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Abstract— Many methods exist at the moment for deformable
face fitting. A drawback to nearly all these approaches is that
they are (i) noisy in terms of landmark positions, and (ii) the
noise is biased across frames (i.e. the misalignment is toward
common directions across all frames). In this paper we propose
a grouped L1-norm anchored method for simultaneously align-
ing an ensemble of deformable face images stemming from the
same subject, given noisy heterogeneous landmark estimates.
Impressive alignment performance improvement and refine-
ment is obtained using very weak initialization as “anchors”.

I. INTRODUCTION

Deformable face fitting is the task of registering a
parametrized face shape model to an image such that the
points in the model (referred to as landmarks) correspond
to consistent locations of interest (e.g. eye corners, mouth
contour, etc.). It is a difficult problem as it involves an
optimization in high dimensions, where appearance can vary
greatly between instances of the object due to lighting
conditions, facial hair, pose, age, ethnicity, image noise,
and resolution. Many approaches such as Active Appearance
Models (AAMs) [11], Active Shape Models (ASMs) [3] and
Constrained Local Models (CLMs) [14] have been proposed
with varying degrees of success; however, these approaches
often yield imperfect/noisy estimates of landmark positions.

Of particular interest to this paper is the task of simultane-
ously fitting a deformable face shape across an ensemble of
images from very coarse initial alignments, and producing
refined facial alignments. This task is closely related to
the problem of unsupervised image ensemble alignment [9],
[4], [12]. Recently, an approach referred to as Robust
Alignment by Sparse and Low-rank (RASL) decomposition
was proposed by Peng et al. [12]. RASL has become of
increasing interest to vision researchers as it: (i) can robustly
handle variations in illumination through a rank minimization
strategy, and (ii) can model outliers and occlusions using an
L1 error term. However, RASL cannot manage deformable
face fitting in its current framework as there is nothing
constraining the relative alignment. Without such constraint,
the ensemble of face images can be considered aligned to
a similar geometric frame of reference without looking like
a face (see Figure 1). Recently, Zhao et. al. [16] proposed
to constrain the RASL objective using a general facial

(a) Misaligned frames of CLMs

(b) Faces warped to the mean shape (misaligned)

(c) RASL without constraints (the problem of drift)

(d) Refined and Reconstructed Faces (Our method)

Fig. 1. (a) shows the faces in the original images tracked by CLMs tracker;
(b) shows the warped faces based on the noisy alignments of CLMs [14]; (c)
shows the warped faces after attempting to refine the alignment using RASL
without “anchors”; (d) shows the low rank faces reconstructed from the
refined alignment using the Anchored RASL method (grouped-L1 anchor
was used).

appearance model. However, it has been well noted in AAM
literature (Gross et. al. [5]) that it is hard to estimate a facial
appearance basis that encompasses all possible human facial
appearance variations (e.g. identity, lighting, age, expression,
etc.). One of our central contributions in this paper is instead
of constraining appearance, we employ only a constraint on
the shape which is not affected by the appearance variations.

Specifically, we make four contributions in this paper.
First, we study the error distribution of the state-of-the-art
deformable face fitting methods and show that the errors are
biased distributed. Second, we propose an anchoring strategy,
grouped-L1-norm, and demonstrate its ability to detect and
“turn off” outlier anchor points automatically while only
considering the constraints from inlier anchor points. Third,



we propose a subsampled Anchored RASL algorithm for
the alignment of an image ensemble with a large number
of frames to improve the efficiency. Finally, we demonstrate
state-of-the-art performance for deformable face fitting.

