, θ̇max)�
g

vx
tan(γ) |v| ≥ smax

G
θ̇
(θ̇c − θ̇) otherwise�

Gγ̇(tan(θcvx
g

) − tan(θvx
g

)) |v| ≥ smax

0 otherwise

(6.22)

Based on this model we would like a controller that can line up with a sequence of waypoint
segments. After finding the best segment the controller will adjust the sink rate to match the slope
of the two selected waypoints pc,i+1and pc,i and also control the sink to match the altitude of the
waypoint segment. The forward speed vx is set from the speed of the select point si. Two terms vary
depending on the alignment with the waypoint segment: the strafe velocity vy and the heading rate
θ̇. If the heading difference between the desired heading θdes and the current heading θ is too large
only a heading change will be commanded. However if we have lined up the heading reasonably well
two parts will mix together to reduce the cross track error and the heading error for the commanded
heading rate. If the cross track error is large the vehicle will turn toward the segment to be able to
faster reduce the cross track error. As the helicopter gets closer the absolute heading of the segment
will dominate. The amount of mixing is determined in λmix which depends on the magnitude of the
|dct| cross track distance. The strafe velocity vy is set to minimize the cross track error if the heading
error is small enough.

The input to the controller is a path Pc = {pc,0, . . . , pc,i, . . . , pc,n} and the current state x. The
output is the command u. These are some short hand expressions to keep the overall controller
compact:

i = argmin∀i|pc,i − p|, v = (pc,i+1 − pc,i)/|p − pc,i|, vortho =
�

vy

−vx

�
/
�

v2
x + v2

y (6.23)

θdes = arctan(vy, vx) (6.24)

λmix = min(1, max(0, Gmixd −
|dct|

Gmixd

) (6.25)

The overall waypoint controller can then be expressed as follows:

99

6.2 Approach

×

×

×

Pi−1

Pi

Pi+1�w1u

�w2

�w1

�w2
�wdl

Figure 6.9: Illustration of the smoothness objective.

u(x, t, Pc) =

vx

vy

vz

θ̇

 =

si�
limit(Gctdct, smax,ct) if∠(θdes, θ) < θct,max

0 otherwise

Gz(Pz,i − z) + Gz,fwd

(zi+1−zi)
√

v2
x+v2

y√
(xi+1−xi)2+(yi+1−yi)2�

(1 − λmix)(−Gy,ct − vy) + λmixG
θ̇,ct

∠(θdes, θ) if∠(θdes, θ) < θmax,ct

G
θ̇,ct

∠(θdes, θ)

(6.26)
This model enables us to simulate the motion of the vehicle for the trajectory optimization

algorithm and also defines the range of motion for the initial guess algorithms.

Smoothness Objective A measure of trajectory energy (energy(P)) is how much the trajectory is
displaced from a straight line. Based on the displacement one can also calculate an energy gradient
of the trajectory. The gradient is computed with respect to the straight line of the next point to
preserve the global shape of the trajectory. Each segment is smoothed locally with respect to the
next point. The energy function is defined as follows:

�w2u = pi+1 − pi, �w2 = �w2u

|�w2u|
(6.27)

�w1u = pi+1 − pi−1, �w1l = �w1u

|�w1u|
, �w1 = |�w2| �w1l (6.28)

�wd = �w1 − �w2 (6.29)

energy(P) = min
�

1.0,
dmax

|�wd|

�
�wd (6.30)

Figure 6.9 illustrates how the terms are defined. The minimum energy is achieved when the
trajectory is at a straight line.

100

6.2 Approach

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Figure 6.10: An illustration of the shape of the smoothing distribution function along one dimension.
The function consists of three circles that smoothly rise from 0 to 1 and back down to 0.

Smoothing Matrix The objective function gradient is smoothed by distributing the update across
the path. This is desirable because it equalizes quickly changing gradients, smoothes the trajectory
and introduces a prior on how fast the trajectory should be updated. There are many possible
matrices that could be considered for distributing the update of the gradient. One such matrix is
the inverse of the gradient of the trajectory as shown in [Ratliff et al., 2009]. However the inverse
affects all axes and does not decouple the update across coordinates. Instead we choose a distribution
function that is similar in shape to a Gaussian (See Fig. 6.10) in that it decays rapidly. The matrix
W that distributes the gradient can be defined as follows for i ∈ {1, n} ∧ j ∈ {1, m} with radius r:

W(i, j) = 1
2 + r

2

√
dv1 dv1 ≥ 0

√
dv2 dv2 ≥ 0 ∧ j ≥ (i − 2r)

√
dv3 dv3 ≥ 0 ∧ j ≤ (i + 2r)

(6.31)

where

dv1 = r2
− (j − i)2, dv2 = r2

− (j − i − 2r)2, dv1 = r2
− (j − i + 2r)2. (6.32)

6.2.5.3 Trajectory Optimization

The trajectory is discretized into a set of n 3-D points {p0, . . . , pn} with associated speed si that
can be concatenated into one trajectory vector Pc. Initially the algorithm is given the simulated
resulting trajectory Pr and the initial dynamic state x0. For the example considered here the
command parameters correspond closely to the resulting trajectory and therefore the mapping from
parameters to the path (map) is a direct passthrough. In our problem setup the non-linearity of the
problem makes applying the Jacobian pseudo-inverse or transpose to the path mapping unstable in
the optimization and we were able to achieve better results by directly updating the path.

Since we discretize the state as a set of 3-D points that are followed by the path controller u we
need to calculate the gradient and cost across the segment to avoid skipping any important cost areas.
Since our cost function domain is discretized we can check the gradients and cost in increments of
the grid resolution. More formally, the gradient g of the objective function for a path segment is
calculated as follows:

ls1 = |pi−1 − pi|, ls2 = |pi − pi+1| (6.33)

g(pi) = (ls1 · gradLine(pi−1, pi) + ls2 · gradLine(pi, pi+1))/(ls1 + ls2) (6.34)

101

6.2 Approach

The gradient is projected along the connecting line between the segments because the trajectory
will change in length otherwise. This is undesirable because some segments will get contracted or can
overlap. Furthermore, the gradient has to be computed along the line segment to allow a continuous
update of the gradient.

gradLine(p, q) = 1
m

m�

i=0
gradProj((p − q)/|p − q|,

i

m
p + (1 −

i

m
)q) (6.35)

gradProj(d, g) = g − (d · g)d (6.36)

The new path P
�
c is evaluated for the overall average trajectory cost and energy at each trajectory

iteration. The cost is defined to enable computation over the grid resolution and for the line segments
as

J(Pc) = 1
n − 1

n�

i=1
lineSegCost(pr,i−1, pr,i) (6.37)

lineSegCost(p, q) = 1
m

m�

i=0
c(i

m
p + (1 −

i

m
)q) (6.38)

The discretization of the parameter set into a set of line segments for the controller and discrete
grid of the gradient and cost function allow efficient gradient descent on the trajectory.

