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Abstract
Effective deployment of robots in search and rescue missions will enable faster and

safer removal of debris and other hazardous material. As a result, additional lives will
be saved, the number and severity of injuries will decrease, and significant damage to
infrastructure will be avoided. Already today robots are an integral part of many search
and rescue units. These robots typically serve as either mobile cameras (autonomy in
navigation, but no manipulation capabilities) or as tools controlled by a human operator
(no autonomy, but capable of interacting with the environment). We propose a robotic
manipulator that shares a role with the human operator: the robot provides the operator
with processed visual information and a set of possible actions, and the human operator
chooses the desired next interaction with the environment. To that end, we develop
a novel scene segmentation algorithm based on 3D data and a toolbox of compliant
motion controllers. We evaluate our approach in real-world experiments in which our
robot is tasked with clearing piles of unknown natural objects.
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1 Introduction
Efficient and reliable robotic manipulation of natural objects (Figure 1) in the aftermath
of a disaster will increase the number of lives saved, decrease the number and severity
of injuries, and have a significant economic impact by limiting additional damage to
infrastructure and equipment.

Already today, a variety of machines participate in search-and-rescue efforts by
lifting heavy objects, manipulating in dangerous environments, and handling hazardous
material such as nuclear waste or explosives. These machines provide the necessary
power and safety, but are essentially remot controlled tools operated by experts on site.
They require a human expert to control every aspect of mobility and interaction with
the environment. Because of the high bandwidth requirements of control, the operator
must be on site, usually inside or next to the machine, an undesired, if not impossible,
requirement.

A straight forward approach to removing the on-site presence requirement is tele-
operating a robot from an off-site location [17]. However, the real-time and bandwidth
requirements associated with controlling a robot during its interaction with the envi-
ronment while considering force and visual feedback are prohibitive. An alternative
approach, on the other end of the spectrum, strives to develop autonomous navigation
and manipulation capabilities. Despite its promise, truly autonomous robots will prob-
ably remain out of reach for some years to come. This is because the current state of
the art in perception, planning, and AI still cannot support autonomous manipulation
even in simpler and well structured environments such as our homes and offices [16].

In this article we explore a third approach: sliding autonomy. In this approach, the
robot and the human operator share a role [15]. The degree of autonomy is determined
based on the capabilities of the robot and the specifics of the task. This approach
benefits from the best of both worlds: On one hand, we let the robot react in real-time
to changes in the environment without completely depending on the operator. And
on the other hand, we let the operator provide input from a remote and therefore safe
location, therefore reducing the cognitive load on the robot.

A fundamental requirement for our role-sharing approach is efficient communica-
tion between the human operator and the robot. Both the robot and the operator must
be able to refer to the same objects in the environment and understand what interactions
are feasible. The operator must be able to specify the next action as loosely as possible,
and the robot must be able to translate these instructions into a concrete motion plan.

To enable efficient communication, we have developed a system that is composed
of a graphical user interface, a perception library and a set of compliant controllers. Our
system presents the human operator with a 3D view of the scene and a segmentation
of the scene into interesting objects. The interface also provides the operator with
a set of feasible action (pushing, pulling, and grasping) that can be applied to each
detected object. The operator can use the visual information to infer the correctness of
the proposed segmentation. It can then task the robot with a pair of action and target
object. The robot in turn instantiates the appropriate controller based on the selected
action and the properties of the selected object.

In the following we describe the development of this system. First, we describe
our main contribution: a novel segmentation algorithm that leverages geometric in-
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Figure 1: Andy (DARPA’s ARM-S platform) manipulating a clutter of natural objects
taken from a construction site.

formation to segment a scene into interesting regions. We refer to these regions as
“facets”. These facets typically correspond to the faces of objects, and are reliable for
a large range of object geometries, sizes, and texture. Second, we describe a library of
compliant grasping and manipulation controllers that are parameterized by the facets
information on which they act. And finally, we describe a novel graphical user interface
enabling a human operator to communicate with a robot in low bandwidth. The second
contribution of this work is in integrating together perception capabilities, a compliant
control library, and a user interface. We validate the merits of the integrated system, as
well as the performance of the individual components, in real-world experiments with a
robotic manipulator and a set of natural objects (debris taken from a construction site).
Our experiments demonstrate the effectiveness of our approach in the task of clearing
a cluttered environment composed of these natural objects.

