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Abstract We propose a framework for utilizing fixed ultra-
wideband ranging radio nodes to track a moving target radio
node in an environment without guaranteed line of sight or
accurate odometry. For the case where the fixed nodes’ loca-
tions are known, we derive a Bayesian room-level tracking
method that takes advantage of the structural characteristics
of the environment to ensure robustness to noise. For the
case of unknown fixed node locations, we present a two-
step approach that first reconstructs the target node’s path
using Gaussian Process Latent Variable models (GPLVMs)
and then uses that path to determine the locations of the fixed
nodes. We present experiments verifying our algorithm in
an office environment, and we compare our results to those
generated by online and batch SLAM methods, as well as
odometry mapping. Our algorithm is successful at tracking
a moving target node without odometry and mapping the lo-
cations of fixed nodes using radio ranging data that are both
noisy and intermittent.
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1 Introduction

Our goal is to track a target moving in an indoor environ-
ment without the requirement of pre-installed infrastructure
or accurate odometry. As a sub-goal, we seek to map the un-
known locations of sensors in the environment so they can
be utilized for future tracking. The problem of tracking a
moving target in a cluttered environment is one that is preva-
lent in many robotics applications. In the dynamic world of
mobile robotics, rarely do targets remain stationary, but of-
ten we can rely on some motion model or odometry infor-
mation from the target to assist in tracking.

The specific application of tracking a human in an indoor
environment is particularly challenging because human tar-
gets often do not have reliable odometry. Furthermore, hu-
man motion is often erratic and difficult to predict using a
simple motion model. Wearable inertial measurement units
(IMUs) are either inaccurate, expensive, or bulky. Even in-
dustrial grade IMUs inevitably drift after extended operation
(Tsai et al. 2010).

Alternatively, if the human carries a ranging radio, fixed
radio nodes can provide sensor measurements for tracking
as well as anchors into the environment that prevent drift.
Unlike many tracking sensors, ranging radios do not require
line-of-sight between nodes, and they do not suffer from
false detections (i.e., the signal will only be detected if it
has been transmitted). In addition, node identification can
be transmitted with the signal, solving the data association
problem trivially. The locations of the stationary beacons
can either be surveyed as part of a pre-installed infrastruc-
ture, or they can be determined as part of a tracking algo-
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rithm. The techniques that we discuss in this paper examine
both of these possibilities.

In this paper, we present a framework for tracking a mov-
ing target in a cluttered environment using range measure-
ments from ultra-wideband radios. We examine two varia-
tions of the tracking problem:

1. The locations of the radio nodes are known a priori
2. The locations of the radio nodes are unknown.

For the first scenario, we discuss a room-level tracking
approach that uses a discretized version of the floor plan
to take advantage of structural characteristics of an indoor
environment. We use a Bayesian filter on the discretized
floor plan to track the target between rooms. We present two
methods for modeling noise in the range measurements us-
ing either Gaussian Processes or mixtures of Gaussians. For
the scenario where the node locations are unknown, we de-
rive a two-step method that first reconstructs the path of the
target using non-linear dimensionality reduction with Gaus-
sian Process Latent Variable Models (GPLVMs) and then
uses the reconstructed path to determine the locations of the
nodes using a Bayesian map.

We present performance results of our algorithms in an
office environment with varying node configurations for
both the known and unknown node location scenarios. The
novelties of this paper include the application of Bayesian
room-level tracking techniques to ranging radio data, the use
of GPLVMs with ranging radios, and the development of a
two-step tracking and mapping method using dimensional-
ity reduction and Bayesian mapping.

This paper is organized as follows. Section 2 discusses re-
lated work in the areas of tracking, localization, and dimen-
sionality reduction. Sections 3 and 4 present our framework
for utilizing range-only measurements with known and un-
known radio node locations. Section 5 discusses results from
experiments with ranging radios in an office environment.
Finally, Sect. 6 draws conclusions and discusses directions
for future work.

This paper is an extended version of a conference pa-
per on the same topic (Hollinger et al. 2008). The journal
version contains more explanatory detail of the proposed
algorithms, supplementary images and test maps describ-
ing the mapping and tracking results, and additional com-
parisons validating our algorithms against batch SLAM and
odometry-based mapping techniques.

2 Related work

The framework that we develop in this paper for tracking
and mapping using ranging radios is closely related to lit-
erature in localization and dimensionality reduction. Kumar
et al. (2004) discussed the problem of tracking a human first

responder in an urban search and rescue scenario with robots
and sensor networks. They outline some open questions and
provide the motivation for using range-only devices for hu-
man tracking. Liao et al. (2006) extended these ideas by
developing a tracking algorithm using range-only measure-
ments and particle filters. This work does not examine the
noise characteristics of ranging radios, and it does not dis-
cuss techniques for when the locations of the nodes are un-
known.

Ranging radio tracking systems have been demonstrated
in prior work (Schroeder et al. 2005; Kuhn et al. 2009).
Many of these systems operate at a small scale (e.g., the
room or even sub-room level) with a high node density of
multiple nodes per room. Thus, they do not require proba-
bilistic noise modeling beyond some simple signal process-
ing. A survey of larger-scale ranging radio tracking systems
is given by Gezici et al. (2005). They provide fundamental
limits for the noise characteristics of various types of rang-
ing sensors.

At the scale of a floor of a building with only a few nodes
on the entire floor, it is beneficial to incorporate probabilis-
tic noise models into the tracking system. Gustafsson and
Gunnarsson (2005) developed a probabilistic noise model
for ranging radios that jointly estimates whether the node
is within line-of-sight, and Nicoli et al. (2008) provided a
model based on jump Markov particle filters that also con-
siders the line-of-sight characteristics of the measurement.
These approaches are particularly useful in environments
with few walls where there are distinct differences between
the noise characteristics of measurements that do and do not
have line-of-sight. In larger environments with many walls,
it is more difficult to develop separate measurement models
for the line-of-sight and non-line-of-sight cases. This prior
work examined the case of known node locations, and they
do not provide methods for reconstructing the locations of
the radios without prior knowledge or pre-installed infras-
tructure.