6.2.5.4 Initial Guess Model

A good initial guess can be followed closely with the path controller. In the following we define two
algorithms to create the initial guesses from a set of minima M = {pm,1, . . . , pm,n}. The simple
initial guess connects the start to the goal location with a one-sided Dubin’s curve which only consists
of a circle segment and a straight line to the goal location.

Simple Initial guess Since there is no sense of heading at the goal location pm,i the initial guess
just needs to connect the start to the goal location. The simplest algorithm that respects the turning
radius constraint of the dynamic model is a one-sided Dubin’s curve which is only consists of a circle
and a straight line to the goal location without heading. The circle tangents are then defined as

ti = ai + Rh,min

�
cos β
sin β

�
(6.39)

β = s · arccos(r

|x − ai|
) + ∠(x − ci) (6.40)

simple(x, p) = {circle(x, ti), line(ti, p)} (6.41)

where a1, a2 are the circle centers, x is the current position and s = {−1, 1} are the sign of the
tangents. The altitude component is interpolated between the start and end altitude. Since the climb
rate of a helicopter is not constraint as it is the case for fixed-wing airplanes it is not necessary to
add extra loops to the path to achieve a certain altitude.

Planning Graph Traditionally in 2D grid search an 8-connected graph is considered to plan the
motion of a vehicle. However regular grid paths ignore kinematic constraints and are therefore
not executable by a helicopter with significant forward velocity. Instead we adopt the idea of
[Hwangbo et al., 2007] to plan in a kinematically-feasible search grid. Additionally to the grid
position each cell also has a notion of the parent cell which allows us to plan in a discretized
position and direction space (x, y, z, θ, φ). The angles are coarsely discretized and the allowable node
expansions are set in conjunction with the cell resolution. The grid cell resolution is set to not violate
the turning radius and climb rate constraint as

102

6.3 Experiments

Sx = Sy = 2
3Rh,min, Sz = Sx tan−1(µmax) (6.42)

where µmax is the maximum climb angle. The parent expansion in the search graph prevents the
planner from considering the same (x, y, z) location twice and do not allow looping back. However,
since we also can move in the z-direction small changes in altitude allow us to produce overlapping
routes.

6.3 Experiments
In the following we show results of using the multiple-objective motion planning algorithm to plan
routes for an autonomous helicopter in simulation with three different objectives. The first experiment
shows avoiding an unknown obstacle, the next experiment searches for landing sites, and finally we
show results from planning a path that avoids obstacles on approach.

The robot is assumed to be equipped with a downward looking range sensor for landing zone
evaluation and a forward looking range sensor for obstacle avoidance with a range of 150 meters. All
computation was performed with an Intel 2.6 GHz Core 2 Quad computer. Prior knowledge of a
digital elevation model for altitude cost was given to the vehicle (See Sec. 6.2.5.2 for the dynamic
model).

6.3.1 Reach a Goal Point
The first experiment uses the obstacle avoidance objective (See Fig. 6.6) to demonstrate different
aspects of the planning algorithm. Initially we consider the case of only using the simple initial guess
to illustrate the trajectory optimization algorithm. In Fig. 6.11a one can see how the trajectory
optimization algorithm moves the trajectory to minimize the cost of being close to an obstacle while
keeping the desired altitude.

The initial guess is close to the obstacle and a large gradient pushes the trajectory to the left. Since
the trajectory is distributed along the gradient with the smoothing function the whole trajectory
is moved to avoid the obstacle. The best trajectory avoids all the obstacles and has no cost and a
slightly higher energy cost because the trajectory is not a straight line anymore.

In Fig. 6.13 and Extension 8 one can see how the obstacle cost and energy cost evolve as the
algorithm optimizes the trajectory. Initially since the trajectory intersects with an obstacle the cost
is maximal. As the shape of the trajectory changes the cost decreases towards the minimum. The
energy of the trajectory decreases from the initial cost because the initial guess is only kinematically
feasible. As the path moves out of the obstacle region the energy used in the trajectory increases
because it has to bend. Figure 6.11b shows an example of the optimization changing the altitude of
the trajectory to avoid the obstacle.

Next we enable the coarse initial guess planner which will avoid obstacles. However as shown in
Fig. 6.11c the resulting initial trajectory is not necessarily safe because it is only a kinematically
feasible plan. After optimizing the trajectory the best path avoids high cost zones close to obstacles.

Since we cannot guarantee that the optimization will converge to a solution we want to optimize a
set of initial guesses (Fig. 6.12a and Extension 9). One guess is always a simple guess that moves
through an obstacle while the other initial guesses avoid the larger obstacles in the center either to the
left or right. One can see that the alternative route planning algorithm picked a set of significantly
different trajectories that can be optimized (Fig. 6.12b). If there are no better alternatives only one
will be found as shown in Fig. 6.12c where only one planned and one simple initial guess were found.

6.3.2 Search for Landing Sites
The problem considered now is the landing site search problem (Fig. 6.7) and approach planning
problem (Fig. 6.8) where the planning algorithm needs to find a set of landing sites and approach
the sites. The landing sites have to be reachable by a ground goal.

103

6.3 Experiments

Initial
Trajectory

Best Optimized
Trajectory

Intermediate
 Optimization

Gradient
Direction

(a)

Initial
Trajectory

Best Optimized
Trajectory

Intermediate
 Optimization

(b)

Initial
Trajectory

Best Optimized
Trajectory

Intermediate
 Optimization

(c)

Figure 6.11: Examples of the trajectory optimization algorithm avoiding obstacles. In (a) the simple
initial guess trajectory does not use the coarse planner and therefore only the optimization
moves the trajectory to avoid collision. In (b) the optimization avoids collision with
a vertical obstacle. In (c) the coarse planner is used to plan an initial guess, however
the path gets close to some obstacles. After optimization the clearance is larger. The
segments are discretized in 16 meter control intervals. (Orange = obstacles, green =
best trajectory, orange = initial guess. purple = intermediate optimization step.)

104

6.3 Experiments

Plan Initial
Guesses

Simple
Initial Guess

(a)

Optimized
Trajectories

(b)

Optimized
Trajectories

(c)

Figure 6.12: Using the planned initial guess for trajectory optimization. (a) shows the simple and
plan initial guesses that are used to find a set of optimized trajectories. (b) shows a
set of optimized trajectories based on the set of initial guess plans. If there are no
other better initial guesses found by the planner such as in (c) only the simple and one
planned initial guess are optimized.

105

6.3 Experiments

0 50 100 150 200 250 300 350
0

1000

2000

3000
Trajectory cost

iterations

C
o

s
t

0 50 100 150 200 250 300 350
0

500

1000

1500
Trajectory energy

iterations

E
n

e
rg

y

Figure 6.13: Cost and energy per iteration for one planning cycle. The initial guess is moved outside
the obstacle during the optimization since the simple initial guess path intersected an
obstacle. The optimization could be interrupted after the obstacle is cleared. The setup
is shown in Fig. 6.11a.

