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Abstract— An optical flow odometry method for mobile
robots using a single downward-looking camera is presented.
The method is robust to the robot’s own moving shadow and
other sources of error. Robustness derives from two techniques:
prevention of feature selection on or near shadow edges and
elimination of outliers based on inconsistent motion. In tests
where the robot’s shadow dominated the image, prevention of
feature selection near shadow edges allowed accurate velocity
estimation when outlier rejection alone failed. Performance was
evaluated on two robot platforms and on multiple terrain types
at speeds up to 2 m/s.

I. INTRODUCTION

Accurate position estimation remains a challenge for
planetary exploration robots in GPS-denied and high-slip
environments. The Mars Exploration Rovers demonstrated
the usefulness of visual odometry in these conditions, but
also highlighted two challenges: computational cost and
errors induced by shadows [1]. This paper presents an optical
flow odometry method for resource-constrained planetary
rovers. The method is uniquely designed for efficiency and
robustness to the robot’s own moving shadow.

A. Challenges and Related Work

The challenges of computational cost and self-shadowing
errors in visual odometry are well documented.

1) Computational Cost: Many recent visual odometry
methods use correspondences in stereo image pairs to trian-
gulate points in 3D and estimate 6 DOF changes in pose [1]–
[3]. These methods can be accurate up to 1% of the distance
traveled [2], but can also be computationally expensive. On
the Mars Exploration Rovers (MER) for example, limited
computational resources meant that a single odometry update
took up to 3 minutes to process [1].

A computationally cheaper approach is to estimate veloc-
ity from the optical flow of the visual texture of the ground,
as viewed by a single downward-looking camera. Recent
examples include [4]–[8].

2) Self-shadowing Errors: A common limitation in visual
odometry is sensitivity to lighting conditions. Specifically,
inadvertent tracking of the robot’s own moving shadow can
produce an erroneous velocity estimate [1], [2], [9]. Human
operators had to take the MER’s shadow into account when
deciding whether or not to use visual odometry during a drive
[1].
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One potential solution is to place the camera under the
vehicle such that the robot’s shadow covers the entire field of
view (as suggested by [9]); however, shadow edges may still
be visible at sunrise/sunset and the reduced camera height
limits the top vehicle speed that can be tracked.

Another potential solution is the use of onboard illu-
mination; however, such illumination wastes the rover’s
limited power. Furthermore, controlled lighting in outdoor
environments is challenging because the position, shape, and
intensity of the robot’s shadow vary with the relative position
of the sun.

A tracking algorithm impervious to moving shadow edges
is the best solution, but common outlier rejection methods
can be insufficient. Most visual odometry algorithms identify
inliers as the largest set of feature matches that meet a rigidity
constraint in world coordinates (e.g. [2]). Unfortunately,
when using a downward-looking camera shadow features
might dominate the image, forming the largest set that meets
the rigidity constraint (see Section III-B).

B. Approach
The presented algorithm seeks to address both the chal-

lenge of computational cost and self-shadowing errors.
The efficiency of the optical flow odometry algorithm

makes it well suited for planetary rovers with limited com-
puting resources; however, additional applications could ben-
efit from the algorithm’s speed. The algorithm provides high-
frequency, low-latency velocity measurements that could
enable immediate detection of (and reaction to) wheel slip.
Furthermore, the top vehicle speed which can be tracked
is not limited by computation time (see Section II-A). The
presented method was tested at faster vehicle speeds (2
m/s) than all cited methods in which vehicle speed is stated
explicitly [1], [3]–[5], [7]–[9].

Robustness to shadows and other sources of error derives
from two techniques: a dynamic mask that prevents features
from being selected on or near shadow edges, and robust
selection of the largest set of features (inliers) that track as
a rigid pattern between frames. The primary contribution of
the presented method is the prevention of feature selection
near shadow edges. This, in combination with the commonly
applied inlier selection step, enables accurate velocity estima-
tion even in severe cases where the robot’s shadow dominates
the field of view.

II. EXPLANATION OF THE ALGORITHM

The optical flow odometry method is summarized in
Algorithm 1. Sections II-A to II-F describe major steps of the
algorithm in sequential order. Robustness to self shadowing
derives from the steps described in II-B and II-E.