2 Related Work
In our proposed system, the process of manipulating unknown objects has three steps:
first, the robot perceives the scene and segments it into regions of interest. Second, a
person communicates with the robot via a graphical user interface to indicate the best
next interaction. And finally, the robot execute the interaction by instantiating one of
the available controllers. We now discuss relevant work to the first and last part: scene
segmentation and object grasping.

2.1 Scene Segmentation

Segmentation algorithms [7, 28] divide an entire image into spatially contiguous re-
gions that share a particular property. These methods process an image to identify
boundaries between regions that share a particular property. All of the methods in
this category are based on the assumption that the boundaries of objects correspond
to discontinuities in color, texture, or brightness—and that these discontinuities do not
occur anywhere else. Most methods rely on thresholding, edge detection, clustering,
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or region growing to group pixels based on brightness, color, or texture [7].
The fundamental assumption underlying these methods—namely, that discontinu-

ities of an image property indicates object boundaries—does not hold when multiple
objects are present. As clutter increases, objects are more likely to touch each other
and many of the visual discontinuities disappear. Also, in scenes that include natural
objects and debris, many objects are visually similar. As a result, the boundaries deter-
mined by the above algorithms would rarely coincide with the actual object boundaries.

Another category of segmentation algorithms analyzes sequences of images in
which objects move relative to each other. This can be accomplished using optical
flow [29], statistical methods [6, 19, 22, 23], wavelet transforms [12, 25], and factor-
ization methods [5, 8, 26]. More recently, interactive segmentation algorithms [11, 13]
were proposed in which the robot interacts with the environment to create object mo-
tion in service of segmentation. However, while relative motion is an important cue for
segmentation, it is also costly. In practice, it may be undesirable and even dangerous
to stir a pile to generate relative motion.

The perceptual skill we propose belongs to a third category of segmentation algo-
rithm: geometry based segmentation [24,27]. Methods in this category exploit geomet-
ric information to extract contiguous regions and to determine the boundaries between
those regions. These methods enjoy an increase in popularity due to the recent intro-
duction of cheap, off-the-shelf RGB-D sensors. Most of the geometric segmentation
methods are parametric methods—they fit to the data a set of predetermined shapes
such as spheres, cylinders, and most frequently planes. In practice, it is difficult to
fit these geometric shapes to debris. Thus, we propose a non-parametric method. We
too leverage geometric information. However, very much like intensity based seg-
mentation methods, we extract object boundaries based on discontinuities in depth and
surface normal orientation.

2.2 Grasping
Robotic grasping is a very well studied field. The majority of the literature on grasping
assumes that an a priori model of the object to be manipulated is available. Methods
in this category treat grasping as a purely geometric problem. They introduce grasp
quality metrics and use them to synthesize grasps in 2D or 3D [3].

Within the category of methods that do not assume prior knowledge, there are two
major trends. The first view separates grasping into two stages: acquiring an object
model and planning. For example, Hauck et al. use a stereo-vision system to detect
and triangulate grasping points on the silhouette of an object [9]. Morales et al. assume
planar extruded objects, for which two- and three-fingered grasps are planned based on
the object’s detected contour [14]. And Saxena et al. propose a classifier for detecting
grasp points in images [21]. The classifier is learned from a set of labeled training
examples. The resulting classifier usually prefers pairs of edge-like features, ignoring
any depth information.