A. Notation

In this paper, we use consistent mathematical
notations. Vectors are always presented in lower-
case bold (e.g., a). Matrices are in upper-case
bold (e.g., A) and scalars in lower-case (e.g. a).
Images are expressed in capitalized form A. Warp
functions W(xi; p) = [Wx(xi; p),Wy(xi; p)]T will
be used throughout this paper to denote a warping of
the ith 2D coordinate vector xi = [xi, yi]

T by a warp
parameter vector p ∈ RP , where P is the number of
warp parameters, back to the ith position in a fixed
base coordinate system. The concatenated vector of
all discrete positions in the base coordinate system
shall be defined as z = [x1, . . . , xD, y1, . . . , yD]T ,
similarly the warp function across all the concatenated
coordinates shall be described as W(x; p) =
[Wx(x1; p), . . . ,Wx(xD; p),Wy(x1; p), . . . ,Wy(xD; p)]T .
This base coordinate system is defined when p = 0
such that W(x; p) = x. An abuse of notation is
entertained in this paper for when an image A
is warped by the warp parameter vector p, such
that A(p) = [A(W(x1; p)), . . . , A(W(xN ; p))]T . In
this instance A(p) is a N dimensional vector of image
intensities, which N is substantially larger than D, since
D represents the number of landmarks, and N stands for
the number of pixels in the warped image. The steepest
descent matrix ∂A(p)

∂p of an image A(p) is used frequently
through out this paper. This P × N matrix is formed by
combining image gradients of A(p) with the Jacobian of
the warp function W(x; p), more details on the formation
of this matrix can be found in [11].

II. ROBUST ALIGNMENT BY SPARSE AND LOW-RANK
DECOMPOSITION (RASL)

RASL has become a popular method due to its robust-
ness to illumination condition and appearance outliers (i.e.
occlusion, disappearance/appearance of pixels) [12]. It is
essentially a specific application of an earlier work called
Robust Principal Component Analysis [15]. The central idea
is to decompose the warped image ensemble matrix D(q) =
[(I1(p1), . . . IF (p)] into a low rank appearance matrix A and
a sparse errors matrix E,

arg min
A,E,q

rank(A) + λ||E||0 (1)

s.t. D(q) = A + E

where q = [pT
1 . . .p

T
F ]T is the super vector of warp param-

eters for all F frames in the image ensemble. The authors
in [12] relaxed the objective by replacing rank(·) and || · ||0
with their convex approximations, namely the nuclear norm
|| · ||∗ and L1-norm || · ||1 respectively. This results in the

following objective,

arg min
A,E,∆q

||A||∗ + λ||E||1 (2)

s.t. D(q) + J(q)∆q = A + E .

Note, since the relationship between the warp parame-
ters p and the matrix of intensities D(p) is non-linear,
a first order Taylor series linear approximation, D(q +
∆q) ≈ D(q) + J(q)∆q, is employed, where J(q) =

[∂I1(p1)
∂p1

T
, . . . , ∂IF (pF )

∂pF

T
]T . Similar approximations are used

within classical vision algorithms such as Lucas & Kanade
(LK) image alignment [10], and Active Appearance Model
fitting [11], but have the drawback of requiring an iterative
solution to the objective, where q← q+∆q is refined every
iteration until convergence. Hitherto, RASL has been largely
applied to simple linear warps such as affine and similarity. In
our work we shall be employing more complex learned warps
such as the Point Distribution Models (PDMs). Fortunately,
like the canonical LK algorithm we have found the RASL
algorithm to be largely warp agnostic as long as the non-
linear nature of the warp is modeled appropriately.

III. ANCHORING

In this section we present the modified RASL objective,
which incorporates an additional penalty term to constrain
landmark displacements,

arg min
A,E,∆q

||A||∗ + λ1||E||1 + λ2 · η{s(q) + Φ(q)∆q− s}

s.t. D(q) + J(q)∆q = A + E. (3)

We define s(q) = [W(x; p1)T , . . . ,W(x; pF )T ]T as the
super vector of F concatenated warped landmark vectors
relating to each image in the ensemble, and Φ(q) =

[∂W(x;p1)
∂p1

T
, . . . , ∂W(x;pF )

∂pF

T
]T is the respective warp Jaco-

bian matrix. The super vector s are the concatenation of DF
noisy landmark estimates, which we refer to herein as “an-
chors”, and η{} is the anchor penalty term. The central thesis
of this paper is, without the anchor penalty, the canonical
RASL objective will deform the subject’s facial appearance
in the image ensemble arbitrarily to find the minimum rank,
in nearly all instances resulting in a false alignment.

