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Abstract—Sequence optimization, where the items in a list are
ordered to maximize some reward has many applications such
as web advertisement placement, search, and control libraries
in robotics. Previous work in sequence optimization produces a
static ordering that does not take any features of the item or
context of the problem into account. In this work, we propose a
general approach to order the items within the sequence based
on the context (e.g., perceptual information, environment descrip-
tion, and goals). We take a simple, efficient, reduction-based
approach where the choice and order of the items is established
by repeatedly learning simple classifiers or regressors for each
“slot” in the sequence. Our approach leverages recent work on
submodular function maximization to provide a formal regret
reduction from submodular sequence optimization to simple cost-
sensitive prediction. We apply our contextual sequence prediction
algorithm to optimize control libraries and demonstrate results
on two robotics problems: manipulator trajectory prediction and
mobile robot path planning.

I. INTRODUCTION

Optimizing the order of a set of choices is fundamental to
many problems such as web search, advertisement placements
as well as in robotics and control. Relevance and diversity are
important properties of an optimal ordering or sequence. In
web search, for instance, if the search term admits many differ-
ent interpretations then the results should be interleaved with
items from each interpretation [19]. Similarly in advertisement
placement on web pages, advertisements should be chosen
such that within the limited screen real estate they are diverse
yet relevant to the page content. In robotics, control libraries
have the same requirements for relevance and diversity in
the ordering of member actions [7]. In this paper, we apply
sequence optimization to develop near-optimal control libraries
taking into account the context of the environment. Examples
of control actions include grasps for manipulation, trajectories
for mobile robot navigation or seed trajectories for initializing
a local trajectory optimizer.

Control libraries are a collection of control actions obtained
by sampling a useful set of often high dimensional control
trajectories or policies. In the case of control libraries, a
sequence refers to a ranked list of control action choices rather
than a series of actions to be taken. Examples of control
libraries include a collection of feasible grasps for manip-
ulation [5], a collection of feasible trajectories for mobile
robot navigation [11], and a collection of expert-demonstrated
trajectories for a walking robot (Stolle et. al. [23]). Similarly,

recording demonstrated trajectories of experts aggressively fly-
ing unmanned aerial vehicles (UAVs) has enabled dynamically
feasible trajectories to be quickly generated by concatenating
a suitable subset of stored trajectories in the control library
[10].

Such libraries are an effective means of spanning the space
of all feasible control actions while at the same time dealing
with computational constraints. The performance of control
libraries on the specified task can be significantly improved by
careful consideration of the content and order of actions in the
library. To make this clear let us consider specific examples:

Mobile robot navigation. In mobile robot navigation the
task is to find a collision-free, low cost of traversal path
which leads to the specified goal on a map. Since sensor
horizons are finite and robots usually have constrained motion
models and non-trivial dynamics, a library of trajectories
respecting the dynamic and kinematic constraints of the robot
are precomputed and stored in memory. This constitutes the
control library. It is desired to sample a subset of trajectories
at every time step so that the overall cost of traversal of the
robot from start to goal is minimized.

Trajectory optimization. Local trajectory optimization
techniques are sensitive to initial trajectory seeds. Bad ini-
tializations may lead to slow optimization, suboptimal per-
formance, or even remain in collision. Here the control ac-
tions are end-to-end trajectory seeds that act as input to the
optimization. Zucker [31], Jetchev et al. [13] and Dragan et
al. [8] proposed methods for predicting trajectories from a
precomputed library using features of the environment, yet
these methods do not provide recovery methods when the
prediction fails. Having a sequence of initial trajectory seeds
provides fallbacks should earlier ones fail.

Grasp libraries. During selection of grasps for an object, a
library of feasible grasps can be evaluated one at a time until a
collision-free, reachable grasp is found. While a naı̈ve ordering
of grasps can be based on force closure and stability criteria
[2], if a grasp is unachievable, then grasps similar to it are also
likely to fail. A more principled ordering approach which takes
into account features of the environment can reduce depth of
the sequence that needs to be searched by having diversity in
higher ranked grasps.