In the next example no obstacles are present and the vehicle has to explore the environment to find
a ground path to the goal location and find a set of reachable good landing sites (Also see Extension
10). In Fig. 6.14a the vehicle has explored some of the environment and has found some landing sites.
However, the landing sites are not reachable and therefore the search continues. One can see that
the trajectory is optimized to explore more of the terrain since it is pulled towards areas with higher
information gain (green). In Fig. 6.14b the search is almost complete and the current minimum is
close to the vehicle. If there was no action prediction the trajectory that was optimized would be too
short to fly at the desired speed. Utilizing the action prediction allows optimizing a trajectory that is
longer because the information gain prediction removed the close minimum after the first search step.

The information gain prediction increases the planning horizon and consequently the trajectory
can be optimized over a longer distance. Figure 6.15 shows a sequence of a search (depth=2) with the
action prediction to show the influence of the information gain prediction on planning. The benefit
of the information gain prediction is that it increases the initial guess trajectory length. Since the
trajectory length is longer the optimization has a larger trajectory space to optimize the path and
the vehicle can fly faster since it does not need to come to a stop at the end of the trajectory. In Fig.
6.15a one can see the information gain before the action prediction. As the action is predicted the
original minimum is removed and a new location becomes minimal. The plan to this new minimum
is shown in Fig. 6.15c and then the action is predicted again in Fig. 6.15d.

Figure 6.16 and Extension 11 show an example of landing site search with obstacles that need
to be avoided and that occlude the information that can be gained about landing sites. Initially
the robot can follow the frontier of the information gain to explore along the path. However as it
discovers new obstacles it needs to avoid the obstacles along the path either by lateral or climbing
motion. In Fig. 6.16c a pole obstacle is in the approach path. The trajectory optimization moves the
trajectory to enable the vehicle to approach using this path. The cost function for planning is shown
in Fig. 6.8.

A challenging example for landing site search is shown in Fig. 6.17 and Extension 12. The vehicle
has to find a good landing site and is only given the final ground goal shown in Fig. 6.17a and false
prior knowledge of potential sites in dark purple. The obstacles, ground path and good landing
zone are unknown and need to be discovered as the environment is explored. Any valid landing site
needs to have a ground path to the goal and the only ground path is shown in magenta and the only
valid landing zone is shown in blue. Additionally since the range sensor is occluded from the high
buildings it is sometimes necessary to perform multiple passes over an area to explore. The false
prior knowledge of landing sites could be due to the fact that it was a previously known to-be-good
location to land and now a disaster has struck and no more good locations are known.

106

6.3 Experiments

Exploration
Frontier

Explored
Area

Ground Goal

Initial Guess

Optimized
Trajectory

Flight
Path

(a)

Explored
Area

Connected
Landing
Site

Flight
Path

Unconnected
Landing
Site

(b)

Ground
Path

Connected
Landing
Site

Flight Path

Unconnected
Landing
Site

(c)

Figure 6.14: Simple landing site search. (a) shows the problem set up and a snapshot of the algorithm
during the search. (b) shows progress just before a connected landing site is found. (c)
shows the resulting search and approach path and discovered landing sites. Red= high
cost, green = low cost. Discovered landing sites and approach paths are shown as yellow
and green lines.

107

6.3 Experiments

Start

Goal

(a)

Action
Prediction

(b)

Goal

(c)

Action
Prediction

(d)

Figure 6.15: Action prediction example. This figure demonstrates the influence of the information
gain prediction on the path planning horizon. In (a) the first minimum is found and a
path is created. (b) shows the predicted information gain based on this path. In (c) a
path to a new minimum is found and (d) shows the resulting combined action prediction.
Red=low information gain, green= high information gain.

108

6.3 Experiments

Exploration
Frontier

Explored
Area

Obstacles

Optimized
Trajectory

Flight
Path

(a)

Obstacles

Optimized
Trajectory

Flight
Path

(b)

Obstacle

Initial
Trajectory

Approach Path Best Optimized
Trajectory

Intermediate
 Optimization

(c)

Obstacle

Initial
Trajectory

Approach Path Best Optimized
Trajectory

Intermediate
 Optimization

Flight
Path

Ground
Path

Approach
Path

Ground
Goal

Obstacles

(d)

Figure 6.16: Landing site search with obstacles. (a) shows the algorithm avoiding obstacles in its
flight path while search for landing sites. (b) is a later snapshot of the exploration. The
vehicle is following the ground path frontier to find landing sites. In (c) one can see an
example of avoiding an obstacle in the approach path. (d) shows the complete search
and approach path taken by the vehicle.

109

6.3 Experiments

(a)

Initial
Trajectory

Potential
Landing Site

Obstacles

Potential
Landing Site

Optimized
TrajectoryStart

(b)

Optimized
Trajectory

Obstacles

Ground
Goal

Flight
Path

(c)

Approach
Paths Obstacles

Flight
Path

(d)

Figure 6.17: Manhattan environment landing site search. (a) shows the problem setup. A set of
buildings similar to Manhattan presents obstacles and occludes the range sensor. (b)
demonstrates the influence of prior knowledge on the trajectory. (c) demonstrates the
occlusions. (d) shows the overall search and approach path.

110

6.3 Experiments

0

500

1000

1500

2000

2500

3000

1

T
im

e
 [

m
s]

(a) Complete algorithm calculation time.

50

100

150

200

250

1

T
im

e
 [
m

s]

(b) Trajectory optimization calculation time.

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1

T
im

e
 [

m
s]

(c) Initial guess planner calculation time.

Figure 6.18: Calculation time and optimization cost for landing site search. Box and whisker plot
legend for Fig. (a)-(c): The red line is the median, the blue box extends from the lower
quartile to the upper quartile, and the whiskers extend to 1.5 of the interquartile range.
Red crosses represent single run outliers.

Figure 6.17b shows how the information gain prediction increases the planning horizon. The vehicle
is at the start location and has a minimum at the potential landing site since we gave potential
landing sites as prior information. After reaching this minimum the action prediction will decrease
the amount of information gain on the path up to the minimum and then look for the next minimum
which is another area that is prior knowledge for a potential landing site.

A snapshot during exploration is visible in Fig. 6.17c. One can see that there are holes in the
exploration coverage because the range sensor was occluded by the buildings. The green spots
indicate that there are frontiers that have not been sensed before. Consequently when we consider
the complete search path the vehicle takes some loops to complete the coverage of the area (Fig.
6.17d).

The calculation times for landing zone search are presented in Fig. 6.18 as box and whisker plots
and Tab. 6.3. The data was taken over one landing site search run and shows that the worst case
planning time is large (~3000ms) while the median planning time is about 620ms. The largest
contribution of this variance is due to the coarse initial guess planner. Since it sometimes has to
explore a larger region of the motion planning graph the planning time will increase. The trajectory
optimization time on the other hand has a smaller variance with a median of about 100ms because it
performs a fixed number of iterations. The current implementation first runs the coarse initial guess
planner followed by the trajectory optimization algorithm. In future work the algorithm could be

111

6.4 Discussion

Initial Guess Optimization Overall
0.53(±0.37) 0.10(±0.04) 0.62(±0.48)

Minima Planner Gradient Dynamics
0.20(±0.06) 0.33(±0.33) 0.02(±0.02) 0.08(±0.02)

Table 6.3: Median and standard deviation computation time for landing site search in seconds.

optimized to perform the optimization more frequently while the coarse initial guess planner runs
less frequently to reduce reaction time.