Algorithm 1 Optical Flow Odometry
1: loop
2: Iprev ← grabImage
3: makeFeatureSelectionMask
4: selectFeatures
5: Icurr ← grabImage
6: calculateOpticalFlow
7: transformFeaturesToRobotFrame
8: getInliers
9: if numInliers > threshold then

10: estimateVelocity
11: end if
12: end loop

A. Grabbing Images at Fast Vehicle Speeds

The timing of frame capture is critical when tracking fast
vehicle speeds. Many visual odometry algorithms capture
one image per iteration (Icurr in one iteration is reused as
Iprev in the subsequent iteration). The advantages are that
one velocity estimate is produced per frame and features
can be reused over multiple iterations. The key disadvantage
is that frames may be dropped between Iprev and Icurr as
all computation must occur between their capture times. If
frames are dropped, the displacement of features between
Iprev and Icurr may become too large to track when driving
at high speeds.

If feature selection time is sufficiently bounded, the pre-
sented algorithm guarantees that Iprev and Icurr are captured
at the maximum frame rate, thereby minimizing the risk of
tracking failure. Feature selection, even though performed
every iteration, does not contribute to latency because it is
performed before rather than after the capture of Icurr. (see
Algorithm 1, lines 2-5)

The top vehicle speed that can be tracked for a downward-
looking camera (mounted normal to the ground) is given by:

maxV el =
maxDisp · f · 2h · tan(FOV/2)

imsize
(1)

imsize ≥ λ ·maxDisp (2)

In the above equations, maxDisp is the maximum dis-
placement (in pixels) that can be tracked, which depends
on the terrain texture and imsize (the image size in pixels
in the direction of travel). In the LATUV test (Section III-
B), displacements up to 25 pixels were tracked successfully
on concrete. f is the framerate (in Hz), h is the height
of the camera above the ground (in meters), and FOV
is the camera’s angular field of view. The constraint on
imsize in (2) ensures sufficient overlap between frames (for
example, λ = 10 ensures at least 90% overlap). Because
the algorithm guarantees image capture at the maximum
framerate, computation time does not limit the top speed
that can be tracked but only the update frequency.

B. Excluding Shadow Edges in Feature Selection

As stated in the introduction, tracked features on or near
the robot’s own shadow will cause error in the velocity

estimate. We have developed a technique to dynamically
mask shadow edges to prevent these features from being
selected. (Algorithm 1 lines 3-4)

First, an image pyramid is constructed by filtering and
downsampling Iprev . The base level in the pyramid is the
full resolution image and each subsequent level is half the
width and height of its parent level. The smallest image
in the pyramid should be no less than 80×60 pixels. For
smoothing and reduced computation, the smallest image is
used for mask creation.

1) Determining the Presence of a Shadow: Binary seg-
mentation is performed on the downsampled image, sorting
the 1D pixel intensities into two clusters. We chose K-means
as the clustering method for its simplicity and speed. A
shadow exists in the image if pixel intensities have a bimodal
distribution. The following test for bimodality is used:

shadowDetected =

{
1 if |c1 − c2| > λ(σ1 + σ2)
0 otherwise

(3)

c1 and c2 are the centers of the K-means clusters and σ1
and σ2 are their standard deviations. The scalar λ is tuned
to prefer false positives over false negatives (see Fig. 1,
Fig. 2). In the case of a false positive (shadow detected
in a shadowless image), some edges in the image may be
wrongly excluded, but sufficient features will still be found.
The harmlessness of false positives is crucial, as multimodal
distributions can occur for reasons other than shadows.

2) Detecting Shadow Edges: If a shadow is present, its
edges are detected using a Canny detector with thresholds
proportional to the difference between the K-means cluster
centers (cannyThresh ∝ |c1 − c2|). However, not all
detected edges necessarily belong to the shadow. The raw
Canny edge detection output is parsed as follows.

First, the labels produced by K-means are reshaped into
a binary image shown in Fig. 3(a) (black denotes shadow,
white denotes light).

Next, erroneous shadow segments are removed. Here,
“segment” refers to groups of neighboring (4-connected)
shadow pixels. The robot’s shadow must reach the bound-
aries of the image; all isolated “shadow” spots must in fact
be dark spots on the ground which are acceptable to track.
Using an efficient algorithm that grows shadow segments
seeded with boundary pixels, only those touching the image
boundaries are preserved. The result of this step is shown in
Fig. 3(b).

A shadow edge mask is created by finding the edges in the
cleaned-up binary image (using a fast gradient method with
no edge thinning) and dilating with a square 3×3 structuring
element (Fig. 3(c)). The shadow edge mask is then applied
to the raw Canny edge detection output. The raw and parsed
edge detection images are shown in Fig. 3(d) and 3(e).