The second view integrates the two steps into a single process. Here, grasping hy-
potheses are continuously updated by integrating sensor measurements as they become
available. For example, Calli et al. use an eye-in-hand system and apply a visual servo-
ing scheme that maximizes the curvature of the object silhouette, thus leading the hand
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to concave parts of the object [4]. And, Platt et al. use tactile feedback to refine a grasp
after initial contact by controlling two opposing fingers along the object surface [18].
They show that their strategy converges to force-closure for arbitrary convex objects.

All of the above methods are designed for man-made objects. Typically, grasping
of such objects is only a first step towards using the object. This poses specific require-
ments on how the object should be grasped (e.g. grasping a cup by its handle is good,
grasping a knife at the tip of the blade is bad). In this paper, our focus is on grasping
and manipulating natural objects. Our main objective is to remove these objects from
a pile. Thus, grasping does not have to be very precise. We leverage this insight and
contend that the expensive process of acquiring high quality object models for grasping
can be avoided.

Interestingly, recent studies show that humans too often rely on a simple metric
to predict the quality of grasp: the orthogonality of the wrist orientation relative to
the objects principal axis [2]. This approach requires perception to only estimate the
boundaries of an object, and compute its principal components—a much simpler task
than shape estimation.

Eliminating the requirements from perception does not come for free. In place
of accurate models from perception, we now require controllers that can compensate
for these inaccuracies. Kazemi et al. recently proposed a set of compliant grasping
primitives which leverage compliant contact with the environment to account for inac-
curacies in modeling and localization [10]. The proposed controllers rely on minimal
information about the object (e.g., center of gravity and principal axis) to generate and
execute a grasp. These controllers are safe and well suited for grasping in clutter due
to their compliant nature. Inspired by [10], we devised and implemented a set of com-
pliant grasping controllers which rely on minimal information acquired for each facet
through our perception system (see Section 5).

3 System Overview
Our proposed system for manipulating unknown natural objects in clutter is composed
of three components: perception, control, and a graphical user interface. The percep-
tual component is responsible for segmenting an unknown scene into a set of regions
that correspond to object or object parts. In addition, perception extracts information
about each such region. This information is then used by the second component: con-
trol. Our system can instantiate one of the available controllers with the information
acquired from perception. The decision which controller to apply to what object is per-
formed by a human operator via the third component: a graphical user interface. We
know describe each of the three components in detail.

4 Perception
To perceive an unknown scene composed of natural objects such as rocks, wood and
other debris, we developed a novel segmentation algorithm. Our algorithm identifies
contiguous regions in RGB-D sensor data by extracting two types of discontinuities:
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depth discontinuities and abrupt changes in surface normal orientation. We refer to
the segmented regions as “facets”, as each region typically corresponds to a side of an
object.

4.1 Detecting Facets
Detecting facets from a scene is composed of the following three steps: computing
depth discontinuities, estimating surface normals, and image segmentation. This pro-
cess is illustrated in Figure 2.

To compute depth discontinuities, we convolve the depth image with a non-linear
filter. This filter computes the maximal depth change from every pixel to its immediate
8 neighbors. If this distance is larger than a pre-defined threshold (in our case, 2cm),
the pixel is marked as a depth discontinuity. See Fig. 2(b) for an example.

To estimate the surface normal at any point of the 3D point cloud we fit a local
surface to the neighborhood of the point, tangent to the surface. Then, we compute
a normal to that plane. Thus, we solve a least-square plane fitting. This can be done
by analyzing the principal components of a covariance matrix created from the nearest
neighbors of the point. The matrix is computed as

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T

and vj satisfies
C · vj = λj · vj , j ∈ {0, 1, 2}

, where k is the number of points considered in the neighborhood of pi, and p̄ represents
the 3D centroid of the set of k nearest neighbors. λj is the j-th eigenvalue of the
covariance matrix, and vj is the j-th eigenvector. Our implementation is based on the
opensource Point Cloud Library (PCL [20]). We visualize the computed normals as an
intensity image, in which each channel (R, G, and B) corresponds to a direction of the
normal (X, Y, and Z). See Fig. 2(c) for an example.