Current state-of-the-art methods in the problems we address
either predict only a single control action in the library that
has the highest score for the current environment, or use an



ad-hoc ordering of actions such as random order or by past
rate of success. If the predicted action fails then systems
(e.g. manipulators and autonomous vehicles) are unable to
recover or have to fall back on some heuristic/hard-coded
contingency plan. Predicting a sequence of options to evaluate
is necessary for having intelligent, robust behavior. Choosing
the order of evaluation of the actions based on the context of
the environment leads to more efficient performance.

A naı̈ve way of predicting contextual sequences would be
to train a multi-class classifier over the label space consisting
of all possible sequences of a certain length. This space is
exponential in the number of classes and sequence length
posing information theoretic difficulties. A more reasonable
method would be to use the greedy selection technique by
Steeter et al. [24] over hypothesis space of predictors which
is guaranteed to yield sequences within a constant factor
of the optimal sequence. Implemented naı̈vely, this remains
expensive as it must explicitly enumerate the hypothesis space.
Our simple reduction based approach trains multiple multi-
class classifiers/regressors to mimic greedy selection given
features of the environment while efficiently retaining the
performance guarantees of the greedy solution.

Perception modules using sensors such as cameras and li-
dars are part and parcel of modern robotic systems. Leveraging
such information in addition to the feedback of success or
failure is conceptually straightforward: instead of considering
a sequence of control actions, we consider a sequence of
classifiers which map features X to control actions A, and
attempt to find the best such classifier at each slot in the control
action sequence. By using contextual features, our method
has the benefit of closing the loop with perception while
maintaining the performance guarantees in Streeter et al.[24].
Alternate methods to produce contextual sequences include the
independent work of Yue et al. [30] which attempts to learn
submodular functions and then optimize them. Instead, our
approach directly attempts to optimize the predicted sequence.

The outlined examples present loss functions that depend
only on the “best” action in the sequence, or attempt to
minimize the prediction depth to find a satisfactory action.
Such loss functions are monotone, submodular – i.e., one
with diminishing returns.1 We define these functions in section
II and review the online submodular function maximization
approach of Streeter et al. [24]. We also describe our contex-
tual sequence optimization (CONSEQOPT) algorithm in detail.
Section III shows our algorithm’s performance improvement
over alternatives for local trajectory optimization for manipu-
lation and in path planning for mobile robots.

Our contributions in this work are:
• We propose a simple, near-optimal reduction for contex-

tual sequence optimization. Our approach moves from
predicting a single decision based on features to making
a sequence of predictions, a problem that arises in many
domains including advertisement prediction [25, 19] and

1For more information on submodularity and optimization of submodular
functions we refer readers to the tutorial [4].

search.
• The application of this technique to the contextual opti-

mization of control libraries. We demonstrate the efficacy
of the approach on two important problems: robot ma-
nipulation planning and mobile robot navigation. Using
the sequence of actions generated by our approach we
observe improvement in performance over sequences
generated by either random ordering or decreasing rate
of success of the actions.

• Our algorithm is generic and can be naturally applied
to any problem where ordered sequences (e.g., advertise-
ment placement, search, recommendation systems, etc)
need to be predicted and relevance and diversity are
important.

II. CONTEXTUAL OPTIMIZATION OF SEQUENCES

A. Background

The set of all possible actions which we term the mother set
is denoted V . Each action is denoted by a ∈ V . 2 Formally,
a function f : S → ℜ+ is monotone submodular for any
sequence S∈S where S is the set of all sequences of actions
if it satisfies the following two properties:
• (Monoticity) for any sequence S1,S2 ∈S , f (S1)≤ f (S1⊕

S2) and f (S2)≤ f (S1⊕S2)
• (Submodularity) for any sequence S1,S2 ∈S , f (S1) and

any action a ∈ V , f (S1⊕S2⊕〈a〉)− f (S1⊕S2)≤ f (S1⊕
〈a〉)− f (S1)

where ⊕ denotes order-dependent concatenation of sequences.
These imply that the function always increases as more actions
are added to the sequence (monotonicity) but the gain obtained
by adding an action to a larger pre-existing sequence is less
as compared to addition to a smaller pre-existing sequence
(sub-modularity).