3) Creating the Dynamic Feature Selection Mask: Finally,
the parsed shadow edge image is dilated to produce the
feature selection mask (Fig. 3(f)). The radius of the dilation
structuring element is given by:

radius ∝ maxDisp+ windowSize/2

2L
(4)
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Fig. 1. Histogram of intensities corresponding to the image in Fig. 3.
Bars are colored according to K-means labels (blue: shadow, white: light).
K-means centers are drawn as vertical red lines
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Fig. 2. Histogram of intensities corresponding to the image in Fig. 4. (refer
to Fig. 1 caption for explanation.)

maxDisp is the maximum feature displacement between
Iprev and Icurr (in pixels), windowSize refers to the Lucas-
Kanade window (Section II-C), and L is the level in the
pyramid at which the feature selection mask is created.
Features must not be selected on the shadow edge or so
near that the window tracks into the edge.

4) Feature Selection: Features are selected using a Harris
corner detector. Features must not be selected where disal-
lowed by the feature selection mask and a minimum distance
between features should be enforced. A region of interest
for feature selection is specified in the center of the image
because features too near the boundaries are likely to track
out of the field of view (see Fig. 3(g)).

Figures 1-4 illustrate two examples of the entire feature
selection process. In Fig. 3, note how features are selected
within and without the shadow but not on its edges. In Fig.
4(d), note how edges are detected on leaves but are removed
from the feature selection mask, rightly allowing them to be
tracked. Without parsing of the raw Canny edge detection
output, the feature selection mask would be too restrictive
on highly featured terrain.

C. Calculating Optical Flow

Pyramidal Lucas-Kanade tracking is used to track features
over large displacements (which occur at high speeds) [10].
Parameters such as window size and the number of levels
are limited primarily by the size of the full resolution image.
(Algorithm 1 line 6)

D. Transforming Features to the Robot Frame

Accurate velocity estimates require accurate internal and
external camera calibration. (Algorithm 1 line 7)

1) Internal Calibration: Internal parameters including fo-
cal length, principal point, and distortion coefficients are
required to undistort pixel coordinates.

Fig. 3. Feature selection on concrete with a complex shadow cast by the
LATUV. (a) Binary image of K-means labels. black: shadow, white: light.
(b) Label image with shadows not touching borders removed. (c) Shadow
edge mask. (d) Raw Canny edge detection output. (e) Shadow edge image
after applying shadow edge mask. (f) Feature selection mask. (g) Original
image with features circled. The blue box shows the region of interest for
feature selection

Fig. 4. Feature selection on grass with shadows cast by the wheel and
body of the Zoë rover. (refer to Fig. 3 caption for explanation.)

2) External Calibration: Assuming the ground is locally
flat (i.e. all features lie in a plane) then the conversion
from undistorted pixel coordinates to the robot frame is a
homography. The closed form equation for the homography
can be computed from the pinhole camera model:

sp = KMP = K[R | t]P (5)

where p and P denote the point coordinates in the camera
and robot frame respectively. K is the camera matrix and
s signifies the equality is up to scale. M is composed of a



rotation matrix and translation vector representing the 6 DOF
pose of the robot frame with respect to the camera frame,
ρC
R

. Because all points lie in a plane, point z coordinates are
a linear function of x and y, and M can be converted into
a 3×3 matrix:

MP =

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




x
y

z = ax+ by + c
1


=

 r11 + r13a r12 + r13b t1 + r13c
r21 + r23a r22 + r23b t2 + r23c
r31 + r33a r32 + r33b t3 + r33c

 x
y
1

 (6)

M∗ denotes the 3×3 matrix and P ∗ denotes the 3×1
coordinate vector in (6). The homography equation is:

sp = HP ∗, sP ∗ = H−1p (7)
H = KM∗ (8)

ρC
R

(and corresponding H) are calibrated by least-squares
minimization of reprojection error for a set of correspon-
dences (for which p and P are known).

argmin
ρC
R

‖p−HP ∗‖2, H = f
(
ρC
R

)
(9)

Using this technique, the transformation can be accurately
calculated even if the camera is off-normal to the ground.
This may be useful at high speeds as it increases the ground
area within the field of view.

E. Obtaining Inliers

In this step (Algorithm 1 line 8), the largest set of features
that track consistently (as a rigid pattern) between Iprev and
Icurr is obtained. We chose RANSAC for its simplicity, but
other inlier selection methods are possible. The following
sections explain the steps performed at each iteration of
RANSAC.