6.4 Discussion
We presented a framework for expressing higher-level missions with a set of changing objective
functions and conveyed a planing algorithm that is suitable for to find routes in real-time. We were
able to approximate the problem by exploiting the additional information in the augmented cost
functions.

The simulation results demonstrated the effectiveness of our algorithm in a variety of environments
for avoiding obstacles, and performing landing zone search. The motion planning algorithm is mission
agnostic and switches between multiple different objectives using the mission state machine.

In future work, we intend to test the algorithm on different dynamical models, and with different
parametrizations to test the generalization of the approach. We intend to formally define the set
of admissible cost functions and increase the set of base cost functions to enable optimizing larger
cost function expressions on more complicated missions. So far we have considered only orthogonal
objectives which simplifies setting the weights. However, in future work we would like to use competing
objectives and learn the set of optimal weights based on self-supervised learning with a meta-objective
function.

112

7 Conclusions and Future Directions
This thesis presented several approaches, and results of unmanned aerial vehicles operating in
previously unknown environments with changing objectives. The reactive obstacle avoidance algorithm
enables fast reaction to unknown obstacles for small aerial vehicles, while we remove a bottle neck
for planning with the efficient C-space transform algorithm. Another problem we address is how to
evaluate landing sites for full scale helicopters efficiently and with high fidelity. Since finding landing
sites is a challenging problem, we developed an algorithm that generalizes to missions defined as
an objective function and enables searching for landing sites. Next we summarize the approaches,
review the contributions, and convey future research directions.

7.1 Summary
Obstacle Avoidance Our approach to obstacle avoidance for small UAV rotorcraft separates global
planning from local planning and can therefore achieve the reaction time of a simple control law with
the intelligence of a more deliberative approach. Our reactive approach addresses the issues of tuning
algorithms to the desired behavior by learning the parameters based on piloted training examples
and addresses safety with the use of a speed controller.

In over 1000 runs at obstacles, the uninhabited helicopter started with no prior knowledge of the
environment and the straight line path between the waypoints often intersected obstacles. While we
regularly ran collision avoidance close to buildings, trees and wires between 4-6 m/s, the system was
tested at commanded speeds up to 10 m/s.

Efficient Calculation of the Obstacle Cost Function One bottleneck in planning paths in a grid
map for aerial vehicles is the large expansion of obstacles required for safe routes away from obstacles.
We have presented a completely incremental framework for planning paths in 3D that enables
recomputation of obstacle costs an order of magnitude faster than current approaches. This speed
up is made possible by using a novel limited incremental distance transform algorithm.

The algorithm exploits the local nature of cost function updates when obstacles are added or
removed from the map and enables autonomous aerial vehicles to respond to newly observed obstacles
(or obstacles that no longer exist) in real-time. We have provided results from simulation comparing
various algorithms, and results from a quad-rotor micro aerial vehicle autonomously navigating in
Pittsburgh, PA and an unmanned helicopter avoiding obstacles in Mesa, AZ.

Landing Site Evaluation We presented, to our knowledge, the first geometric model-based algorithm
that gives estimates of available landing sites for VTOL aerial vehicles. In our algorithm we are able
to incorporate many constraints that have to be fulfilled for a helicopter to be able to land. While
the current state of the art is similar to our coarse evaluation algorithm, the fine evaluation allows us
to consider more aerial-vehicle relevant constraints. Additionally, we include constraints based on the
approach and ground paths to determine the feasibility of a landing sites. We also presented results
based on real sensor data for landing site evaluation at vegetated and urban sites and demonstrated
the first autonomous man-scale helicopter that is able to select its own landing sites and land in a
casualty evacuation scenario.

Multiple-Objective Motion Planning For missions that require finding dynamically feasible routes
for unknown goal points on real helicopters we presented a framework and algorithms that enables
optimizing multiple objectives in motion planning. The algorithms approximate the problem by
exploiting the additional information in the augmented cost functions to make the problem feasible.

113

7.3 Future Directions

The simulation results demonstrate the effectiveness of our algorithm for avoiding obstacles, performing
landing zone search, and approaching a landing site.

7.2 Contributions
The following contributions have been presented in this thesis in the areas of perception, and planning
for unmanned aerial vehicles operating at low-altitude:

1. A fast reactive obstacle avoidance algorithm for small unmanned helicopters and demonstration
of the fastest (10 m/s) autonomous obstacle avoidance for small unmanned helicopters.

2. An efficient algorithm for obstacle cost function updates, and results demonstrating the
effectiveness in simulation and a demonstration of the first full-size helicopter autonomously
avoiding obstacles utilizing this algorithm.

3. A model-based landing site evaluation algorithm for unmanned helicopters that includes many
of the constraints necessary for a successful landing. A demonstration of the first completely
autonomous full-size helicopter performing autonomous landing site selection and landing.

4. An analysis of the problem of planning and acting for flexible missions at low-altitude for
unmanned aerial vehicles and an algorithm for planning with multiple objective functions that
is evaluated in simulation.

7.3 Future Directions
The area of operating autonomous aerial vehicles at low altitude is novel and there are many directions
for future research. First, I will describe some new directions for future research and after that
conclude with some specific enhancements to the current approaches.

7.3.1 New Research Topics
This thesis only considers a subset of the needed capability for a truly intelligent autonomous aerial
vehicle. More advances in perception, planning, and verification are still needed to make intelligent
aerial vehicles a reality. Next I describe some new research topics that need to be addressed:

Current mapping data structures are sufficient for small missions. However more efficient represen-
tations and algorithms are required to make plans in 3D for 100’s of kilometers at low-altitude a
possibility.

Planning algorithms need to be able to cope with emergencies such an engine failure. The landing
zone evaluation can help in planning by guiding a pilot, however the planning algorithms need to be
extended to account for the flight envelope by reacting to the change in capability.

Turbulence and wind are a large factor in effectively controlling an aircraft and pilots will read the
environment to predict bad areas to be close too on the ground. To be at least as effective when
navigating in turbulent environments a map of the turbulence has to be created and used to derive a
cost for planning.

So far we have assumed that we are operating in a static environment. In future work, it will
be necessary to account for other aerial vehicles during flight and other ground vehicles and people
around landing sites. People or other vehicles can temporarily foul landing sites but can move to
clear a site.

For commercial applications it must be possible to prove that the overall behavior of the system
is safe and correct. There are some first steps in software model checking to verify the behavior
such as in [Scherer et al., 2005] however it is difficult to scale to larger systems and to include the
uncertainties of motion, and sensing in the verification.

So far we have assumed that a good pose sensor is available however especially for small vehicles
with MEMS IMUs, integrated INS/GPS is not accurate enough at low altitude since occlusions, and

114

7.3 Future Directions

GPS multi-path cause jumps and outages. Furthermore, landing zone evaluation at distance in front
of the aircraft is challenging because the algorithms are sensitive to misregistered points.

Active range sensors available today are too heavy for micro aerial vehicles to operate outdoors, and
are too expensive to achieve the range required for full performance operation on manned helicopters
at a viable cost. Novel sensors will be necessary to make sensing accessible to these platforms.