For control library optimization, we attempt to optimize one
of two possible criteria: the cost of the best action a in a
sequence (with a budget on sequence size) or the time (depth
in sequence) to find a satisficing action. For the former, we
consider the function,

f ≡ No−min(cost(a1),cost(a2), . . . ,cost(aN))

No
, (1)

where cost is an arbitrary cost on an action (ai) given an
environment and No is a constant, positive normalizer which
is the highest cost. 3 Note that the f takes in as arguments the
sequence of actions a1,a2, . . . ,aN directly, but is also implicitly
dependent on the current environment on which the actions are
evaluated in cost(ai). Dey et al. [6] prove that this criterion is
monotone submodular in sequences of control actions and can
be maximized– within a constant factor– by greedy approaches
similar to Streeter et al. [24].

2In this work we assume that each action choice takes the same time to
execute although the proposed approach can be readily extended to handle
different execution times.

3For mobile robot path planning, for instance, cost(ai) is typically a
simple measure of mobility penalty based on terrain for traversing a trajectory
ai sampled from a set of trajectories and terminating in a heuristic cost-to-go
estimate, compute by, e.g. A*.



For the latter optimization criteria, which arises in grasping
and trajectory seed selection, we define the monotone, sub-
modular loss function f : S → [0,1] as f ≡ P(S) where
P(S) is the probability of successfully grasping an object
using the sequence of grasps provided. It is easy to check
[7] that this function is also monotone and submodular, as
the probability of success always increases as we consider
additional elements. Minimizing the depth in the control
library to be evaluated becomes our goal. In the rest of the
paper all objective functions are assumed to be monotone
submodular unless noted otherwise.

While optimizing these over library actions is effective, the
ordering of actions does not take into account the current
context. People do not attempt to grasp objects based only
on previous performance of grasps: they take into account
the position, orientation of the object, the proximity and
arrangement of clutter around the object and also their own
position relative to the object in the current environment.

B. Our Approach

We consider functions that are submodular over sequences
over classifiers that take as input environment features X and
map to control actions V . Additionally, by considering many
environments, the expectation of f in equation (1) over these
environments also maintains these properties. In our work, we
always consider the expected loss averaged over a (typically
empirical) distribution of environments.

In Algorithm 1, we present a simple approach for learning
such a near-optimal contextual control library.

C. Algorithm for Contextual Submodular Sequence Optimiza-
tion

Figure 1 shows the schematic diagram for algorithm 1
which trains a classifier for each slot of the sequence. Define
matrix X to be the set of features from a distribution of
example environments (one feature vector per row). Let each
feature vector contains L attributes. Let D be the set of
example environments containing |D| examples. The size of
X is |D| ×L. We denote the ith classifier by πi. Define MLi
to be the matrix of marginal losses for each environment for
the ith slot of the sequence. In the parlance of cost-sensitive
learning MLi is the example-dependent cost matrix. MLi is
of dimension |D| × |V |. Each row of MLi contains, for the
corresponding environment, the loss suffered by the classifier
for selecting a particular action a ∈ V . The most beneficial
action has 0 loss while others have non-zero losses. These
losses are normalized to be within [0,1]. We detail how to
calculate the entries of MLi below. Classifier inputs are the
set of feature vectors X for the dataset of environments and
the marginal loss matrix MLi .

For ease of understanding let us walk through the training
of the first two classifiers π1 and π2.

