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Abstract

Trajectory basis Non-Rigid Structure From Motion
(NRSFM) currently faces two problems: the limit of recon-
structability and the need to tune the basis size for different
sequences. This paper provides a novel theoretical bound
on 3D reconstruction error, arguing that the existing defi-
nition of reconstructability is fundamentally flawed in that
it fails to consider system condition. This insight motivates
a novel strategy whereby the trajectory’s response to a set
of high-pass filters is minimised. The new approach elim-
inates the need to tune the basis size and is more efficient
for long sequences. Additionally, the truncated DCT basis
is shown to have a dual interpretation as a high-pass fil-
ter. The success of trajectory filter reconstruction is demon-
strated quantitatively on synthetic projections of real mo-
tion capture sequences and qualitatively on real image se-
quences.

1. Introduction

Trajectory basis NRSFM [1] proposes to reconstruct de-
formable objects from video by restricting the solution to
a known low-dimensional subspace of smooth 3D trajecto-
ries. It currently faces two major problems. The first is
the limit of reconstructability [12] which states that in order
to obtain a good reconstruction, the point trajectory must
be well-described by the basis while the camera trajectory
must not. The second problem is that, while the basis type
is sequence agnostic, the basis dimensionality K depends
on camera motion, object motion and sequence length, and
therefore must be tuned to each sequence.

This paper argues that the definition of reconstructabil-
ity given in [12] is fundamentally flawed in that it criti-
cally fails to consider the condition of the resulting sys-
tem of equations. We derive a novel theoretical bound on
3D reconstruction error which highlights the hazard of a
poorly-conditioned system. Although the new bound offers
an effective strategy for automatically choosing K, this in-
sight into the reconstructability problem leads us to explore
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Figure 1: Ground truth and reconstructions of a person
walking. If the basis dimension K is chosen too small (c),
then it cannot accurately represent the trajectory. If chosen
too large (e), then the system may be ill-conditioned. Even
when chosen well (d), the result can be over-smoothed. Tra-
jectory filters (b) provide increased model capacity and re-
move the need to tune this parameter.

alternatives to subspace prior. In particular, we propose
to minimise the response of the trajectory to one or more
high-pass filters, which do not need to be tuned or adjusted
for different sequences. The compact temporal support of
these filters yields better computational efficiency for long
sequences and may enable exploration of online solutions.

This paper is structured as follows. Related work is re-
viewed in §2. The problem is formally defined in §3 be-
fore briefly revising the truncated basis solution in §4. In
§5 we introduce our general form and revisit the definition
of reconstructability in [12] before developing our novel
bound. A simple adaptive strategy which uses this defini-
tion is compared to a sparse coding approach in §6. In §7
we introduce our filter-based prior and highlight the connec-
tion to a DCT basis. Experimental validation is described in
§8 and practical examples are given. Conclusions and future



work are discussed in §9.

2. Related Work

Bregler et al. introduced shape basis NRSFM in their
seminal paper [3], learning a low-dimensional, object-
specific subspace from a sequence of projections. Further
work by Torresani et al. adopted the low-rank constraint to
assist in non-rigid tracking [19], incorporated temporal con-
straints by modelling the shape basis coefficients as a lin-
ear dynamical system [17] and modelled the distribution of
non-rigid deformation by a hierarchical prior [18]. Bartoli
et al. [2] used a temporal smoothness prior to reduce the
sensitivity of their solution to the number of shape bases.
Rabaud and Belongie [14] shifted away from the linear ba-
sis interpretation, proposing to learn a smooth manifold of
shape configurations from video. They incorporated tempo-
ral regularisation to prevent the camera and structure from
changing excessively between frames.

More recently, Akhter et al. [1] proposed that the tra-
jectory of each point could instead be restricted to a low-
dimensional subspace. The key advantage of this approach
over a shape basis is that an object-agnostic basis such as the
Discrete Cosine Transform (DCT) can be employed. Go-
tardo and Martinez [6] recently combined shape and tra-
jectory basis approaches, describing the shape basis coef-
ficients with a DCT basis over time. In their subsequent
notable work [5], they extend this approach to non-linear
shape models using kernels.