The room-level tracking techniques proposed in the cur-
rent paper were originally introduced in our previous work
as part of a framework for searching a cluttered environ-
ment for a mobile target (Hollinger et al. 2009). Our previ-
ous work describes an algorithm that incorporates both co-
ordination and tracking. In the current paper, we extend our
tracking sub-algorithm by modeling the noise characteristics
of ranging radios and deriving a method for reconstructing
unknown node locations. As a result, our techniques using
ranging radios can easily be incorporated into the coordi-
nated search framework developed in previous work.

When the locations of the nodes are initially unknown,
the tracking problem is closely related to simultaneous lo-
calization and mapping (SLAM). Kehagias et al. (2006) de-
veloped a batch SLAM method for use with range-only sen-
sors. This technique minimizes the total squared error of the
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target’s path and the locations of the stationary nodes given
the range measurements. This technique worked well when
a good initial estimate was available, but it was brittle to
changes in the initial path. Djugash et al. (2008) proposed
a range-only SLAM method using Extended Kalman Filters
(EKFs). This EKF approach projects range measurements
into polar space and uses a multi-modal representation to
avoid errors from poor initialization, ambiguities, and noise.
Despite these improvements, EKFs do not handle outliers as
well as techniques using dimensionality reduction because
they require linearization, and they are prone to error when
odometry is poor or nonexistent. In Sect. 5, we compare
EKF SLAM and batch SLAM with non-linear minimization
to our proposed algorithm.

In an application similar to ours, Olson et al. (2006) pre-
sented a method for locating ranging sonar beacons with
an Autonomous Underwater Vehicle (AUV). They discuss a
spectral graph partitioning method for outlier rejection, and
they use a discretized voting scheme to attain an approxi-
mate estimate of the beacons before running an EKF. Their
beacon initialization method relies heavily on the dead-
reckoning (odometry) data from the AUV. In our applica-
tion, reliable odometry is not available to assist in beacon
initialization. In Sect. 5, we provide a comparison of our
method to a method similar to theirs that reconstructs the
node locations using robot odometry.

Researchers in the sensor network community have also
worked on localizing networks containing both moving and
stationary nodes. Priyantha et al. (2005) proposed a method
for coordinating a mobile node to localize a range-only net-
work. Their method does not use a probabilistic formula-
tion, which makes it poorly suited for sensors with nonstan-
dard noise models. Their application is also different from
ours in that they have control over the mobile node. Hu and
Evans (2004) also discussed localizing sensor networks that
contain moving nodes. Their work is innovative in that it
shows that moving nodes can help localize a sensor network,
but they do not directly apply their method to range-only
data. We present a fully probabilistic method that focuses on
tracking a mobile node in a range-only sensor network. Our
method is able to reconstruct the location of the stationary
nodes (if necessary) for later use in tracking.

Recent research has explored the use of Gaussian Pro-
cesses for modeling the noise characteristics of non-linear
sensors. Ferris et al. (2006) looked at tracking humans in
office environments using measurements of wireless signal
strength. Schwaighofer et al. (2003) also applied Gaussian
Processes with the Matern kernel function for localization
using cellular phone signal strength. We present results for
modeling ranging radios with Gaussian Processes. We also
derive a mixture of Gaussians modeling technique that ap-
proximates the Gaussian Process solution and allows for
outlier removal.

Without reliable odometry, recreating a path from range
measurements becomes a non-linear dimensionality reduc-
tion problem. Gaussian Process Latent Variable Models
(GPLVMs) were introduced by Neil Lawrence as a proba-
bilistic framework for non-linear dimensionality reduction
(Lawrence 2005). GPLVMs were later extended by Wang et
al. (2007) to incorporate dynamics with applications to hu-
man motion modeling. Modeling dynamics allows for the
incorporation of simple motion models into the GPLVM
framework.

Ferris et al. (2007) applied GPLVMs to solve the problem
of localization with wireless signal strength when training
data is unavailable. Their algorithm takes advantage of the
above tools in a target tracking scenario. Our work builds
on this technique by using the reconstructed path to map
the locations of ranging radio beacons. This step may not
be possible with wireless signal strength, due to difficulty
in modeling their noise characteristics. In addition, track-
ing with wireless signal strength typically uses ten or more
access points. Our method for reconstructing the node loca-
tions allows for tracking with sparse deployments, such as
those analyzed in the current paper.

Ranging radio tracking has both advantages and disad-
vantages in comparison with wireless signal strength track-
ing (Ferris et al. 2006, 2007). Data from wireless signal
strength are often erratic and can be affected by slight
changes in the environment, while ranging radio measure-
ments more closely follow the true range between nodes.
This allows us to reconstruct the positions of the radio nodes
more easily than one would reconstruct the positions of
wireless access points. Ranging radios also have the advan-
tage over many sensors that they do not suffer from false
detections. That is, a ranging radio will not believe it has
received a range measurement that was not sent (assuming
the data packets are properly synchronized and identified be-
tween radios). In addition, data association can be handled
trivially by transmitting node identification numbers with
range packets. On the other hand, wireless access points are
already part of the infrastructure of many buildings, and ra-
dio nodes would need to be placed in a building before use
in tracking. In addition, multipath and line-of-sight block-
age can detrimentally affect the accuracy of ranging radio
measurements.