Finally, we extract facets in the scene by overlaying the depth discontinuities
over the surface normals, thereby obtaining a color image in which both abrupt depth
changes and normal orientation changes can be detected. We can now treat the prob-
lem as a classical image segmentation. We use OpenCV’s meanshift segmentation
algorithm. The result of facet detection are illustrated in Fig. 2(d).

4.2 Extracting Actionable Information
To complete the perception component of our system, we now analyze the detected
facets. For each facet, we extract information that is necessary to parameterize our
compliant controllers: center of gravity (COG) and principal axis. Together, perception
provides the human operator with the set of detected objects and a set of actions that
can be applied to each object.

Estimating the center of gravity is a simple matter of averaging the 3D point cloud.
And, estimating the principal axis of a facet is achieved by computing principal compo-
nents analysis (PCA) on the corresponding point cloud. The center of gravity indicates
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(a) Intensity Image (b) Visualization of depth discontinuities

(c) Visualization of surface normals. Intensity val-
ues (RGB) correspond to the direction of surface
normals (XYZ).

(d) Extracted Facets

Figure 2: Facet detection algorithm: depth discontinuities and surface normals discon-
tinuities are used to determine the boundaries between image segments.

the desired position of the palm, and the principal axis indicates the orientation of the
wrist for grasping or pulling/pushing. Our approach makes two assumptions: the den-
sity of a facet is uniformly distributed and the entire facet is visible to the robot. In
practice, both assumption are frequently violated. Nevertheless, it usually provides us
with a good enough guess. Figure 3 shows an example of detecting centers of gravity
and principal axes.

4.3 Experimental Evaluation
To evaluate the performance of our perception, we conducted a series of experiments
with four different objects (see Fig. 4). The objects vary in size, shape, appearance, and
material. In every experiment, we placed an object on a visually confusing background
(a poster of gravel) in five different configurations. We then extracted the detected
facets. The odd rows in Fig. 4 show the objects, and the even rows show the corre-
sponding detected facets.

In all cases the object is detected correctly. The facet corresponds well to the phys-
ical boundaries of the object. In the last configuration of the second object (4th row,
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Figure 3: Extracting actionable information from facets. For the detected facets, we
compute the COG (red circle) and principal axes (axis are color coded: red = principal
axis, green = secondary axis, blue = trinary axis).

5th column) only one object facet was detected. This is not a failure. The second facet
that was detected in the other configurations is simply not visible here. In most config-
urations of the last experiment (5th and 6th row) only one large facet is detected. This
is because the remaining object facets are too small for the resolution of our sensor.

Figure 5 shows for each of the four objects an example of the detected center of
gravity and principal axes. This information is computed based on the detected facets.
We rely on this information to parameterize our compliant controllers. In all cases the
detected center of gravity corresponds to the approximate center of the facet, and the
axes are aligned with the object.

5 Compliant Control

When accurate models are available and precise localization is achievable, a motion
plan is best executed using stiff controllers that can guarantee the execution of a trajec-
tory. However, in the presence of modeling and localization uncertainties, rigidly fol-
lowing a trajectory becomes dangerous for the robot and the environment. Compliant
controllers overcome modeling and localization uncertainties by maintaining proper
contact with the environment. During the robot’s interaction with the environment, a
compliant controller responds to the detected contact forces.

Inspired by the work of Kazemi et al. [10], we devised compliant controllers to
manipulate unknown natural objects in clutter. These controllers are instantiated using
minimal information about the target object. In our case, we only require an estimate
of the object’s center of gravity and principal axis. The compliant motion primitives
effectively address the modeling and localization uncertainties by maintaining proper
contacts with objects and support surfaces during execution.