Park et al. [12] examined the limitations of trajectory
basis NRSFM in solving for structure given known cam-
eras. They recognised that it is difficult to obtain a good
reconstruction when the motion of the point and the camera
are correlated, introducing the notion of reconstructability.
In subsequent work, Park and Sheikh [11] note that recon-
structability is not a problem for the special case where the
point correspondences belong to a known articulated struc-
ture. Zhu et al. [20] showed that sequences with poor recon-
structability could be salvaged by injecting rigid keyframes.
They also addressed the need to choose K by instead using
the full DCT basis and applying �1-norm regularisation to
the vector of coefficients to find a sparse solution. How-
ever, their approach does not take advantage of the known
distribution of DCT coefficients in natural signals [4].

Salzmann and Urtasun [15] recently proposed a solution
for “3D tracking” which is similar to our method of tra-
jectory reconstruction. They imposed �1, �2 and grouped
sparsity priors on particle accelerations, which were esti-
mated by second-order finite differences. They also account
for gravity by assuming an upright camera. However, they
limit their discussion to a stationary camera and hence do
not make the connection to trajectory basis reconstruction
and the issue of reconstructability. Without a moving cam-
era, they are limited to reconstruction on a plane or require

Figure 2: The back-projected rays through an observed
point from a known moving camera define a hyperplane
of infinite solutions, however we intuitively understand that
trajectories are more likely to be slow and smooth (green)
than fast and erratic (yellow to red). Trajectory prior defines
a likelihood over the space of all trajectories.

the use of data-driven models to obtain a 3D solution. We
do not consider reconstruction under the �1-norm of filter
responses here as it would greatly complicate the recon-
structability conditions.

3. Problem Formulation

Let x1, . . . ,xF ∈ R3 be equally-spaced samples of the
position of a 3D point over time, observed by a moving
camera as projections w1, . . . ,wF ∈ R2. Assuming a
pinhole camera model, these are related by the projective
equality �

wt

1

�
� Pt

�
xt

1

�
. (1)

Partitioning the projection matrix

Pt =

�
At bt

cTt dt

�
, (2)

the projective equality in (1) yields the under-determined
2× 3 system of linear equations

Qtxt = ut, (3)

where Qt = At − wtcTt and ut = dtwt − bt. Each Qt

matrix has a 1D right nullspace corresponding to the ray
connecting the camera center and the projection on the im-
age plane. When Pt represents an affine camera,

Pt =

�
Rt dt

0 1

�
⇒ Rtxt = wt − dt. (4)



4. Reconstruction Using a Basis

Park et al. [12] constrained the trajectory of each point
to lie on a low-dimensional subspace. Let X ∈ RF×3 be
a matrix whose rows are the 3D positions and Φ ∈ RF×K

be a matrix whose columns are an orthonormal basis for the
space of possible trajectories. Trajectory basis approaches
assume that there exists some B ∈ RK×3 such that

X = ΦB, (5)

where B is a matrix of coefficients representing the tra-
jectory in terms of the basis. Defining x = vec(XT ),1
β = vec(BT ) and Θ = Φ⊗ I3,2 this can be written

x = Θβ, (6)

while the system of projection equations can be written

Qx = u, (7)

defining

Q =




Q1

. . .
QF



 , u =




u1
...

uF



 . (8)

Substituting for x in (7) yields

QΘβ = u, (9)

which is over-determined provided that rank(QΘ) > 3K,
which implies 3K < 2F . The solution which minimises
residual error in the projection equations is

x̃ = Θβ̃, β̃ = argmin
β

�QΘβ − u�22 . (10)

5. General Trajectory Prior

Let Φ⊥ ∈ RF×(F−K) be a matrix whose columns are
an orthonormal basis for the left nullspace of Φ, such that

ΦTΦ⊥ = 0, ΦT
⊥Φ⊥ = I. (11)

Similarly, let Θ⊥ = Φ⊥ ⊗ I3 be a matrix whose columns
are an orthonormal basis for null(ΘT ). It is trivial to show
that

∃ β s.t. x = Θβ ⇔ ΘT
⊥x = 0. (12)

Therefore, the problem in (10) can equivalently be stated

x̃ = argmin
x

��Qx− u
��2
2

subject to ΘT
⊥x = 0.