Significant research effort has also been applied to track-
ing and localization using RFID tags (Zhou and Shi 2009).
Ranging radios have the advantage of providing a range
measurement between nodes. RFID tags typically provide
only a passive “on” or “off” signal between detector and
tag. In addition, RFID tags can suffer from false detections,
since the receiver is not actively transmitting its signal.
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3 Tracking with known node locations

We now present a room-level tracking approach that allows
us to determine the room or hallway location of a target
carrying a ranging node using stationary ranging nodes at
known locations. In many indoor tracking applications, it
may be more important to determine the target’s room loca-
tion than its location in 2D space. For instance, in the case
of a lost first responder, a small tracking error could lead
to the target being on different sides of a wall. On the con-
trary, when a room-level approach is used, a search team
would know which room to search. In this section, we will
assume that the locations of the nodes, as well as the map
of the environment, are known. However, the noise model-
ing techniques are applicable to any discrete representation
(e.g., a particle filter or regular grid) when the map is un-
known.

3.1 Room-level tracking

In an indoor environment, maps often have implicit dis-
cretizations into rooms and hallways. In the case of tracking
a moving target in these scenarios, it is often advantageous
to know in which room the target is located. Drawing from
these observations, we discretize the floor plan into convex
rooms and hallways. This can be done either by hand or by
arbitrarily collapsing regions found using a convex region
finding algorithm. Figure 1 shows an example floor plan
used in our experiments in Sect. 5.

Taking into account cell adjacencies in the environment
forms an undirected graph of the target’s movement options.
We can now define a probability distribution pt(C) over
the target’s possible location at time t in m cells, where
C = {c1, c2, . . . , cm}. The cells represent a subset of the map
(in this case a subset of �2). The resulting probability dis-
tribution, in addition to the cell adjacency matrix, forms a
Markov Chain. The target’s motion can now be modeled on
the Markov Chain using diffusion matrices. For any time

Fig. 1 Discretization of office environment used for ranging radio
tracking. The discretization uses structural aspects of the built environ-
ment to provide a room-level tracking with very noisy measurements.
This environment was used with three different configurations of rang-
ing radio nodes (see Fig. 4)

t + 1, the target’s predicted location is a function of the dif-
fusion matrix D and the distribution at time t :

p−
t+1(C) = pt(C)D. (1)

The diffusion matrix allows for flexible modeling of target
motion, which can account for speed changes, room size,
and other factors. If a more sophisticated non-Markovian
model is available, it can be incorporated into this frame-
work using sampling-based methods, such as particle filters
(Thrun et al. 2005).

Having properly modeled the target’s motion, we now in-
corporate information from range-only measurements. In a
Bayesian framework, the posterior distribution is given by:

p+
t (c) = ηp(z|c)p−

t (c), (2)

where p(z|c) is the probability of receiving range measure-
ment z given that the target is in cell c, and η is a normalizing
constant. The measurement z is represented by a range value
in �1. Note that the measurement space is not required to be
discrete, and the locations of the nodes do not need to be re-
duced to discrete values. We utilize a continuous likelihood
function in the following sections.

In the following sections, we assume that the measure-
ment likelihoods can be treated independently. The presence
of measurement dependencies relies heavily on the homo-
geneity of the obstacles in the environment. For instance,
a thick wall could potentially break the independence as-
sumption. In the indoor environments of interest, the con-
struction and number of walls is relatively homogeneous.
The independence assumption has also been used success-
fully in prior work (Ferris et al. 2006).

Since the discretization of the environment into cells is
very coarse, it is often advantageous to calculate p(z|c) at a
finer resolution. For this purpose, we more finely divide each
cell c into subcells cb ∈ c. We then calculate the probability
p(z|cb) at each subcell and recalculate the larger probability
by summing over these subcells.

3.2 Ranging radio noise modeling

Ultra-wideband ranging radios operating in the 6 GHz + fre-
quency band can provide range measurements through walls
in indoor environments (Multispectral Solutions 2008).
Ranging radios show better accuracy than alternative rang-
ing devices in cluttered environments because the ultra-
wideband signal produces sharper transitions and more ac-
curate timing estimates from transmitter to receiver when
ranging through obstacles.

Our experiences show that the environment has a large
effect on the noise characteristics of ranging radios. When
ranging radio signals move through occlusions, the peak in
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the signal becomes less pronounced. In a time-of-arrival sys-
tem, this often leads to the peak being detected after it ac-
tually occurred. This creates a tendency towards measure-
ments that are longer than the actual range between targets,
and this elongation tends to increase as the signal travels
through more occluded space. Thus, the noise characteris-
tics are non-linear and are difficult to model. This section
describes some methods to model this noise and to estimate
the target’s location at the cell level.

3.2.1 Simple Gaussian modeling

To determine the probability that a target is in cell c given
a measurement z, it is necessary to calculate the likelihood
p(z|c) as described above. If one assumes that the noise is
Gaussian, noting that this is often not the case with ranging
radios, the likelihood can be calculated as in (3):

p(z|c) = N (z; rc, σ 2
r ), (3)

where z is the observed range value, rc is the true range from
cell c to the ranging node, and σ 2

r is the variance of the noisy
range measurement.

The range measurement variance σ 2
r must be estimated

from the data, but this often can be done with very little cal-
ibration data. To calculate the true range rc for a cell c, that
cell must be reduced to a point. Methods for doing this in-
clude using the cell’s centroid or subdividing the cell into
a fine grid of cells cb and then summing the likelihoods
over these subcells (Hollinger et al. 2009). We take the lat-
ter approach due to the coarseness of our room-level cell
discretization.

3.2.2 Gaussian process modeling

If calibration data is available for the environment, we can
use a learning method to estimate p(z|c). As described
above, the noise characteristics of ranging radios are of-
ten non-linear. Gaussian Processes offer a non-parametric
Bayesian solution to modeling non-linear noise given train-
ing data. Our formulation of Gaussian Processes for ranging
radio noise estimation closely follows that given by Ferris
et al. (2006, 2007).