Consider the first classifier training in Figure 1 and its inputs
X and ML1 . Consider the first row of ML1 . Each element of
this row corresponds to the loss incurred if the corresponding
action in V were taken on the corresponding environment
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Fig. 1: Schematic of training a sequence of classifiers for
regret reduction of contextual sequence optimization to multi-
class, cost-sensitive, classification. Each slot has a dedicated
classifier which is responsible for predicting the action with
the maximum marginal benefit for that slot.

whose features are in the first row of X. The best action has 0
loss while all the others have relative losses in the range [0,1]
depending on how much worse they are compared to the best
action. This way the rest of the rows in ML1 are filled out.
The cost sensitive classifier π1 is trained which attempts to find
the classifier which minimizes the expected multi-class cost-
sensitive loss. The set of features X from each environment in
the training set are again presented to it to classify. The output
is vector Yπ1 of length |D| which contains the selected action
for the 1st slot for each environment. As no element of the
hypothesis class performs perfectly this results in Yπ1 , where
not every environment had the 0 loss action picked.

Consider the second classifier training in Figure 1. Consider
the first row of ML2 . Suppose control action id 13 was
selected by classifier π1 in the classification step for the first
environment, which provides a gain of 0.6 to the objective
function f i.e. f [13] = 0.6. For each of the control actions a
present in the library V find the action which provides maxi-
mum marginal improvement i.e. amax = argmaxa( f ([13,a])−
f ([13])) = argmaxa( f ([13,a])− 0.6. Additionally convert the
marginal gains computed for each a in the library to propor-
tional losses and store in the first row of ML2 . If amax is the
action with the maximum marginal gain then the loss for each
of the other actions is f ([13,amax])− f ([13,a]). amax has 0
loss while other actions have >= 0 loss. The rest of the rows



Algorithm 1 Algorithm for training CONSEQOPT using classifiers

Input: sequence length N, multi-class cost sensitive classifier routine π, dataset D of
|D| number of environments and associated features X, library of control actions V

Output: sequence of classifiers π1,π2, . . . ,πN
1: for i = 1 to N do
2: MLi ← computeTargetActions(X,Yπ1,π2,...,πi−1 ,V )
3: πi← train(X,MLi)
4: Yπi ← classify(X)
5: end for

Algorithm 2 Algorithm for training CONSEQOPT using regressors

Input: sequence length N, regression routine ℜ, dataset D of |D| number of
environments, library of control actions V

Output: sequence of regressors ℜ1,ℜ2, . . . ,ℜN
1: for i = 1 to N do
2: Xi,MBi ← computeFeatures&Benefit(D,Yℜ1,ℜ2,...,ℜi−1 ,V )
3: ℜi← train(Xi,MBi)
4: M̃Bi ← regress(Xi,ℜi)
5: Yℜi = argmax(M̃Bi)
6: end for

are filled up similarly. π2 is trained, and evaluated on same
dataset to produce Yπ2 .

This procedure is repeated for all N slots producing a se-
quence of classifiers π1,π2, . . . ,πN. The idea is that a classifier
must suffer a high loss when it chooses a control action which
provides little marginal gain when a higher gain action was
available. Any cost-sensitive multi-class classifier may be used
[16].

During test time, for a given environment features are
extracted, and the classifiers associated with each slot of the
sequence outputs a control action to fill the slot. 4

The training procedure is formalized in Algorithm 1. In
computeTargetActions the previously detailed proce-
dure for calculating the entries of the marginal loss matrix
MLi for the ith slot is carried out, followed by the training step
in train and classification step in classify.