1) Select Sample Set: The number of features selected and
tracked is denoted by n. A sample of ns features is randomly
selected. In our current implementation n = 40-50 and ns =
3. The set of sample indices is denoted by s.

2) Normalize about Centroids: Calculate the centroids of
the sample points in Iprev and Icurr (p̄ and c̄ respectively):

x̄ =

∑ns

i=1 x
s(i)

ns
, ȳ =

∑ns

i=1 y
s(i)

ns
(10)

p̄ =

[
x̄p
ȳp

]
, c̄ =

[
x̄c
ȳc

]
(11)

Express sample points (p) and the set of all points (P ) in
Iprev about the sample centroid in Iprev (p̄). The “prime”
symbol (e.g. p′) is used to denote points with the sample
centroid subtracted.

p′ =

[
x
s(1)
p − x̄p ... x

s(ns)
p − x̄p

y
s(1)
p − ȳp ... y

s(ns)
p − ȳp

]
(12)

P ′ =

[
x1p − x̄p ... xnp − x̄p
y1p − ȳp ... ynp − ȳp

]
(13)

Do the same for the sample points (c) and the set of all
points (C) in Icurr about the sample centroid in Icurr (c̄).

3) Calculate the Rotation: First, calculate the covariance
matrix Σ:

Σ =
c′p′T

ns
(14)

Then calculate the least-squares rotation matrix from the
SVD decomposition of the covariance matrix [11]:

USV T = SVD (Σ) (15)

R = UV T (16)

4) Calculate Error and Obtain Inliers: Error is calculated
by:

Error = C ′ −RP ′ =

[
x1err ... xnerr
y1err ... ynerr

]
(17)

A point is classified an inlier if the square distance error
(x2err+y2err) is less than a threshold (e.g. a few millimeters).
These steps are performed up to a maximum number of
iterations, after which the best set of inliers is returned and
outliers are eliminated. This RANSAC technique will reject
erroneous features from any source (shadows, out of plane
or moving objects) as long as those features do not form the
largest consistent set.

F. Estimating Velocity

After all features are transformed to the robot frame and
outliers are rejected, translation and rotation can be estimated
using the following equation:

vpt = Vrobot + ω × rpt (18)

Point velocity (vpt) is the negative of feature displacement
from Iprev to Icurr (in meters) divided by the time difference
between frames (in seconds). From this equation for a single
feature, a matrix equation for all features can be derived: 1 0 −ry

0 1 rx
...

...
...


 Vx
Vy
ω

 =

 vx
vy
...

 (19)

Note that each feature corresponds to two rows, and so at
least two features are required or the system will be under-
determined. In practice the system is always overdetermined
(5-50 features) and solved using the pseudoinverse. This
equation was used by Lee and Song for velocity estimation
using multiple optical mouse sensors [7]. Note that this
equation assumes no non-holonomic constraints and, as a
result, can detect lateral slip.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Tests were performed on two robots (the LATUV and
the Zoë rover) on multiple terrain types in outdoor sunlit
conditions. The LATUV, or Lunar All-terrain Utility Vehicle,
was designed for speed and mobility on the Moon [12]. Zoë
is an exploration robot that surveyed microbiological life in
the Atacama Desert [13].



A Point Grey Flea2 black and white camera was
selected with a maximum resolution of 640×480
pixels and a maximum frame rate of 60 Hz. The
lens field of view was 77×57◦. The camera was
mounted facing downward, but 15◦ off-normal on
Zoë. OpenCV’s goodFeaturesToTrack() and
calcOpticalFlowPyrLK() were used for feature
selection and tracking. Processing times were recorded on a
Dual-core 2.2 GHz laptop computer.

B. Lunar All Terrain Utility Vehicle (LATUV) Test

In this test, the LATUV was commanded to drive a 5
meter radius arc at 2 m/s. The test was performed on a
paved surface where the robot repeatedly drove into and
out of direct sunlight. Because of the LATUV’s open frame
construction it cast a large, complex shadow in the center of
the camera’s field of view (see Fig. 3). Note that with no
robustness technique enabled all velocity measurements fail
continually (see Fig. 5 (top)). With only RANSAC enabled
(middle) the velocity estimate jumps between zero and 2
m/s, depending on whether more features lie on or off
the shadow edges. Jumps in Vy also correspond to large
jumps in the angular velocity. With both the dynamic feature
selection mask and RANSAC enabled (bottom) the algorithm
consistently tracks the correct Vy velocity at 2 m/s. Vx and
the angular velocity are also stable.