A Gaussian Process models a noisy process with an un-
derlying noise model as below:

zi = f (xi) + ε. (4)

We are given some training data of the form D =
[(x1, z1), (x2, z2), . . . , (xn, zn)] where xi ∈ �d and zi ∈ �.
In the case of ranging radios, xi is a point in the 2D plane
(d = 2), and zi represents a range measurement from a sin-
gle node to this point.1 Since zi is a measurement of range

1Note that this necessitates learning separate Gaussian Processes for
each fixed node.

between nodes, we have a strong model that zi should fol-
low. To utilize this, we subtract off the true range rxi

from
all observed measurements zo

i :

zi = zo
i − rxi

. (5)

Subtracting off the range offset allows the Gaussian Pro-
cess to learn the deviation from the true range rather than
learning the underlying range function. Note that it is neces-
sary to know the positions of the nodes to determine rxi

. We
relax this constraint in Sect. 4.

For n training points, refer to the n×d matrix of xi values
as X and the n× 1 vector of zi values as Zq . Note that there
is a Zq vector for each of the Q nodes (used to learn separate
Gaussian Processes). The next step in defining a Gaussian
Process is to choose a covariance function to relate points
in X. We choose the commonly used squared exponential
kernel:

cov(f (xi), f (xj )) = k(xi, xj )

= σ 2
f exp

(
− 1

2l2
|xi − xj |2

)
, (6)

where σ 2
f and l are hyperparameters.2

Combining the covariance values for all points into a ma-
trix K and adding a Gaussian observation noise hyperpa-
rameter σ 2

n yields:

cov(Zq) = K + σ 2
n I. (7)

We now wish to predict the function value f (x∗) at a
selected point x∗ given the training data:

p(f (x∗)|x∗,X,Zq) = N (f (x∗);μx∗ , σ
2
x∗), (8)

where

μx∗ = kT∗ (K + σ 2
n )−1Zq, (9)

σ 2
x∗ = k(x∗, x∗) − kT∗ (K + σ 2

n )−1k∗, (10)

k∗ is the covariance vector between the selected point x∗ and
the training inputs X.

When estimating the likelihood of a measurement z∗ at a
selected point x∗, we must also add the observation noise:

p(z∗|x∗,X,Zq) = N (z∗;μx∗ , σ
2
x∗ + σ 2

n ). (11)

If x∗ is replaced by a point in a finely discretized subcell
cb ∈ c, (11) represents the likelihood p(z|cb,X,Zq). This
can now be used to fold in information from measurements
in our room-level tracking framework.

2Hyperparameters for each GP can be determined by maximizing the
log likelihood of the measurements given the locations and the hyper-
parameters.
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3.2.3 Mixture of Gaussians modeling

A mixture of Gaussians model coupled with a filtering algo-
rithm offers another alternative to modeling the sensor noise
in the presence of calibration data. We recursively refine a
mixture of Gaussians noise model of the sensor as calibra-
tion data is fed into the system sequentially. In this approach,
the expected value of an observed range measurement zo is
as described below:

ẑ� =
(‖�‖∑

i

ωisi

)
∗ rq + ε, (12)

where rq is the true range between node q and the target, ε is
zero mean Gaussian noise with variance σ 2, ωi is the weight
of the mixture Gaussian i, and � is the set of si , each repre-
senting a different Gaussian used within the mixture model.
The si terms scale the true range measurements to model
the expected mean offset within the observed range mea-
surements. The term ẑ� comes from a mixture of Gaussians,
each of which has a scaled mean around the true expected
range rq . This model works under the assumption that while
the observed range measurements can be scaled when com-
pared to the true measurements, they still contain a noise
term that is independent of the scaling offset.

The weights ωi can be updated recursively within each
iteration as described below:

ω+
i = ηω−

i exp

(
− (ω−

i rq − zo)2

2σ 2

)
, (13)

where η is a normalization term, which adjusts the weights
ωi such that

∑‖�‖
i ωi = 1.

After calibration, when we receive a new measurement,
the likelihood of the measurement can be computed as fol-
lows:

p(z|c,X,Z) = N
(

z;
(‖�‖∑

i

ωisi

)
∗ rc, σ

2
r

)
. (14)

In the general case, the number of Gaussians, their off-
sets, and their variances can be learned from the data. In the
results below, we use a single offset Gaussian, which empir-
ically performs well on the ranging radio data. The Gaus-
sians offset and its variance are learned from the data by
maximizing the squared distance between the training data
and the model prediction.

3.2.4 Outlier rejection

One particular benefit we gain from any of the above mod-
els is ease of incorporating a filtering algorithm to reject
outliers within the calibration data. We can do this using

a chi-squared test as a measurement validation gate. Intu-
itively, it can be expected that outliers will be occasional
and more importantly uncorrelated. If recent measurements
to a specific node are similar, we will be confident about the
expected measurement, and the gate should uphold a higher
criteria for incoming measurements. Using this method, we
compute the normalized innovation squared as:

εν = νT σ−2ν, (15)

where ν is the innovation (i.e., the difference between the
measurement zo and its expected value ẑ�) and σ 2 is the
variance of the accepted measurements. The term εν has a
chi-square distribution, so the gate’s bounding values can be
read from the chi-square table, and a measurement can be
discarded if its εν value is outside the bounding values. The
measurement gating step provides increased robustness to
outliers.

4 Tracking with unknown node locations

We now present a tracking method that relaxes the con-
straint that the locations of the nodes must be known a pri-
ori and does not require calibration data. This tracking sce-
nario would occur if one entered an environment without
pre-installed infrastructure. In this section, we assume that
we are given an ordered n × Q matrix Z of n measure-
ments from a moving target to a number of ranging nodes Q.
We are not given any information regarding the locations of
those nodes in the environment, nor are we given a vector
of ground truth locations that correspond to these measure-
ments.