Finally, so far we have considered complete autonomy, however incorporating the human in an
effective way in an autonomous VTOL (classifying landing site bearability, shared motion planning)
is still an open problem.

7.3.2 Algorithmic Improvements
There are several future directions for research on the four problems that were addressed in this
thesis.

The reactive obstacle avoidance algorithm is an efficient approach for smaller vehicles and responds
fast to new situations. However currently the response to obstacles depends on the distance to
obstacles instead of the time to collision. Also to guarantee that no collision is possible currently
we are limited by stopping distance and in future work it needs to be shown that the behavior is
intrinsically safe. Since the ground plane also is an obstacle we introduced a box constraint to be
able to stay low. In future work, it would be desirable to have a more principled approach to stay
low to the ground. Other goal interfaces to the reactive algorithm that are not goal positions from
the global planner could be examined to combine the two algorithms.

The LIDT algorithm is efficient enough to update the obstacle cost function in real-time however
in future work some efficiency can be gained by avoiding some expansions that are only required for
certain distance metrics and the correctness of the algorithm also needs to be proven formally.

Landing zone evaluation for helicopters is a new problem and some generalizations and improvements
to the current algorithm are possible. The weight vector that determines the cost of landing zones
is currently set by hand. A more elegant method would be to use expert input to learn the weight
vector. There are currently some false negative (grass) and some false positive (water) landing sites
that cannot be distinguished with purely geometrical data. Some other sensor modality such as
interpreting camera data will be required to improve the landing site evaluation in these environments.

The multi-objective motion planning algorithm currently has only been tested in simulation and
results on a real platform will be necessary to demonstrate the practicality of the approach. Some
work remains in improving the efficiency of the approach to increase the space of initial guesses that
can be tested.

Sensor, computing and vehicle platform advances in recent years, as well as a new interest in
bringing intelligent autonomous rotorcraft closer to earth has enabled the advances in this thesis.
This thesis addressed a subset of the many exciting new problems that still need to be addressed in
aerial robotics. I am excited that this research area will eventually lead to safer and more capable
manned aircraft and intelligent autonomous aerial vehicles.

115

Appendix: Multimedia Extensions

Extensions Description Link

1 Obstacle avoidance on the RMax
helicopter. http://www.youtube.com/watch?v=8iYi_b1pQdI

2
Comparison of the effect of
setting a soft ceiling for the
planning algorithm.

http://www.youtube.com/watch?v=n6S8iD5qFJg

3 Flight of the quad-rotor vehicle
avoiding obstacles. http://www.youtube.com/watch?v=CLWhRtLSPAk

4
Obstacles avoidance on the
Unmanned Little Bird
Helicopter.

http://www.youtube.com/watch?v=fQ0XcCNuhsM

5 Landing site evaluation
overflying a power plant. http://www.youtube.com/watch?v=IXbBNyt6tz4

6
Landing site evaluation and
landing of the Unmanned Little
Bird Helicopter.

http://www.youtube.com/watch?v=BJ3RhXjucsE

7
Example information gain map
created from the overflight in
extension 6.

http://www.youtube.com/watch?v=Y5vIujepfPQ

8 Avoiding obstacles based on the
trajectory optimization. http://www.youtube.com/watch?v=G5AfpsGyP5E

9 Planning a path to avoid
obstacles. http://www.youtube.com/watch?v=snqHinG6LB8

10 Simple landing zone search
without obstacles. http://www.youtube.com/watch?v=oRMNGAeQMq0

11 Landing zone search wit
obstacles. http://www.youtube.com/watch?v=BJH7N0Fc1Q0

12 Manhattan landing zone seach. http://www.youtube.com/watch?v=IflAI2W20eg

Table 7.1: Table of multimedia extensions.

117

http://www.youtube.com/watch?v=8iYi_b1pQdI
http://www.youtube.com/watch?v=n6S8iD5qFJg
http://www.youtube.com/watch?v=CLWhRtLSPAk
http://www.youtube.com/watch?v=fQ0XcCNuhsM
http://www.youtube.com/watch?v=IXbBNyt6tz4
http://www.youtube.com/watch?v=BJ3RhXjucsE
http://www.youtube.com/watch?v=Y5vIujepfPQ
http://www.youtube.com/watch?v=G5AfpsGyP5E
http://www.youtube.com/watch?v=snqHinG6LB8
http://www.youtube.com/watch?v=oRMNGAeQMq0
http://www.youtube.com/watch?v=BJH7N0Fc1Q0
http://www.youtube.com/watch?v=IflAI2W20eg

Bibliography
[Abraham et al., 2010] Abraham, I., Delling, D., Goldberg, A., and Werneck, R. (2010). Alternative Routes

in Road Networks. In Proc. 9th International Symposium on Experimental Algorithms (SEA).
[Amidi, 1996] Amidi, O. (1996). An autonomous vision-guided helicopter. PhD thesis, The Robotics Institute,

Pittsburgh, PA.
[Amidi et al., 1998] Amidi, O., Kanade, T., and Miller, J. (1998). Vision-based autonomous helicopter

research at carnegie mellon robotics institute 1991-1997. In American Helicopter Society International
Conference.

[Andert et al., 2010] Andert, F., Adolf, F.-M., Goormann, L., and Dittrich, J. S. (2010). Autonomous
Vision-Based Helicopter Flights Through Obstacle Gates. Journal Of Intelligent & Robotic Systems,
57(1-4):259–280.

[Andert and Goormann, 2007] Andert, F. and Goormann, L. (2007). Combined grid and feature-based
occupancy map building in large outdoor environments. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2065–2070.

[Barber et al., 2005] Barber, D., Griffiths, S., McLain, T., and Beard, R. W. (2005). Autonomous Landing
of Miniature Aerial Vehicles. In Proceedings of the AIAA Infotech@Aerospace Conference.

[Beyeler et al., 2006] Beyeler, A., Mattiussi, C., Zufferey, J.-C., and Floreano, D. (2006). Vision-based altitude
and pitch estimation for ultra-light indoor microflyers. In Proceedings IEEE International Conference on
Robotics and Automation, pages 2836–2841.

[Beyeler et al., 2007] Beyeler, A., Zufferey, J., and Floreano, D. (2007). 3D Vision-based Navigation for
Indoor Microflyers. In Proceedings IEEE International Conference on Robotics and Automation, pages
1336–1341.

[Boeing, 2010] Boeing. http://www.boeing.com/rotorcraft/military/ulb [online]. (2010).
[Bosch et al., 2006] Bosch, S., Lacroix, S., and Caballero, F. (2006). Autonomous Detection of Safe Landing

Areas for an UAV from Monocular Images. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5522–5527.

[Bouabdallah, 2007] Bouabdallah, S. (2007). Design and control of quadrotors with application to autonomous
flying. PhD thesis, EPFL, Lausanne, Switzerland.

[Bresenham, 1965] Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30.

[Brock and Khatib, 2002] Brock, O. and Khatib, O. (2002). Elastic strips: A framework for motion generation
in human environments. The International Journal of Robotics Research, 21(12):1031–1052.