Our compliant motion primitives are velocity-based operational space controllers
(see [10] for details). They rely on force feedback acquired by a force-torque sensor in-
stalled at the robot’s wrist. The fingers’ motion is also coordinated and controlled using
position-based controllers during grasp execution. We devised two compliant motion
primitives to manipulate unknown natural objects: compliant grasping and compliant
pulling/pushing primitives.
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Figure 4: Experimental evaluation of facet detection. Odd rows show an object in 5
configurations. Even rows show the extracted facets. All visible facets that are large
enough for the resolution of the sensor were detected successfully.

5.1 Compliant Grasping

We define a grasp by the hand’s pre-shape and its launch pose (the pose from which the
grasp is to be executed). In this paper, we use a single pre-shape: a cup-like hand pre-
shape (Fig.6). Future work could consider other pre-shapes which can be determined
using additional information about the shape of the object.

The configuration of the fingers depends on the width of the object. Instead of
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Figure 5: Experimental evaluation of action generation based on the detected facets.
Each column corresponds to a single object configuration of the 4 objects in Figure 4.
The 3D view shows the object. The center of gravity is marked by a red sphere. The
object’s axes are color coded: principal axis (red), secondary axis (green), and trinary
axis (blue). In all cases the position of the center of gravity and orientation of the axes
correspond well with the object.

facet COG and
principal axis

Figure 6: The Barrett hand in a cup pre-shape is positioned above the center of gravity
of the facet (marked in green), and alligned with respect to the facet’s prinicpal axis.

computing this information from perception, we leverage the compliance of our mo-
tion primitives. The fingers are maximally opened before grasping. As soon as the
fingertips touch the support surface, they safely close towards the objects, until the
object is caged. The grasp launch pose is selected to be at a safe distance above the
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(a) (b) (c)

(d) (e) (f)

Figure 7: Compliant grasping of an object from a table top

support surface and the object’s COG, and with the palm of the hand parallel to the
supporting surface. The operator can specify the support surface normal by selecting
three representative surface points.

A compliant grasp is executed as follows: First, we servo the hand along the palm’s
normal, until contact is detected between the fingertips and the support surface or the
object (Fig.7(b)). Second, the fingers close along their pre-defined trajectories while
the hand is simultaneously servo controlled (up or down) in compliance with the forces
measured at the wrist in a closed-loop fashion to ensure safe and proper contact be-
tween the fingertips and the support surface (see Fig.7). We note that the aim of the
compliant grasping strategy is not to place the fingertips on certain points on the object
surface but to achieve rough, yet robust, grasps of an unknown object.

5.2 Compliant Pushing/Pulling
If an object is surrounded by clutter, preventing the robot from grasping it, a compliant
push or pull controller can be executed. The launch pose for the push/pull primitive is
calculated similarly to the compliant grasping controller. However, the push/pull action
is executed by servoing the hand toward (pull) or away from (push) the robot and in
parallel to the support surface. Please note that the hand may not be perfectly parallel to
the support surface due to localization uncertainties. Hence, we introduce a compliant
motion along the palm normal to servo the hand in compliance with forces measured
at the wrist, if the fingertips touch the environment during the push/pull action. The
cup-like pre-shape helps to secure the object during the hand movement and avoids
missing it.

5.3 Implementation and Experiments
We have implemented the above primitives on a robotic manipulator consisting of a
7-DOF Barrett Whole Arm Manipulator (WAM) and a 3-fingered Barrett hand. Given
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a launch pose for grasping an object, the system generates a feasible plan to move the
WAM to the desired launch pose while avoiding obstacles. After reaching the launch
pose the compliant grasping primitive is executed as explained above. The grabbed
object is then transferred to a pre-defined target location. After a push/pull action the
arm is moved out of the way so the robot’s view is not obstructed.

We performed grasp repeatability experiments on 5 different natural objects (simi-
lar to the ones in Fig. 4), 5 grasps for each object at fixed location and orientation. Our
compliant grasping strategy was successful in 24 out of 25 grasps. The one failure was
due to in-hand slippage after performing the grasp and during transport to the target
location. We believe that having compliant fingers will help to eliminate such failures.
In addition, compliant fingers will also allow the robot to manipulate the clutter safely
without the risk of damaging the hardware.