4.1 Path reconstruction with GPLVMs

Given a matrix Z of range measurements, it is straightfor-
ward to frame the reconstruction the target’s path Xr as a di-
mensionality reduction problem. The problem becomes one
of projecting from the Q dimensional data space to the A

dimensional latent space. In our case, Q is the number of
radio nodes, and A is two (the target’s path is in �2). Since
the measurements from the ranging radios are highly non-
linear, we need a method that handles these non-linearities.
Also, we wish to utilize the information that Z is ordered,
and the points corresponding to Zt and Zt+1 are near each
other in latent space. This is the problem of incorporating
dynamics.

Gaussian Process Latent Variable Models (GPLVMs)
provide a probabilistic method for non-linear dimensional-
ity reduction (Lawrence 2005). GPLVMs have also been ex-
tended to incorporate dynamics (Wang et al. 2007), and they
have been used to reconstruct 2D paths using wireless signal
strength (Ferris et al. 2007). Below, we show how GPLVMs
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can be used to reconstruct the path of a target using infor-
mation from ranging radios.

Data from ranging radios are often sparse, and we do not
receive measurements from each radio at every time step. In
fact, it is often the case that a radio reading might be absent
when traveling through an entire hallway. To prevent miss-
ing data in Z, we linearly interpolate across time steps. This
was shown in previous work to be an effective strategy for
tracking with ranging radios in indoor environments (Keha-
gias et al. 2006). For sensors with larger gaps in the data, a
more sophisticated approach may be necessary.

Bayesian dimensionality reduction consists of maxi-
mizing both the marginal likelihood of the observations
p(Z|Xr) and a prior on the underlying positions p(Xr).
For a matrix Z with Q columns:

p(Z|Xr) =
∏

q=1:Q
N (Zq;0,K + σ 2

n I ), (16)

where K is the covariance matrix as described above.
The prior value p(Xr) can be used to model the dynam-

ics in an ordered data stream. This can be done using the
standard auto-regressive prior (Wang et al. 2007) or using a
more specialized prior using distance and orientation con-
straints (Ferris et al. 2007). Our results in Sect. 5 use the
standard auto-regressive prior, and we leave the derivation
of a more informed prior to future work.

Having defined both p(Z|Xr) and p(Xr), the values for
Xr can be recovered by running conjugate gradient ascent
on the joint distribution in (17). As in prior work (Ferris et
al. 2007), we use the Isomap algorithm to generate an initial
path for the conjugate gradient optimization (Tenenbaum et
al. 2000).

p(Xr,Z) = p(Z|Xr)p(Xr). (17)

The resulting distribution p(Xr,Z) provides a full gen-
erative model of the sensor noise. The path defined by Xr

is locally consistent (i.e., the distances between points are
correct relative to each other, but not necessarily relative
to any global reference frame). To recover a globally con-
sistent path, the values may need to be rotated or flipped
along an axis. We assume that the locations of two points
on the path are known, and we use these points to rotate
into a global frame consistent with our environment map.
Knowing these points would be as simple as knowing when
the target entered a building and when it passed a landmark
midway through the run.

We also found that the scale of the reconstructed path was
often incorrect. While the range measurements encode scale,
there is no odometry available to constrain the scale of the
path itself, and the sparse nodes make reproduction of scale
highly underconstrained. The use of a more informed mo-
tion model could potentially provide a better reconstruction

of scale. For this paper, we simply use the two known points
to readjust scale. It is important to note that knowing two
points on the target’s path is not equivalent to knowing the
locations of two stationary nodes. Even if the entire target
path were known, locations of all nodes in the environment
would still need to be reconstructed from noisy ranging data.

4.2 Recovering node locations

Having reconstructed a globally consistent path Xr , our next
step is to reconstruct the radio node locations Lr . Given a re-
constructed path Xr and a corresponding vector of ranging
measurements Z, we estimate the locations of each node us-
ing a Bayesian approach (Thrun et al. 2005). We finely dis-
cretize the region in �2 in which node q could be located
into a grid X

q
map.3 Then, we step along the path Xr calculat-

ing the following at each cell:

p(xq
map) =

∏
t=1:n

N (z
q
t ; |xq

map − xr
t |, σ 2

r ), (18)

where n is the number of range measurements from node q

to the target, z
q
t is the range measurement from node q at

time t , | · | is Euclidean distance, and σ 2
r is a noise estimate

for the radio sensors (estimated from prior data). Having cal-
culated p(x

q
map) for all cells in X

q
map, we find the location of

node q by setting lrq = maxx p(x
q
map).

The resulting grid map encodes the posterior probability
of the node being located at each grid cell given the target’s
path and the range measurements received. Note that, while
this is a mapping problem, it is simplified from general oc-
cupancy grid mapping that takes into account negative infor-
mation (Mullane et al. 2009). The use of negative informa-
tion (in this case missed measurements) may improve per-
formance, at the cost of a significantly more complex map
update. In addition, since a batch method is used, informa-
tion from missed measurements would likely be redundant,
as they would only give information about large areas in
which the node could not be.

Once the node locations have been reconstructed on the
grid, we can construct a Kalman update to incorporate in-
ternode measurements. The Kalman update adjusts the re-
constructed locations so that internode measurements are
closer to those measured. In practice, we found that incor-
porating internode measurements did not lead to much im-
provement, and we direct the reader our previous work for
the formulation of the range Kalman update (Djugash et al.
2006).

After reconstructing the node locations, we can combine
them with the path estimate and range measurements. This

3If more information is known about where the nodes are located, then
an informed initial distribution can also be used.
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yields enough information to calculate any of the noise mod-
els presented in Sect. 3, which can then be utilized for future
tracking.

5 Experimental results

5.1 Hardware setup

A test environment was constructed using a Pioneer robot
and five radio nodes to examine the performance of our
tracking algorithms. The Pioneer carried a radio node and
acted as the target in these trials. The Pioneer also carried a
SICK laser scanner, and a map of the environment was found
using laser AMCL-SLAM methods from the Carmen soft-
ware package (Thrun et al. 2005). Laser localization with
the map was used for ground truth comparison and acquir-
ing training data. The laser-based localization and odome-
try (wheel encoders and a gyro) were used to generate the
ground truth, but neither were used for the GPLVM track-
ing experiments, which models the case of a human target
without odometry and a laser scanner. The robot moved at a
speed of approximately 0.3 m/s during the experiments.