(13)

1The vec(·) operator stacks the columns of a matrix.
2The ⊗ operator denotes the Kronecker (tiled) product.

Rather than seeking x in a low-dimensional space such
that the residual error in the projection equations is min-
imised, we consider seeking x nearest to the subspace such
that projection constraints are satisfied, finding

x̃ = argmin
x

��ΘT
⊥x

��2
2

subject to Qx = u.
(14)

This formulation may in fact be better motivated, as we are
otherwise forced to violate the image measurements in or-
der to adhere to the basis, which is counter-intuitive since
the original problem is under-constrained. Furthermore,
while Qx = u defines the projection constraints in the
noiseless case, minimising �Qx−u�2 does not necessarily
correspond to the optimal solution under an assumption of
Gaussian projection noise for a general perspective camera.
This is precisely the reason that linear triangulation meth-
ods should only be used to provide initialisation for an al-
gorithm which minimises a non-linear geometric error cost
function in multiple view reconstruction [7]. It’s worth not-
ing, however, that the formulation in (10) remains a more
computationally attractive approach to approximately solve
this problem.

Based on this reformulation, we propose a general form
for linear trajectory reconstruction,3

x̃ = argmin
x

�x�2M

subject to Qx = u,
(15)

where M = E ⊗ I3 assumes independent, identical prior
in each dimension, and E � 0 is the precision (inverse co-
variance) matrix of a zero-mean Gaussian distribution over
one-dimensional trajectories. Reconstruction using a trun-
cated basis is the special case

E = Φ⊥Φ
T
⊥ = I−ΦΦT . (16)

Note that E (and therefore M) is generally rank-
deficient, since at least the DC trajectory should lie in
null(E) to ensure that the prior is invariant to global trans-
lation. In the case of a trajectory basis, rank(E) = F −K.

5.1. Canonical Reconstructability

Park et al. [12] define reconstructability in terms of the
trajectory of the camera center c ∈ R3F ,

η(x, c,Θ) =

��ΘT
⊥c

��
��ΘT

⊥x
�� , (17)

such that as η → ∞, the basis space is guaranteed to inter-
sect the hyperplane defined by the projection equations

�
min
x,β

�x−Θβ�2 subject to Qx = u

�
→ 0. (18)

3We adopt �x�2A = xTAx.



However, this is a necessary and not a sufficient condition
for reconstruction error to approach zero. If the intersection
of the nullspace of Q and the column-space of Θ is itself a
space having non-zero dimension, there will be infinite so-
lutions which satisfy both the projection equations and the
basis constraint. Even when the two spaces do not exactly
intersect, the solution can be extremely unstable if they are
“close” to intersecting. Furthermore, it is unintuitive for
the expression in (17) to depend on camera position when
it did not appear in the derivation. This prohibits analysis
of affine cameras since they do not have a center. In this
section we propose an alternative reconstructability for our
general form which bounds the reconstruction error, taking
into account the system condition and not requiring a cam-
era center.

5.2. Our Measure

While (15) can be solved using Lagrange multipliers,
for the purpose of deriving a bound we instead consider
parametrising the F -dimensional hyperplane of feasible so-
lutions

x = x� +Q⊥z (19)

where x� is any solution to Qx� = u, Q⊥ ∈ R3F×F is a
matrix whose columns are an orthonormal basis for null(Q)
such that

QQ⊥ = 0, QT
⊥Q⊥ = I, (20)

and z ∈ RF defines a component of the solution in the
nullspace of Q. Solving (15) is exactly equivalent to finding

x̃(x�) = x� +Q⊥z̃(x
�) (21)

where

z̃(x�) = argmin
z

�x� +Q⊥z�
2
M

= −(QT
⊥MQ⊥)