[Brooker et al., 2003] Brooker, G., Sukkarieh, S., and Durrant-Whyte, H. (2003). Decentralised ground
target tracking with heterogeneous sensing nodes on multiple UAVs. Lecture Notes in Computer Science.

[Byrne et al., 2006] Byrne, J., Cosgrove, M., and Mehra, R. (2006). Stereo based obstacle detection for an
unmanned air vehicle. In Proceedings IEEE International Conference on Robotics and Automation, pages
2830–2835.

[Choset et al., 2005] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., and
Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Implementations. The MIT Press.

[Connolly et al., 1990] Connolly, C. I., Burns, J., and Weiss, R. (1990). Path planning using Laplace’s
equation. In Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on, pages
2102–2106.

[de Wagter and Mulder, 2005] de Wagter, C. and Mulder, J. (2005). Towards Vision-Based UAV Situation
Awareness. In Proceedings of the AIAA Conference on Guidance, Navigation, and Control (GNC).

[Deal and Huang, 2008] Deal, C. and Huang, P. (2008). Remote Control Hovering Ornithopter. In 46 th
AIAA Aerospace Sciences Meeting and Exhibit.

119

Bibliography Bibliography

[Fabbri et al., 2008] Fabbri, R., Costa, L., Torelli, J., and Bruno, O. (2008). 2D Euclidean distance transform
algorithms: A comparative survey. ACM Computing Surveys (CSUR), 40(1).

[Fabri et al., 1996] Fabri, A., Giezeman, G., Kettner, L., and Schirra, S. (1996). The CGAL kernel: A basis
for geometric computation. Lecture Notes in Computer Science.

[Fajen and Warren, 2003] Fajen, B. R. and Warren, W. H. (2003). Behavioral Dynamics of Steering, Obstacle
Avoidance, and Route Selection. Journal of Experimental Psychology: Human Perception and Performance,
29(2):343–362.

[Ferguson and Stentz, 2006] Ferguson, D. and Stentz, A. (2006). Using interpolation to improve path
planning: The Field D* algorithm. Journal of Field Robotics, 23(2):79–101.

[Foessel, 2002] Foessel, A. (2002). Scene Modeling from Motion-Free Radar Sensing. PhD thesis, The
Robotics Institute, CMU, Pittsburgh, PA.

[Frazzoli et al., 2002] Frazzoli, E., Dahleh, M., and Feron, E. (2002). Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance Control and Dynamics, 25(1):116–129.

[Frazzoli et al., 2005] Frazzoli, E., Dahleh, M. A., and Feron, E. (2005). Maneuver-based motion planning
for nonlinear systems with symmetries. IEEE Transactions on Robotics and Automation, 21(6):1077–1091.

[Frew and Elston, 2008] Frew, E. and Elston, J. (2008). Target assignment for integrated search and tracking
by active robot networks. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pages 2354–2359.

[Gonzalez and Stentz, 2008] Gonzalez, J. and Stentz, A. (2008). Replanning with uncertainty in position:
Sensor updates vs. prior map updates. In Proceedings IEEE International Conference on Robotics and
Automation, pages 1806–1813.

[Green and Oh, 2008] Green, W. and Oh, P. (2008). Optic-Flow-Based Collision Avoidance. Robotics &
Automation Magazine, IEEE, 15(1):96–103.

[Griffiths et al., 2006] Griffiths, S., Saunders, J., Curtis, A., and McLain, T. (2006). Obstacle and Terrain
Avoidance for Miniature Aerial Vehicles. IEEE Robotics and Automation Magazine.

[Grocholsky, 2002] Grocholsky, B. (2002). Information-theoretic control of multiple sensor platforms. PhD
thesis, University of Sydney.

[Grzonka et al., 2009] Grzonka, S., Grisetti, G., and Burgard, W. (2009). Towards a Navigation System for
Autonomous Indoor Flying. In Proceedings IEEE International Conference on Robotics and Automation.

[Hamner et al., 2006] Hamner, B., Singh, S., and Scherer, S. (2006). Learning obstacle avoidance parameters
from operator behavior. Journal of Field Robotics, 23(11/12):1037–1058.

[Harris et al., 2000] Harris, F., Kasper, E., and Iseler, L. (2000). US Civil Rotorcraft Accidents, 1963 through
1997. Technical Report NASA/TM-2000-209597, NASA, NASA.

[He et al., 2008] He, R., Prentice, S., and Roy, N. (2008). Planning in Information Space for a Quadrotor
Helicopter in a GPS-denied Environment. In Proceedings IEEE International Conference on Robotics and
Automation.

[Hebert and Vandapel, 2003] Hebert, M. and Vandapel, N. (2003). Terrain classification techniques from
ladar data for autonomous navigation. In Proceedings of the Collaborative Technology Alliances Conference.

[Henzinger, 1996] Henzinger, T. A. (1996). The Theory of Hybrid Automata. In Proceedings of the 11th
Annual Sysmposium on Locgic in Computer Science.

[Hintze, 2004] Hintze, J. (2004). Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a Non-
Cooperative Environment using Machine Vision. Master’s Thesis (Brigham Young University).

[Howard and Kelly, 2007] Howard, T. M. and Kelly, A. (2007). Optimal rough terrain trajectory generation
for wheeled mobile robots. The International Journal of Robotics Research, 26(2):141–166.

[Hrabar and Gaurav, 2009] Hrabar, S. and Gaurav, S. (2009). Vision-based navigation through urban
canyons. Journal of Field Robotics, 26(5):431–452. (Preprint).

[Hwangbo et al., 2007] Hwangbo, M., Kuffner, J., and Kanade, T. (2007). Efficient Two-phase 3D Motion
Planning for Small Fixed-wing UAVs. In Proceedings IEEE International Conference on Robotics and
Automation, pages 1035–1041, Rome.

[Jackson et al., 2005] Jackson, Sharma, Haissig, and Elgersma (2005). Airborne Technology for Distributed
Air Traffic Management. European Journal of Control, 11(4-5).

120

Bibliography Bibliography

[Johnson et al., 2005] Johnson, A., Montgomery, J., and Matthies, L. (2005). Vision Guided Landing of an
Autonomous Helicopter in Hazardous Terrain. In Proceedings IEEE International Conference on Robotics
and Automation, pages 3966–3971.

[Joon Ahn, 2004] Joon Ahn, S. (2004). Least squares orthogonal distance fitting of curves and surfaces in
space. Lecture Notes in Computer Science.

[Kalra et al., 2006] Kalra, N., Ferguson, D., and Stentz, A. (2006). Incremental Reconstruction of Generalized
Voronoi Diagrams on Grids. In Proc. of the International Conference on Intelligent Autonomous Systems.

[Kanade et al., 2004] Kanade, T., Amidi, O., and Ke, Q. (2004). Real-time and 3D vision for autonomous
small and micro air vehicles. Decision and Control, 2004. CDC. 43rd IEEE Conference on, 2:1655–1662
Vol.2.

[Kavraki et al., 1996] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics
and Automation, 12(4):566–580.