We utilized five ultra-wideband radio beacons from Mul-
tispectral Solutions to provide sensor measurements (Multi-
spectral Solutions 2008). These sensors use time-of-arrival
of ultra-wideband signals to provide ranging measurements
between nodes through walls. They propagate these mea-
surements back to a base node using wireless communica-
tion. They are set to operate continuously, and a full set of
measurements between five nodes is received approximately
every five seconds. In our experiments, we found that the
Multispectral radio nodes have an effective range of approx-
imately 30 m when ranging through walls. Four radio nodes
were placed around the environment in three different con-
figurations (see Fig. 4), and one was placed on the Pioneer
robot. Figure 2 shows a photograph of the Pioneer robot with
a mounted ranging radio.4

5.2 Results with known node locations

We tested our methods for tracking with known fixed node
locations (Sect. 3) in an office environment shown in Fig. 1.
We first ran a calibration test to estimate the variance σ 2

r

of the ranging radios. The variance with a simple Gaus-
sian was estimated to be σ 2

r = 3.85 m2. Running a mix-
ture of Gaussians, we found that a single Gaussian with
an offset modeled the data well. Figure 3 shows the off-
set Gaussian fit for the smaller loop. Applying this offset

4This paper has supplementary downloadable material, which in-
cludes a movie clip showing playback of the tracking experiments.
This material is available at http://www.springer.com/engineering/
robotics/journal/10514.

Fig. 2 Photograph of
multispectral ultra-wideband
ranging radio mounted on
Pioneer robot. The robot was
teleoperated around the
environment to act as the
moving target

Fig. 3 Noise modeling using an offset Gaussian. The corrected line
(solid) using an offset Gaussian provides a better model of the true
range than the raw measurements

to that data yielded σ 2
r = 1.03 m2, showing that the offset

significantly reduces the measurement variance. These high
variances demonstrate the noisiness of non-line-of-site rang-
ing sensors, which makes tracking with them a challenging
problem. The value of the offset that produced the smallest
σr was consistent throughout all trials, showing it to be ro-
bust to changes in node configuration throughout the same
environment.

Table 1 shows tracking results with known node locations
in both a 45 m × 30 m and a 60 m × 30 m office building
loop. Each result is averaged over two separate trials (not in-
cluding the training trial). The coarse discretization is shown
in Fig. 1, and the finer subcells used for tracking were set to
50 cm×50 cm. All methods estimate that the target is either
in the correct cell or in an adjacent cell over 90% of the time.
In these trials, a random target diffusion model was used that
corresponds to a speed of 0.3 m/s. Varying the speed of the
random walk by an order of magnitude did not significantly
affect the tracking accuracy for these trials, which shows the
method to be fairly robust to changes in target motion mod-
eling.

The results with known node locations show that Gaus-
sian Process modeling improves room-level tracking accu-

http://www.springer.com/engineering/robotics/journal/10514
http://www.springer.com/engineering/robotics/journal/10514
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Table 1 Tracking accuracy with known node locations in an office
environment. Format: (xx/yy), where xx is percentage of estimates in
correct cell (room or hallway), yy is percentage of estimates in correct
or adjacent cell. All room-level tracking methods estimate that the tar-
get is either in the correct cell or in an adjacent cell over 90% of the
time

Loop size of target path

45 m × 30 m 60 m × 30 m

Kalman filter 44.8%/55.5% 60.7%/66.1%

Simple Gaussian 71.9%/97.6% 60.9%/93.9%

Gaussian Process 75.0%/95.5% 64.4%/90.8%

Offset Gaussian 76.3%/97.6% 68.0%/94.1%

racy slightly over the simple Gaussian method. This im-
provement would likely be more significant if the original
measurement variance were larger than the size of most
cells in the environment. The offset Gaussian derived using
a mixture of Gaussians outperforms both the simple Gaus-
sian and the Gaussian Process modeling methods. This is
likely due to the Gaussian Process method’s poor perfor-
mance for areas that it does not have dense training data.
In Sect. 6, we discuss several methods for improving the
performance of the GP method. The offset Gaussian if par-
ticularly useful for correcting the bias towards measure-
ments longer than the true range (see Fig. 3). The track-
ing methods all had a tendency to estimate the target’s
cell incorrectly when erratic measurements were received
(from multi-path effects or signal interference). These cases
tended to produce several erroneously long measurements
in a row, which our methods were not able to model or filter
out.

We also show results using a standard 2D Kalman fil-
ter for comparison. We use a Kalman filter implementation
with a constant velocity motion model (no odometry) that
linearizes the range measurements in polar space (Djugash
et al. 2008). This filter operates in continuous space and
does not use a room-level discretization, so the estimate of-
ten falls outside of rooms on the map. Room-level tracking
prevents this deviation from the map and improves tracking
accuracy.

5.3 Results with unknown node locations

We now examine the performance of our proposed method
when the path is reconstructed using GPLVM dimension-
ality reduction and the node locations are mapped with a
Bayesian grid. For the following experiments, we assume
that the floor plan is known a priori. However, we note that
the floor plan is only necessary for the room-level tracking
component and is not used in the GPLVM dimensionality
reduction or node reconstruction phases. If a floor plan were
not available, alternative continuous tracking methods could

be utilized with any of the proposed noise models and the
reconstructed node locations.