−1QT
⊥Mx� (22)

regardless of the choice of x�, since (21) is an affine trans-
form and the objective in (15) is convex. Considering the
case where x� is the ground truth trajectory x, we obtain an
expression for the reconstruction error

�x− x̃(x)�2 =
��(QT

⊥MQ⊥)
−1QT

⊥Mx
��
2
. (23)

This facilitates the definition of an upper bound υ on recon-
struction error4

υ(x,Q,M) =
��(QT

⊥MQ⊥)
−1

��
2

��QT
⊥Mx

��
2

= cond(QT
⊥MQ⊥)� �� �

gain γ

��QT
⊥Mx

��
2��QT

⊥MQ⊥
��
2� �� �

contradiction ε

, (24)

4We adopt the convention that the norm of a matrix is that induced by
the corresponding vector norm, �A� = maxx �=0�Ax�/�x�.
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Figure 3: Reconstruction error versus orbiting camera speed
for DCT basis of varying size. When using a truncated DCT
basis to constrain the solution, the motion of the camera
critically affects the choice of basis size K. The true limit
of reconstructability is a lower bound on these curves and
should be independent of K.

such that
�x− x̃(x)�2 ≤ υ(x,Q,M), (25)

where the condition number

cond(A) = �A��A−1
� =

σmax(A)

σmin(A)
(26)

provides a bound on the perturbed solution of a system of
linear equations. Note that our measure extends to affine
cameras, as it does not depend on a camera center.

The contradiction term ε ≥ 0 reflects how much the un-
observed component disagrees with the prior. When the
prior is a truncated basis, the numerator becomes

��QT
⊥(I−ΘΘT )x

��
2
, (27)

the component of the trajectory which is orthogonal to both
the basis and the projection matrix.

The gain term γ ≥ 1, dependent solely on the cam-
eras and the prior, becomes large for a poorly-conditioned
system of equations. When the nullspace of Q and the
nullspace of M intersect non-trivially (at a subspace with
non-zero dimension), this term approaches infinity and the
reconstruction error is unbounded. This situation corre-
sponds to a set of cameras for which there exists a non-zero
trajectory in the nullspace of the prior which would go un-
observed (and therefore at least a 1D space of such trajecto-
ries exists). When using a trajectory basis, the gain term is
monotonically increasing with K.

Our definition of reconstructability highlights the criti-
cal nature of choosing the basis size K in trajectory basis
reconstruction. If K is chosen too small, the trajectory is
poorly represented by the basis, but if it is chosen too large,
the system is ill-conditioned and the reconstruction error be-
comes unbounded. Figure 3 confirms that this trade-off is
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Figure 4: Reconstruction error versus orbiting camera speed
for the sparse coding algorithm with varying regularisation
coefficients. Promoting sparsity in the vector of coefficients
has the effect of automatically selecting which basis vectors
to use.

observed in practice. The full details of this experiment are
found in §8.1.

6. Sparse Coding and an Adaptive Strategy

Zhu et al. [20] recently used a complete DCT basis and
applied �1-norm regularisation to the vector of coefficients
to promote sparsity, finding

x̃ = Θβ̃, β̃ = argmin
β

�QΘβ − u�22 + λ �β�1 . (28)

The feature-sign search algorithm [9] was used to minimise
this objective. Figure 4 shows that this is an effective strat-
egy for automatically selecting basis vectors. We postulate
that the reason sparse coding is effective in this context is
that it indirectly controls the conditioning problem.

While the assumption of sparse coefficients is well-
founded because the DCT tends to concentrate non-zero en-
tries at lower frequencies for natural signals [4], a sparse
coding approach completely ignores this known pattern of
sparsity. Examining the bound in (24), one can imagine a
simple adaptive strategy which chooses the largest K such
that γ(Q,M) < γmax. Figure 5 shows that this is at least
as effective as the sparse coding approach. The efficacy of
this approach is encouraging evidence for the bound from
the previous section being reasonably tight.