Algorithm 2 has a similar structure as algorithm 1. This
alternate formulation has the advantage of being able to add
actions to the control library without retraining the sequence
of classifiers. Instead of directly identifying a target class, we
use a squared-loss regressor in each slot to produce an estimate
of the marginal benefit from each action at that particular slot.
Hence MBi is a |D|×|V | matrix of the actual marginal benefit
computed in a similiar fashion as MLi of Algorithm 1, and M̃Bi
is the estimate given by our regressor at ith slot. In line 2 we
compute the feature matrix Xi. In this case, a feature vector
is computed per action per environment, and uses information
from the previous slots’ target choice Yℜi . For feature vectors
of length L, Xi has dimensions |D||V |×L. The features and
marginal benefits at ith slot are used to train regressor ℜi,

4Repetition of actions with respect to previous slots is prevented by using
classifiers which individually output a ranked list of actions and filling the
slot with the highest ranked action which is not repeated in the previous slots.
This sequence can then be evaluated as usual.

producing the estimate M̃Bi . We then pick the action a which
produces the maximum M̃Bi to be our target choice Yℜi , a |D|
length vector of indices into V for each environment.

D. Reduction Argument

We establish a formal regret reduction [3] between cost
sensitive multi-class classification error and the resulting er-
ror on the learned sequence of classifiers. Specifically, we
demonstrate that if we consider the control actions to be the
classes and train a series of classifiers– one for each slot of the
sequence– on the features of a distribution of environments
then we can produce a near-optimal sequence of classifiers.
This sequence of classifiers can be invoked to approximate
the greedy sequence constructed by allowing additive error in
equation (3).

Theorem 1. If each of the classifiers (πi) trained in Al-
gorithm 1 achieves multi-class cost-sensitive regret of ri,
then the resulting sequence of classifiers is within at least
(1− 1

e )maxS∈S f (S)−∑
N
i=1 ri of the optimal such sequence of

classifiers S from the same hypothesis space. 5

Proof: (Sketch) Define the loss of a multi-class,
cost-sensitive classifier π over a distribution of envi-
ronments D as l(π,D). Each example can be repre-
sented as (xn,m1

n,m
2
n,m

3
n, . . . ,m

|V |
n ) where xn is the set

of features representing the nth example environment and
m1

n,m
2
n,m

3
n, . . . ,m

|V |
n are the per class costs of misclassifying

xn. m1
n,m

2
n,m

3
n, . . . ,m

|V |
n are simply the nth row of MLi (which

corresponds to the nth environment in the dataset D). The best
class has a 0 misclassification cost and while others are greater
than equal to 0 (There might be multiple actions which will

5When the objective is to minimize the time (depth in sequence) to find a
satisficing element then the resulting sequence of classifiers f (Ŝ〈N〉)≤ 4

∫
∞

0 1−
maxS∈S f (S〈n〉)dn+∑

N
i=1 ri.



yield equal marginal benefit). Classifiers generally minimize
the expected loss l(π,D) = E

(xn,m1
n,m2

n,m3
n,...,m

|V |
n )∼D

[Cπ(xn)] where

Cπ(xn) = mπ(xn)
n denotes the example-dependent multi-class

misclassification cost. The best classifier in the hypothesis
space Π minimizes l(π,D)

π
∗ = argmin

π∈Π
E

(xn,m1
n,m2

n,m3
n,...,m

|V |
n )∼D

[Cπ(xn)] (2)

The regret of π is defined as r = l(π,D)− l(π∗,D). Each
classifier associated with ith slot of the sequence has a regret
ri.

Streeter et al. [24] consider the case where the ith decision
made by the greedy algorithm is performed with additive error
εi. Denote by Ŝ = 〈ŝ1, ŝ2, . . . , ŝN〉 a variant of the sequence S in
which the ith argmax is evaluated with additive error εi. This
can be formalized as

f (Ŝi⊕ ŝi)− f (Ŝi)≥max
si∈V

f (Ŝi⊕ si)− f (Ŝi)− εi (3)

where Ŝ0 = 〈〉, Ŝi = 〈ŝ1, ŝ2, ŝ3, . . . , ŝi−1〉 for i≥ 1 and si is the
predicted control action by classifier πi. They demonstrate that,
for a budget or sequence length of N