6 Graphical User Interface
The graphical user interface (Figure 8) provides the human operator with visual in-
formation in the form of continuous 2D and 3D view of the scene. The operator can
request a snapshot of the scene, which is then analyzed by perception to extract facets
and the associated actions. Finally, it enables the operator to select a facet and an action
and instruct the robot to instantiate and apply the appropriate compliant controller to
the facet.

The communication between the robot (RGB-D sensor and manipulator) and the
human operator relies on ROS (Robot Operating System) for communication. ROS
requires a simple network connection, and therefore allows the operator to be off-site.
Future research could attempt to reduce or even eliminate the need for human super-
vision. At the moment, the operator guarantees recovery from perception errors and
provides dependable decision making.

7 Experimental Validation
To evaluate our system we conducted dozens of experiments with the task of clearing
a cluttered table. We placed a textured background poster to challenge the perception
component, and randomly configure the scene to include many different real-world
objects from a construction site. Experiments were conducted on the DARPA ARM-S
robotic manipulation system [1].

Figure 9 illustrates one sequence of interactions to clear a cluttered scene. The
sequence begins with a set of objects placed next to each other in an arbitrary configu-
ration. The robot and the human operator collaborate to achieve the task. The sequence
shows the intensity image displayed to the operator alongside the detected facets. The
human operator selects an action, and the next row shows the scene after the action was
applied. We conducted multiple similar experiments to demonstrate the reliability and
robustness of the different components (perception, control, and user interface). The
results are very promising. In all experiments the human operator is able to manage the
operation smoothly and achieve efficient clearing of the debris.
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Figure 8: The Graphical User Interface. Top left: Live video. The operator can choose
when to take a snapshot of the scene using a context menu. Top right: The captured
snapshot. It is updated when a new snapshot is requested. The interface can show
either the current or previous snapshot (radio button on bottom left). Bottom left:
The computed facets. The operator can choose from a list of available action by right-
clicking on each facet. Bottom right: A live 3D display.

The sequence shown in Figure 9 is composed of one pulling action (between the
first and second row), and 7 grasping actions. The execution time was 35 seconds for
the pull action, and 50, 54, 78, 60, 68, 51, and 55 seconds for the sequence of grasping.
On average, it takes about 56 seconds per action. These times include perception,
interaction with the user interface, planning a collision free trajectory, grasping an
object, dropping it in a container and returning to the home configuration.

8 Lessons Learned

All three components of the proposed system appear to be very promising. The per-
ceptual component for extracting 3D object facets works well despite the challenges
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Figure 9: A sequence of interactions to clear a cluttered set of natural objects. Left:
intensity image acquired by the sensor. Right: the corresponding segmentation into
facets. The sequence ends when no more facets are detected. Videos are available at
http://www.dubikatz.com/natural.html

associated with natural objects of arbitrary size, shape, and appearance. Our compli-
ant controllers handle well the inherent uncertainties and are safe and well suited for
the task of clearing clutter. And finally the graphical user interface is functional and
convenient to use.

There are a few limitations to our approach. First, the user interface does not allow
the human operator to specify actions that are not offered by the robot. In the case
where the robot’s perception fails to detect an object (e.g. the end of the sequence in
Fig. 9), it would be good to let the operator specify an action. Second, the hardware we
use is not ideal for this type of tasks. We depend on the manipulator being compliant,
powerful, and durable. Our Barrett arm and hand are somewhat compliant. However,
we found that most rocks that fit in the hand are simply too heavy for the mechanism.
Also, this is an expensive hardware. It is not well protected against scratches and
damage from bumping into rough objects such as bricks, rocks, and other debris. In
future work, we intend to look into alternative hardwares. We will also continue to
expand the set of perceptual capabilities and actions that are identified by the robot and
provided for the human operator’s consideration.
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