Using the same test environment as in the case of
known nodes, Fig. 4 shows example paths reconstructed
by GPLVM dimensionality reduction and an image of re-
constructed nodes on a floor plan. The hyperparameters of
the GPLVM were estimated by maximizing the log likeli-
hood of the data from a training run with a different node
configuration and known node locations. The approximate
hyperparameter values were L = 5, σn = 1, and σf = 10,
though there was some variation depending on the training
run used. The locations of the path at t = 0 and t = 300 was
assumed to be known and used to adjust the scale and rota-
tion to align with the floor plan (see Sect. 4.1). After the path
was found using dimensionality reduction, the locations of
the nodes were reconstructed on the Bayesian grid. Fig. 5
shows an example Bayesian grid progression for a large
loop. The node estimate quickly becomes a circular range
annulus and later becomes unimodal as more measurements
are incorporated.

Table 2 shows the mapping accuracy of the nodes uti-
lizing the paths reconstructed from the GPLVM. Since the
number of nodes was held constant, and their operating
range is limited, larger areas covered by the target led to
sparser ranging data. The dimensionality reduction prob-
lem also becomes more challenging as the 2D area spanned
by the target path becomes longer. We additionally show
mapping errors from node reconstruction using the target’s
ground truth path from laser localization. These errors, as
high as 3 m on the large map, can be considered a gold
standard, subject to the accuracy of the measurement noise
model. In other words, if the target’s path were reconstructed
as accurately as ground truth, grid mapping with ranging ra-
dio data would yield these errors. Note that a more accurate
measurement model could improve this estimate.

Since GPLVM dimensionality reduction uses conjugate
gradient descent, it can require significant run times for
convergence. Trials were terminated when the iterative log-
likelihood increase fell below a threshold, which generally
took approximately one hour on a 3.2 GHz Intel i7 pro-
cessor with 9 GB or RAM. The MATLAB implementation
was not heavily optimized, and the running time could likely
be reduced through vectorization and optimization for par-
allel processing. The use of sparse approximations for the
GPLVM would also reduce runtime (Snelson 2007).

For comparison, we implemented an Extended Kalman
Filter (EKF) SLAM method (Djugash et al. 2008) for map-
ping unknown node locations. This algorithm updates an
online Kalman estimate of the locations of all nodes us-
ing a polar representation. The polar representation pro-
vides increased accuracy after linearization (see Djugash
et al. 2008 for more detail). This method maintains multi-
modal estimates, which avoids errors from poor initializa-
tion. We present results for the EKF method both with and
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Fig. 4 (Color online) Example runs of mapping unknown node lo-
cations with GPLVM. Ground truth location of target (left), recon-
structed path from GPLVM (middle), and estimated positions of radio
nodes after grid mapping (right). Sections of the path are colored dif-
ferently for visual correspondence between the true and reconstructed
path. Squares show actual stationary node locations, circles show re-

constructed node locations, and triangle shows starting position of mo-
bile node. Though the target path reconstruction is highly imperfect,
the resulting reconstructed nodes are sufficient to track the target with
room-level accuracy (see Table 3). Note that only four nodes are used
for as much as a 60 m × 30 m area

without odometry in Table 2. A constant velocity model for
the moving target is assumed for the case without odome-
try.

The EKF method outperforms the GPLVM method when
odometry is used. The robot’s odometry is found using both
a wheel encoder and gryo, making it quite accurate over
short distances. In the case of tracking a human, such ac-
curate odometry would not be available. Without odometry,
the GPLVM method reconstructs the node locations 35%
more accurately than the EKF method. The accuracy gain is
greater for smaller environments. This further demonstrates

the appropriateness of our algorithm when odometry is un-
available.

Unlike the proposed GPLVM method, the EKF SLAM
method does not perform a batch optimization. To deter-
mine the benefit of batch optimization, we also compare to
a batch SLAM method proposed by Kehagias et al. (2006).
This method encodes the range measurements as constraints
and performs a non-linear minimization on both the path
and node locations. For the batch SLAM, Isomap was used
to produce the initial path, and a motion model was incorpo-
rated that penalizes points on the path that would require a
speed greater than 0.3 m/s. The squared error of both the
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Fig. 5 Example likelihood map progression using GPLVM path for
the nodes in Fig. 4 (60 m×30 m loop). The left-to-right columns in this
figure correspond to the left-to-right sequence of nodes (brown, blue,
green, magenta) on the map. The estimates quickly become range an-
nuli centered around the middle of the map (the moving node’s starting

location) and later collapse into a single mode as more range mea-
surements are incorporated. Measurements are not received from the
middle-left node until t = 150 s. Thus, the estimate is a uniform distri-
bution until that time

Table 2 Node mapping error comparison in office environment with
unknown node locations. Mapping error is average Euclidean error for
four nodes. Two types of target paths are considered: the loop moves

around in a closed circuit, and the cross returns to a middle point a
number of times (see Fig. 4). The mapping errors with a known path
use a ground truth path found using laser localization

Map size Path type Mapping error

Known EKF SLAM EKF SLAM Batch SLAM GPLVM

path w/ Odom w/o Odom w/o Odom

30 × 30 Cross 2.0 m 2.5 m 6.9 m 2.9 m 3.0 m

45 × 30 Loop 2.7 m 3.9 m 6.2 m 6.7 m 4.4 m

60 × 30 Loop 3.2 m 3.6 m 5.6 m 12.4 m 4.5 m

range measurements and the motion penalties was mini-
mized for the three trials, and the results are presented in
Table 2.