Clearly, performance is greatly improved by supplement-
ing RANSAC with the dynamic feature selection mask in the
presence of the robot’s shadow. Feature selection clocks at 9
ms, including 3 ms for creation of the feature selection mask.
Computation is sufficiently fast to select features between the
capture of Iprev and Icurr at 60 Hz without risk of dropping
frames. Velocity updates are produced at 45 Hz.

C. Zoë Rover Test

Even though the camera was mounted underneath Zoë’s
solar panels (see Fig.7), wheel and body shadow edges
dominated the field of view (see Fig. 4). Eight random test
paths (150-186 m in length) were driven on a grassy field.
Ground truth was provided by a Novatel SPAN GPS/INS
unit.

Table I presents the mean and standard deviation position
error for 20, 50, 100, and 150 m path segments. These values
are calculated using the same method as [9]. First, time-
corresponding odometry and ground truth path segments are
extracted. Then the odometry path segment is translated and
rotated to align with the starting ground truth position and
heading, and the Euclidean distance error of the endpoint is
calculated. Next, we move one meter forward in the ground
truth data and repeat the process until the end of the path is
reached.

When using both the linear and angular optical flow veloc-
ity estimates, odometry position error is approximately 4-6%
of distance travelled (see the “using odometry yaw” columns
in Table I). Mean heading error after 150 m is 5.4◦ with a
standard deviation of 3.0◦. Alternatively, when using optical
flow linear velocity measurements but obtaining heading
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Fig. 5. Calculated linear and angular velocities with various robustness
techniques enabled. (Top) No robustness technique enabled. (Middle) Only
RANSAC enabled. (Bottom) Both dynamic feature selection mask and
RANSAC enabled
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Fig. 6. Integrated path based on velocities in Fig. 5. Note that with both
the dynamic feature selection mask and RANSAC enabled the path is a
correct 5 m radius arc

from an Inertial Measurement Unit, odometry position error
drops to 2-3% of distance traveled (see the “using IMU yaw”
columns). Because the current objective is to detect wheel
slip on planetary rovers and not to replace their IMU, use
of the more accurate inertial yaw measurement is preferred.
The largest source of odometry error is likely breaking of
the planar terrain assumption.

Finally, despite extreme self-shadowing (as seen in Fig. 4)
no erroneous zero-velocity measurements occurred in any of
the experiment paths with the feature selection mask enabled
(see Fig. 9).

IV. CONCLUSIONS AND FUTURE WORK

The presented algorithm addresses two challenges in vi-
sual odometry: computational cost and self-shadowing errors.
While the accuracy of the presented optical flow algorithm
is slightly lower than stereo visual odometry methods (e.g.



TABLE I
OPTICAL FLOW ODOMETRY POSITION ERROR

Distance
Pos. error using

IMU yaw
Pos. error using
odometry yawa

traveled # of data µ (m) σ (m) µ (m) σ (m)
20 m 847 0.88 0.50 1.09 0.60
50 m 839 1.43 0.62 2.40 1.35
100 m 457 2.37 0.59 6.05 2.73
150 m 74 3.35 0.99 9.61 3.49

a yaw obtained by integrating optical flow angular velocity, ω

Fig. 7. Photograph of camera placement on the Zoë Rover. The missing
solar panel was replaced during testing.
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Fig. 9. Plot of optical flow Vx and Vy velocity estimates for test
path 3. Velocities were also computed using wheel encoder and steer
angle measurements for comparison. The two velocity measurements match
closely in this low slip test.

[2]), the algorithm’s computational efficiency makes it well
suited for resource-constrained planetary exploration robots,
as highlighted by the Mars Exploration Rovers. Furthermore,
the algorithm is capable of tracking vehicle speeds at (and
potentially above) 2 m/s on sufficiently textured terrain.

In multiple tests on two robots and varied terrain the pre-
sented algorithm demonstrated robustness to the robot’s own
shadow and other sources of error. In tests where the robot’s
shadow dominates the image, prevention of feature selection
on shadow edges allowed accurate velocity estimation when
outlier rejection alone failed. Robustness to self-shadowing
allows great freedom in camera placement and eliminates the
need to spend limited power on artificial illumination.

Future work will focus on utilizing the algorithm’s high-
frequency velocity updates to immediately quantify and
respond to wheel slip.
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