7. Filters Instead of Bases

Truncated basis approaches are especially prone to the
conditioning problem because the nullspace of M has di-
mension 3K, making intersection with the nullspace of Q
increasingly likely with larger K. An alternative way to
encourage smooth motion is to penalise the response of the
trajectory to a set of compact high-pass filters. Filters are el-
egant in that they enforce temporal constraints locally rather
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Figure 5: Reconstruction error versus orbiting camera speed
using a DCT basis with size automatically determined by a
gain threshold. This simple strategy is at least as effective
as sparse coding for non-negligible camera motion.

than globally, extending trivially to sequences of different
length. Some simple filters have physical motivation. Min-
imising the �2-norm of the second derivative corresponds to
an assumption of constant mass subject to isotropic Gaus-
sian distributed forces [15] and minimising the �2-norm of
the first derivative corresponds to finding the solution with
the least kinetic energy.

Convolution is a linear operation and can therefore be
written as a matrix multiplication

g ∗ h = Gh, (29)

where

G =




gM · · · g1

. . . . . . . . .
gM · · · g1



 , (30)

g ∈ RM , h ∈ RN and M ≤ N is the support of the filter.
Since we use the variant of convolution in which only the
entirely overlapping segments of the response are taken, the
convolution matrix G is of size (N−M+1)×N . Minimis-
ing the magnitude of the response of each dimension of the
trajectory to a filter g is a special case of the general form
in (15) where E = GTG. Multiple filters can be realised
by taking a linear combination of such matrices.

When M is constructed using filters, its nullspace has
dimension 3(M − 1). For compact filters, this leads to a
much lower-dimensional nullspace than the truncated basis
approach, reducing the likelihood of an intersection with
the nullspace of the projection matrix. This contrast is
clearly observed by comparing the eigenspectra of first-
and second-difference filters (Figures 7b and 7d) to that
of a truncated basis (Figure 8a). The generalisation abil-
ity of trajectory filters is partially attributed to the low-
dimensional nullspace of M. Figure 6 demonstrates empir-
ically that simple filters achieve reconstruction error at the
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Figure 6: Reconstruction error versus orbiting camera speed
for simple trajectory filters. Superior results are achieved
over all sequences without having to tune any parameters.

lower limit of other methods without requiring any param-
eter tuning. In our experiments we only consider the filters
(−1, 1) and (−1, 2,−1) since these estimate the first- and
second-derivative respectively, each with minimal support.

7.1. Symmetric Convolution and the DCT

The basis which was first used by Akhter et al. [1]
and has generally been adopted in literature [6, 12, 20] is
the DCT. It was chosen for its ability to compactly de-
scribe natural signals in lossy compression [4]. In the
same way that the DFT (Discrete Fourier Transform) diag-
onalises periodic convolution, the DCT and DST (Discete
Sine Transform) diagonalise symmetric-periodic convolu-
tion [10], their bases forming the eigenvectors of symmet-
ric convolution matrices. Using a generalised form of Par-
seval’s theorem, it is possible to examine the spectra of the
proposed filters (Figure 7) and find an equivalent filter to
the truncated DCT basis (Figure 8).

It is worth noting that multiplication in the DCT domain
actually computes convolution with the symmetric exten-
sion of the trajectory. Combining this with a smooth-motion
prior unavoidably induces stationary boundary conditions at
either end. Although past work has noted that the type of
transform is not important [1], we point out that the DFT
and DST imply periodic and asymmetric extension of a sig-
nal, respectively. Optimising for smooth motion over these
extensions requires that trajectories start and end at the same
place and at the origin, respectively. These would clearly
be poor assumptions, thus motivating the specific use of
the DCT basis. Trajectory filters do not necessarily impose
any constraints on boundary conditions, although we find a
small component of (−1, 1) filter response can be added to
ensure proper regularisation when the camera is slow (ob-
served in Figure 6), which tends to induce similar stationary
boundary conditions.
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(d) DCT1{g2}

Figure 7: Impulse responses and appropriate transforms of
first- and second-difference filters. The transform gives the
eigenvalues of the symmetric convolution matrix.
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(a) ĝ = (0, . . . , 0, 1, . . . , 1)

−60 −40 −20 0 20 40 60

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

g
[t
]

(b) DCT−1
1 {ĝ}
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Figure 8: The truncated basis approach is equivalent to ap-
plying a “brick-wall” high-pass filter in the DCT domain.
This transform has multiple interpretations as a symmetric
convolution, each approximating a compact-support filter.