The batch SLAM method is competitive with our pro-
posed method for the cross trial, but it fails to reconstruct
the node locations accurately in the loop trials with longer

target paths. We conjecture that the failure arises because
the minimization finds a local minimum of the cost func-
tion. In contrast, the GPLVM is more robust to local minima
and outliers. The batch SLAM method was run until con-
vergence, which yielded comparable running times with the
GPLVM (approximately one hour on the large loop).
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Fig. 6 Comparison of path and node reconstruction for the GPLVM
method and a method using only odometry in the 60 m × 30 m envi-
ronment (ground truth and GPLVM reconstructed paths shown previ-

ously in Fig. 4). Drift in the path from odometry prevents the nodes
from being accurately mapped. The GPLVM method does not use any
odometry to reconstruct the path or the node locations

Table 3 Tracking results in office environment with unknown node
locations. Mapping error is average Euclidean error for four nodes.
Tracking accuracy is the room-level localization accuracy using recon-
structed nodes from GPLVM path (xx/yy metric same as in Table 1)

Map size Path type Mapping error Tracking accuracy

45 m × 30 m Loop 4.4 m 52.4%/76.4%

60 m × 30 m Loop 4.5 m 52.6%/80.4%

An alternative to reconstructing node locations using a
path from GPLVM dimensionality reduction is to use a
path found from odometry (Olson et al. 2006). To explore
this possibility, we ran a forward integration of the Pioneer
robot’s odometry to generate a path through the environ-
ment, and we used this path to reconstruct the node locations
with a Bayesian grid. Figure 6 shows a comparison of node
reconstruction accuracies for our GPLVM method and the
method using odometry integration. The results show that,
even using relatively accurate robot odometry, the path from
odometry drifts far from ground truth. By the end of the run,
the node estimates are over 14 m away from their correct
locations. The GPLVM method, on the other hand, recon-
structs a path that does not drift over time. This yields aver-
age final node estimates within 4.5 m of their correct loca-
tions. The reconstruction error using the ground truth path
(found from laser localization) is also presented. These re-
sults show that the path reconstructed from GPLVM can be
used to reconstruct the node locations nearly as accurately
as the ground truth path.

We also tested our method for tracking using recon-
structed node locations in the same office environments.
Tracking was performed using an offset Gaussian calculated

from the reconstructed path and node locations. The method
was able to predict the target in the correct cell or in an adja-
cent cell approximately 80% of the time (see Table 3). Note
that these results are for the case without pre-installed in-
frastructure and do not utilize any odometry or inertial mea-
surement of the target.

6 Conclusions and future work

In this paper, we have shown that it is feasible to track a
moving target without line-of-sight in a cluttered environ-
ment using very few ranging radio nodes and no odometry
information. We have presented tracking methods for both
known and unknown node locations, and we have demon-
strated these methods in a complex environment. We have
incorporated our methods into a room-level tracking frame-
work that outperforms standard tracking methods, and we
have presented a method using mixtures of Gaussians that
removes outliers and yields better tracking results than both
simple Gaussian modeling and Gaussian processes. These
methods correctly locate the target in the correct cell or an
adjacent cell up to 98% of the time. Our noise modeling
methods utilize a discretized map of the environment, and
they are capable of operating without a map through the use
of a regular grid or particle filter.

When the node locations are unknown, we have demon-
strated that the two-step method of GPLVM dimensional-
ity reduction followed by Bayesian grid mapping can effec-
tively find the positions of radio nodes with on average 35%
more accuracy than an EKF SLAM technique. In addition,
our method is able to map the node locations when a more
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standard batch SLAM method fails. We have also shown that
paths from GPLVM reconstruction can locate nodes after
paths from odometry have drifted. Our GPLVM method pro-
vides a course estimate of the target’s position that puts it in
the correct or adjacent cell approximately 80% of the time.
The proposed method uses a batch technique to reconstruct
the target’s path and then utilizes that path to map the loca-
tions of the nodes. The path reconstruction and node map-
ping are decoupled and solved sequentially. This decoupling
reduces the computation and complexity of the approach,
making it feasible on a standard processor. The performance
of the two-step technique demonstrates that this decoupling
is justified in this scenario.

Our method for reconstructing unknown node locations
outperforms an EKF SLAM method (Djugash et al. 2008)
when odometry is unavailable. These gains are likely due
to the resilience of batch techniques in the face of outliers
and measurement bias. Since the GPLVM framework recon-
structs the path using a batch process, outliers in the data and
the consistent bias of the range-only measurements are miti-
gated by the influence of the other data. In contrast, the EKF
technique maintains an online estimate of the world state.
All prior data is folded into this estimate, and a history is
not maintained. In target tracking applications, it is clearly
beneficial to maintain this history, which leads to improved
results. The GPLVM method also succeeds in reconstructing
the nodes when a batch SLAM method that uses non-linear
minimization fails. The GPLVM is more robust to local min-
imum, and it is able to reconstruct the node locations in trials
with long target paths and sparse measurement data.

An interesting area for future work is to combine the ben-
efits of GPLVMs with those of graph-based SLAM methods
(Kaess et al. 2008; Grisetti et al. 2010). Unlike GPLVM di-
mensionality reduction, graph-based SLAM methods allow
for both batch operation and incremental improvement dur-
ing operation, but they are often brittle to the choice of mo-
tion model. To apply such techniques in the ranging radio
tracking domain, it would be necessary to develop meth-
ods for incorporating range measurements into the SLAM
graph without the use of accurate odometry or a target mo-
tion model.

Additional future work includes examining alternative
Gaussian Process variations for modeling the noise char-
acteristics of the sensors. Specifically, the use of non-
stationary kernels or a polar representation could improve
performance when little training data is available. For the
path reconstruction phase, refining the target’s dynamics
models to incorporate motion constraints would likely im-
prove performance. More informed dynamics models will
help improve the accuracy of the reconstructed node lo-
cations and the tracking accuracy after reconstruction. The
use of the recently developed GP-Bayes filters (Ko and Fox
2011) would also allow for better incorporation of motion.

One avenue for broadening the applicability of our meth-
ods is to extend them to multi-floor tracking, which would
require a denser deployment of ranging radios and algorith-
mic adjustments to a 3D space. Another extension is to gen-
eralize our two-step method for recovering unknown node
locations to sensors other than ranging radios. This paper
shows that probabilistic dimensionality reduction provides
a powerful tool for solving target tracking problems with
ranging radios. We believe that further exploration into these
methods will lead to improvements across application do-
mains.
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