f (Ŝ〈N〉)≥ (1− 1
e
)max

S∈S
f (S)−

N

∑
i=1

εi (4)

assuming each control action takes equal time to execute.
Thus the ith argmax in equation (3) is chosen with some

error εi = ri. An εi error made by classifier πi corresponds to
the classifier picking an action whose marginal gain is εi less
than the maximum possible. Hence the performance bound on
additive error greedy sequence construction stated in equation
(4) can be restated as

f (Ŝ〈N〉)≥ (1− 1
e
)max

S∈S
f (S)−

N

∑
i=1

ri (5)

Theorem 2. The sequence of squared-loss regressors (ℜi)
trained in Algorithm 2 is within at least (1− 1

e )maxS∈S f (S)−
∑

N
i=1

√
2(|V |−1)rregi of the optimal sequence of classifiers S

from the hypothesis space of multi-class cost-sensitive classi-
fiers.

Proof: (Sketch) Langford et al. [16] show that the re-
gret reduction from multi-class classification to squared-loss
regression has a regret reduction of

√
2(|k|−1)rreg where k

is the number of classes and rreg is the squared-loss regret
on the underlying regression problem. In Algorithm 2 we use
squared-loss regression to perform multi-class classification
thereby incurring for each slot of the sequence a reduction
regret of

√
2(|V |−1)rregi where |V | is the number of actions

in the control library and rregi is the regret of the regressor for
the ith slot. Theorem 1 states that the sequence of classifiers
is within at least f (Ŝ〈N〉) ≥ (1− 1

e )maxS∈S f (S)−∑
N
i=1 ri of

the optimal sequence of classifiers. Plugging in the regret
reduction from [16] we get the result that the resulting

sequence of regressors in Algorithm 2 is within at least
(1− 1

e )maxS∈S f (S)−∑
N
i=1

√
2(|V |−1)rregi of the optimal

sequence of multi-class cost-sensitive classifiers.

III. CASE STUDIES

A. Robot Manipulation Planning via Contextual Control Li-
braries

We apply CONSEQOPT to manipulation planning on a 7
degree of freedom manipulator.

Recent work [21, 13] has shown that by relaxing the hard
constraint of avoiding obstacles into a soft penalty term on
collision, simple local optimization techniques can quickly
lead to smooth, collision-free trajectories suitable for robot
execution. Often the default initialization trajectory seed is
a simple straight-line initialization in joint space [21]. This
heuristic is surprisingly effective in many environments, but
suffers from local convergence and may fail to find a trajectory
when one exists. In practice, this may be tackled by providing
cleverer initialization seeds using classification [13, 31]. While
these methods reduce the chance of falling into local minima,
they do not have any alternative plans should the chosen
initialization seed fail. A contextual ranking of a library of
initialization trajectory seeds can provide feasible alternative
seeds should earlier choices fail. We take an approach similar
to Dragan et al. [8] where novel actions can be evaluated with
respect to the environment. Proposed initialization trajectory
seeds can be developed in many ways including human
demonstration [20] or use of a slow but complete planner [15].

For this experiment we attempt to plan a trajectory to a pre-
grasp pose over the target object in a cluttered environment
using the local optimization planner CHOMP [21] and mini-
mize the total planning and execution time of the trajectory. A
training dataset of |D|= 310 environments and test dataset of
212 environments are generated. Each environment contains a
table surface with five obstacles and the target object randomly
placed on the table. The starting pose of the manipulator is
randomly assigned, and the robot must find a collision-free
trajectory to end pose above the target object. To populate
the control library, we consider initialization trajectories that
move first to an “exploration point” and then to the goal.
The exploration points are generated by randomly perturbing
the midpoint of the original straight line initialization in
joint space. The resulting initial trajectories are then piece-
wise straight lines in joint space from the start point to
the exploration point, and from the exploration point to the
goal. 6 30 trajectories generated with the above method form
our control library. Figure 2a shows an example set for a
particular environment. Notice that in this case the straight-
line initialization of CHOMP goes through the obstacle and