7.2. Computational Considerations

From the previous section, we can still entertain a trun-
cated basis representation to reduce the dimensionality, pro-



vided that symmetric extension of the trajectory can be
assumed and an �2-norm regularisation term is included,
weighted by the transform of the desired filter ĝ = T {g}.
The resulting objective is

β̃ = argmin
β

�QΘβ − u�22 + λ �diag(ĝ)β�22 . (31)

As in the original trajectory reconstruction paper [12], this
requires inversion of a dense 3K × 3K matrix. Assum-
ing that the basis size must be chosen as some small con-
stant fraction of the number of frames K = kF (as in [6]),
the asymptotic time complexity of inverting this matrix
is O(F 3).

We instead consider solving (15) directly for the case
where M is constructed using compact filters. The method
of Lagrange multipliers yields the sparse linear system

�
M QT

Q 0

� �
x
λ

�
=

�
0
u

�
. (32)

Since M is banded-diagonal and Q is block-diagonal, the
columns and rows can be re-ordered to give a matrix with
band O(M). Solving this banded-diagonal system of equa-
tions has time complexity O(F 2M) [13]. Therefore, apply-
ing compact filters in the time domain is more computation-
ally attractive than using a low-dimensional basis for long
sequences. Furthermore, efficient parallel solvers exist for
diagonally banded systems [8].

8. Experimental Validation

8.1. Synthetic Projection of MoCap Sequences

The experiment in Figures 3, 4, 5 and 6 consists of a 100-
frame sequence from the CMU MoCap database,5 observed
by a perspective camera orbiting the subject on a horizon-
tal plane at speeds varying from 1 to 90 degrees per frame,
with results averaged over 100 different sequences. Error is
measured by the RMS 3D distance between points over all
frames.

8.2. Real Experiments

Our filter algorithm was qualitatively compared to the
orthonormal truncated basis algorithm of Park et al. [12]
across a number of sequences. A representative example is
shown in Figure 9. We typically observe that while the low-
dimensional DCT solution is smoother, the filter algorithm
produces a more realistic trajectory. For example, note the
triangular path of the feet and the more complex path of the
swinging arm. More importantly, however, our filter-based
method did not require any hand-tuning.

5http://mocap.cs.cmu.edu/

9. Conclusion and Future Work

This paper has brought to light the critical oversight
of system conditioning in trajectory basis NRSFM, which
has confused the issue of reconstructability. A theoretical
bound on reconstruction error which considers system con-
dition and extends to affine cameras has been established.
Based on this insight, a novel approach to trajectory recon-
struction using high-pass filters was proposed which elimi-
nates the need to choose basis size and has better asymptotic
time complexity.

This work motivates a number of possible future direc-
tions. The compact support of the filters may assist inte-
gration of non-rigid reconstruction into real-time monocu-
lar pose estimation techniques. The duality with the DCT
could be combined with Probabilistic Principal Component
Analysis [16] to estimate the inertial reference frame from a
sequence of projections. Although gravity, electromagnetic
and biomechanical forces roughly follow an isotropic Gaus-
sian distribution, collision forces typically act in sparse im-
pulses, motivating investigation into combined �1-�2 strate-
gies for the second derivative and alternative norms in gen-
eral. Finally, while existing approaches to unify shape and
trajectory bases apply temporal prior in shape space, trajec-
tory filters provide a way to enforce temporal prior in world
space, by filtering the output of a shape basis.
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