[Khatib, 1986] Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The
International Journal of Robotics Research, 5(1):90–98.

[Kitamura et al., 1996] Kitamura, Y., Tanaka, T., Kishino, F., and Yachida, M. (1996). Real-time path
planning in a dynamic 3-d environment. In Intelligent Robots and Systems ’96, IROS 96, Proceedings of
the 1996 IEEE/RSJ International Conference on, pages 925–931.

[Koenig and Likhachev, 2002a] Koenig, S. and Likhachev, M. (2002a). D* Lite. In Eighteenth national
conference on Artificial intelligence.

[Koenig and Likhachev, 2002b] Koenig, S. and Likhachev, M. (2002b). Improved fast replanning for robot
navigation in unknown terrain. In Proceedings IEEE International Conference on Robotics and Automation,
pages 968–975 vol.1.

[Kolter and Ng, 2009] Kolter, J. and Ng, A. Y. (2009). Task-Space Trajectories via Cubic Spline Optimization.
In Proceedings IEEE International Conference on Robotics and Automation, pages 1675–1682.

[Kuwata, 2007] Kuwata, Y. (2007). Trajectory Planning for Unmanned Vehicles using Robust Receding
Horizon Control. PhD thesis, MIT, Boston, MA.

[Lewis et al., 1993] Lewis, M., Fagg, A., and Bekey, G. (1993). The USC autonomous flying vehicle: an
experiment in real-time behavior-based control. In Proceedings IEEE International Conference on Robotics
and Automation, pages 422–429 vol.2.

[Li and Bui, 1998] Li, Z. X. and Bui, T. D. (1998). Robot Path Planning Using Fluid Model. Journal Of
Intelligent & Robotic Systems, 21:29–50.

[Liu and Cheng, 2002] Liu, X.-W. and Cheng, K. (2002). Three-dimensional extension of Bresenham’s
algorithm and its application in straight-line interpolation. Journal of Engineering Manufacture, 216(3):459–
463.

[Martin and Moravec, 1996] Martin, M. C. and Moravec, H. (1996). Robot Evidence Grids. Technical Report
CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon, Pittsburgh, PA.

[Meijster et al., 2000] Meijster, A., Roerdink, J., and Hesselink, W. (2000). A general algorithm for computing
distance transforms in linear time. Mathematical Morphology and its Applications to Image and Signal
Processing, pages 331–340.

[Mejias et al., 2006] Mejias, L., Campoy, P., Usher, K., Roberts, J., and Corke, P. (2006). Two Seconds to
Touchdown - Vision-Based Controlled Forced Landing. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3527–3532.

[Merrell et al., 2004] Merrell, P. C., Lee, D.-J., and Beard, R. W. (2004). Obstacle avoidance for unmanned
air vehicles using optical flow probability distributions. Mobile Robots XVII, 5609(1):13–22.

[Michel, 2008] Michel, P. (2008). Integrating Perception and Planning for Humanoid Autonomy. PhD thesis,
The Robotics Institute.

[Michelson, 2000] Michelson, R. C. (2000). The International Aerial Robotics Competition - a Decade of
Excellence. Unmanned Vehicles (UV) for Aerial, Ground and Naval Military Operations, NATO Research
and Technology Organization Proceedings 52, Applied Vehicle Technology Panel (AVT), Ankara, Turkey,
pages SC–1 to SC–24.

[Nabbe, 2005] Nabbe, B. (2005). Extending the Path-Planning Horizon. PhD thesis, The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA.

121

Bibliography Bibliography

[Nabbe and Hebert, 2007] Nabbe, B. and Hebert, M. (2007). Extending the path-planning horizon. Interna-
tional Journal Of Robotics Research, 26(10):997–1024.

[Niederreiter, 1988] Niederreiter, H. (1988). Low-discrepancy and low-dispersion sequences. Journal of
Number Theory, 30(1):51–70.

[Oh, 2004] Oh, P. (2004). Flying insect inspired vision for micro-air-vehicle navigation. Autonomous
Unmanned Vehicles System International Symposium, Aug. 3-5, Anaheim USA.

[Oh et al., 2004] Oh, P., Green, W., and Barrows, G. (2004). Neural nets and optic flow for autonomous
micro-air-vehicle navigation. In Proc. Int. Mech. Eng. Congress and Exposition.

[Pivtoraiko et al., 2009] Pivtoraiko, M., Knepper, R. A., and Kelly, A. (2009). Differentially Constrained
Mobile Robot Motion Planning in State Lattices. Journal of Field Robotics, 26(3):308–333.

[Preparata and Ian Shamos, 1985] Preparata, F. and Ian Shamos, M. (1985). Compuational geometry: an
introduction. Springer.

[Proctor and Johnson, 2004] Proctor, A. and Johnson, E. (2004). Vision-Only Aircraft Flight Control
Methods and Test Results. In Proceedings of the AIAA Conference on Guidance, Navigation, and Control
(GNC).

[Proctor et al., 2006] Proctor, A. A., Johnson, E. N., and Apker, T. B. (2006). Vision-only control and
guidance for aircraft. Journal of Field Robotics, 23(10):863–890.

[Quinlan and Khatib, 1993] Quinlan, S. and Khatib, O. (1993). Elastic bands: connecting path planning
and control. In Proceedings IEEE International Conference on Robotics and Automation, pages 802–807
vol.2.

[Ratliff et al., 2009] Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S. (2009). CHOMP: Gradient
Optimization Techniques for Efficient Motion Planning. In Proceedings IEEE International Conference on
Robotics and Automation, pages 489–494, Kobe.

[Richards, 2002] Richards, A. (2002). Trajectory optimization using mixed-integer linear programming. PhD
thesis, MIT, Boston, MA.

[Saripalli and Sukhatme, 2003] Saripalli, S. and Sukhatme, G. (2003). Landing on a moving target using an
autonomous helicopter. In Proceedings of the International Conference on Field and Service Robotics.

[Saripalli and Sukhatme, 2007] Saripalli, S. and Sukhatme, G. (2007). Landing a Helicopter on a Moving
Target. In Proceedings IEEE International Conference on Robotics and Automation, pages 2030–2035.

[Scherer et al., 2010] Scherer, S., Chamberlain, L., and Singh, S. (2010). Online Assessment of Landing Sites.
In AIAA Infotech@Aerospace, Atlanta.

[Scherer et al., 2009] Scherer, S., Ferguson, D., and Singh, S. (2009). Efficient C-space and cost function
updates in 3D for unmanned aerial vehicles. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 2049–2054. IEEE Press.

[Scherer et al., 2005] Scherer, S., Lerda, F., and Clarke, E. (2005). Model checking of robotic control systems.
In Proc. of the 8th International symposium on Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS), Munich, Germany.

[Scherer et al., 2008] Scherer, S., Singh, S., Chamberlain, L., and Elgersma, M. (2008). Flying Fast and
Low Among Obstacles: Methodology and Experiments. The International Journal of Robotics Research,
27(5):549–574.