6Half of the seed trajectories are prepended with a short path to start
from an elbow-left configuration, and half are in an elbow-right configuration.
This is because the local planner has a difficult time switching between
configurations, while environmental context can provide much information
about which configuration to use.



therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1−3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor ℜi
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Yℜ1,...,ℜN as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.



that provides the maximum marginal benefit, which results
in trajectory seeds that have very different features from the
previous slots’ choices. Ranking by the absolute benefit tends
to pick trajectory seeds that are similar to each other, and
thus are more likely to fail when the previous seeds fail. At a
sequence length of 3, CONSEQOPT has only 16 failures and an
average execution time of 8 seconds. A 90% improvement
in success rate and a 75% reduction in execution time.
Note that planning times are generally negligible compared to
execution times for manipulation hence this improvement is
significant. Figure 2b shows the initialization seed found by
CONSEQOPT for the same environment as in Figure 2a. Note
that this seed avoids collision with the obstacle between the
manipulator and the target object enabling CHOMP to produce
a successful trajectory.

B. Mobile Robot Navigation

An effective means of path planning for mobile robots is
to sample a budgeted number of trajectories from a large
library of feasible trajectories and traverse the one which has
the lowest cost of traversal for a small portion and repeat
the process again. The sub-sequence of trajectories is usually
computed offline [11, 9]. Such methods are widely used in
modern, autonomous ground robots including the two highest
placing teams for DARPA Urban Challenge and Grand Chal-
lenge [28, 17, 27, 26], LAGR [12], UPI [1], and Perceptor [14]
programs. We use CONSEQOPT to maximize this function and
generate trajectory sequences taking the current environment
features.

Figures 4a and 4b shows a section of Fort Hood, TX and
the corresponding robot cost-map respectively. We simulated
a robot traversing between various random starting and goal
locations using the maximum-discrepancy trajectory [11] se-
quence as well as sequences generated by CONSEQOPT using
Algorithm 1. A texton library [29] of 25 k-means cluster
centers was computed for the whole overhead map. At run-
time the texton histogram for the image patch around the robot
was used as features. Online linear support vector machines
(SVM) with slack re-scaling [22] were used as the cost-
sensitive classifiers for each slot. We report a 9.6% decrease
over 580 runs using N = 30 trajectories in the cost of traver-
sal as compared to offline precomputed trajectory sequences
which maximize the area between selected trajectories [11].
Our approach is able to choose which trajectories to use at each
step based on the appearance of terrain (woods, brush, roads,
etc.) As seen in Figure 4c at each time-step CONSEQOPT the
trajectories are so selected that most of them fall in the empty
space around obstacles.

IV. DISCUSSION

We have presented a framework to predict action sequences
with performance guarantees from a set of discrete control ac-
tions. Muelling et al. [18] show how to predict a single action
which is a combination of actions in the library. Leveraging
our framework to also predict such action sequences which
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Fig. 3: Results of CONSEQOPT for manipulation planning in
212 test environments. The top image shows the number of
CHOMP failures for three different methods after each slot
in the sequence. CONSEQOPT not only significantly reduces
the number of CHOMP failures in the first slot, but also
further reduces the failure rate faster than both the other
methods when the sequence length is increased. The same
trend is observed in the bottom image, which shows the
average time to execute the chosen trajectory. The ‘Straight
Seed’ column refers to the straight-line heuristic used by the
original CHOMP implementation

are not explicitly in the library can prove to be a powerful
extension leading to improved performance.
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(a) Overhead color map of por-
tion of Fort Hood, TX

(b) Cost map of corresponding
portion

(c) Robot traversing the map using CONSEQOPT generating
trajectory sequences which try to avoid obstacles in the vicinity
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