[Schlemmer et al., 1995] Schlemmer, M., Finsterwalder, R., and Grubel, G. (1995). Dynamic Trajectory
Optimization in Real Time for Moving Obstacles Avoidance by a Ten Degrees of Freedom Manipulator. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 72–77
vol.3.

[Serrano, 2006] Serrano, N. (2006). A Bayesian Framework for Landing Site Selection during Autonomous
Spacecraft Descent. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5112–5117.

[Shim et al., 2006] Shim, D., Chung, H., and Sastry, S. (2006). Conflict-free navigation in unknown urban
environments. Robotics & Automation Magazine, IEEE, 13(3):27–33.

[Sofman et al., 2006] Sofman, B., Bagnell, J., Stentz, A., and Vandapel, N. (2006). Terrain Classification
from Aerial Data to Support Ground Vehicle Navigation. Technical Report CMU-RI-TR-05-39, The
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

122

Bibliography Bibliography

[Sprinkle et al., 2005] Sprinkle, J., Eklund, J., and Sastry, S. (2005). Deciding to land a UAV safely in real
time. In Proceedings of the American Control Conference (ACC), pages 3506–3511 vol. 5.

[Stachniss and Grisetti, 2005] Stachniss, C. and Grisetti, G. (2005). Information gain-based exploration
using rao-blackwellized particle filters. In Proc. of Robotics: Science and Systems.

[Stentz, 1994] Stentz, A. (1994). The D* Algorithm for Real-Time Planning of Optimal Traverses. Technical
Report CMU-RI-TR-94-37, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

[Templeton, 2007] Templeton, T. (2007). Autonomous Vision-based Rotorcraft Landing and Accurate Aerial
Terrain Mapping in an Unknown Environment. Technical Report USB/EECS-2007-18, University of
California at Berkeley, Berkeley, CA.

[Templeton et al., 2007] Templeton, T., Shim, D., Geyer, C., and Sastry, S. (2007). Autonomous Vision-based
Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft. In Proceedings IEEE
International Conference on Robotics and Automation, pages 1349–1356.

[Thrun et al., 2003] Thrun, S., Diel, M., and Hahnel, D. (2003). Scan Alignment and 3-D Surface Modeling
with a Helicopter Platform. In Proceedings of the International Conference on Field and Service Robotics.

[Tisdale et al., 2009] Tisdale, J., Kim, Z., and Hedrick, J. (2009). Autonomous UAV path planning and
estimation. Robotics & Automation Magazine, IEEE, 16(2):35–42.

[Tompkins et al., 2002] Tompkins, P., Stentz, T., and Whittaker, W. (2002). Mission planning for the
Sun-Synchronous Navigation Field Experiment. In Proceedings IEEE International Conference on Robotics
and Automation, pages 3493–3500. IEEE.

[Tournier, 2006] Tournier, G. (2006). Six Degree of Freedom Estimation Using Monocular Vision and Moire
Patterns. PhD thesis, MIT, Boston, MA.

[Tsenkov et al., 2008] Tsenkov, P., Howlett, J. K., Whalley, M., Schulein, G., Takahasi, M., Rhinehart, M. H.,
and Mettler, B. (2008). A System for 3D Autonomous Rotorcraft Navigation in Urban Environments . In
AIAA 2008, page 23.

[Vandapel et al., 2005] Vandapel, N., Kuffner, J., and Amidi, O. (2005). Planning 3-D Path Networks in
Unstructured Environments. In Proceedings IEEE International Conference on Robotics and Automation,
pages 4624–4629.

[Viquerat et al., 2007] Viquerat, A., Blackhall, L., Reid, A., and Sukkarieh, S. (2007). Reactive Collision
Avoidance for Unmanned Aerial Vehicles using Doppler Radar. In Proceedings of the International
Conference on Field and Service Robotics.

[weControl AG, 2006] weControl AG (2006). http://www.wecontrol.ch/. Miscellaneous.
[Welford, 1962] Welford, B. (1962). Note on a method for calculating corrected sums of squares and products.

Technometrics, 4(3):419–420.
[Whalley et al., 2008] Whalley, M., Directorate, A., Schulein, G., and Theodore, C. (2008). Design and

Flight Test Results for a Hemispherical LADAR Developed to Support Unmanned Rotorcraft Urban
Operations Research. In American Helicopter Society 64th Annual Forum, Montreal, Canada, April 29 -
May 1.

[Whalley et al., 2005] Whalley, M., Freed, M., Harris, R., and Takahashi, M. (2005). Design, Integration, and
Flight Test Results for an Autonomous Surveillance Helicopter. In Proceedings of the AHS International
Specialists’ Meeting on Unmanned Rotorcraft.

[Yu et al., 2007] Yu, Z., Nonami, K., Shin, J., and Celestino, D. (2007). 3D Vision Based Landing Control
of a Small Scale Autonomous Helicopter. International Journal of Advanced Robotic Systems, 4(1):51–56.

[Zapata and Lepinay, 1998] Zapata, R. and Lepinay, P. (1998). Collision avoidance of a 3D simulated flying
robot. In Proceedings IEEE International Conference on Robotics and Automation, pages 113–120.

[Zapata and Lepinay, 1999] Zapata, R. and Lepinay, P. (1999). Flying among obstacles. In Advanced Mobile
Robots, 1999. (Eurobot ’99) 1999 Third European Workshop on, pages 81–88.

[Zufferey et al., 2006] Zufferey, J., Klaptocz, A., Beyeler, A., Nicoud, J., and Floreano, D. (2006). A 10-gram
Microflyer for Vision-based Indoor Navigation. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3267–3272.

123

	Introduction
	Problem
	Thesis Statement
	Overview
	Publication Notes

	Related Work
	Control
	Obstacle Avoidance
	Obstacle Cost Calculation
	Landing Site Evaluation
	Motion Planning

	Low-Altitude Obstacle Avoidance
	Problem
	Approach
	Range Sensor Processing
	Architecture
	Reactive Collision Avoidance Algorithm: 3D Dodger
	Speed Controller
	Mission Execution

	Experiments
	Testbed
	System Identification
	Results

	Discussion

	Efficient Calculation of Obstacle Cost
	Problem
	Approach
	Distance Transform Algorithms
	Limited Incremental Distance Transform Algorithm

	Experiments
	Simulation
	Airrobot Quad-Rotor Vehicle
	Autonomous Helicopter

	Discussion

	Evaluating Landing Sites
	Problem
	Approach
	Coarse Evaluation
	Fine Evaluation
	Approach and Abort Path Evaluation
	Ground Path Planning
	Goodness Assessment
	A 1D Example
	Information Gain Map
	Computational Efficiency

	Experiments
	Fine and Coarse Landing Zone Evaluation
	Landing the Unmanned Little Bird Helicopter

	Discussion

	Multiple-Objective Motion Planning
	Problem
	Approach
	Problem Approximation
	Trajectory Optimization
	Initial Guess Generation
	Base Cost Function Definition
	Autonomous Helicopter Example

	Experiments
	Reach a Goal Point
	Search for Landing Sites

	Discussion

	Conclusions and Future Directions
	Summary
	Contributions
	Future Directions
	New Research Topics
	Algorithmic Improvements