A. Analysis on Alignment Errors of Face Trackers

A number of choices are available for the anchor penalty
term η{}. In the earlier work of [2], the authors proposed
an L2-norm2 function η{x} = ||x||22, which implies a zero-
mean noise assumption on the anchor landmark estimates s.
Unfortunately, as we will show in this section, alignment
errors in commonly employed face fitting algorithms (e.g.
CLMs) are not zero-mean. To study this, we utilized a
public accessible face tracking toolbox FaceTracker [13] (an
implementation of the well known CLMs algorithm [14]),
to track face video sequences and determine the geometric
errors by comparing the tracked landmarks to the manual
annotated ground truth. Results from this analysis can be
seen in Figure 2. From Figure 2(b) we can observe that
some particular landmark points always misalign in the



same direction across all frames in the sequence. For visual
inspection on these points, in Figure 2(a), we randomly
selected three frames from the sequence. We can visually
observe that, in this particular video sequence, the landmark
points on left hand side of jaw are always lower than the
landmark points on the right hand side. More examples can
be found in Figures 6(a) and 6(d).

From the results shown in Figure 2(b) and Figure 2(c) it
can be observed that the biased errors (non-zero-mean) have
two properties: (i) they are sparse, only a small subset of
landmark points are misaligned, and (ii) they are typically
larger than the normally distributed noise errors. Based on
this analysis we argue that the use of an L2-norm2 anchoring
term is not the best option, as it is well known that the
performance of an objective function with an L2-norm2

constraint can be easily affected by the biased outliers [7].

IV. DEFORMABLE FACE ENSEMBLE ALIGNMENT WITH
GROUPED-L1 ANCHORS

In this section, we introduce an alternate anchor penalty
term. Instead of using L2-norm2 penalty, we propose to use
the grouped-L1-norm,

η{x} =

F∑
f=1

D∑
d=1

||xf,d||21 (4)

where xf,d = [xf,d, yf,d]T is the 2D vector of x− and y−
positions for the f -th frame and d-th landmark point. The
motivation of using L1-norm is that it is robust to outliers.
L1-norm is able to automatically select and “turn off” the
outlier anchors while only considering the constraints from
the inlier anchor points. For better definition of the alignment
errors, for each point, we group xf,d and yf,d together to
find the Euclidean distance of the misalignment ||xf,d||2 =√
x2
f,d + y2

f,d.
We can now re-write our original objective in Equation 3

with this new grouped-L1 anchor term, an additional auxil-
iary variable z, and the equality constraints,

arg min
A,E,∆q,z

||A||∗ + λ1||E||1 + λ2 ·
F∑

f=1

D∑
d=1

||zf,d||2

s.t. D(q) + J(q)∆q = A + E (5)
z = s(q) + Φ(q)∆q− s .

The introduction of the auxiliary variable z allows us to
solve the objective efficiently using the Alternating Direction
Method of Multipliers (ADMM) method [1]. The augmented
Lagrangian can be written in scaled form [1] as,

L(A,E,∆q, z, ξ1, ξ2) = ||A||∗ + λ1||E||1+

λ2 ·
F∑

f=1

D∑
d=1

||zf,d||2 +
µ

2
||D(q) +J(q)∆q−A−E +

1

µ
ξ1||22

+
v

2
||s(q) + Φ(q)∆q− s− z +

1

v
ξ2||22, (6)

1We should note that, even though the || · ||1 penalty does not appear
in the objective, it is still considered as L1 because it is the sum of the
absolute Euclidean distances of the errors.

where ξ1 and ξ2 are Lagrangian multipliers vectors, µ and
v are positive scalars. The values of A, E, ∆q, z can be
determined through a Gauss-Seidel style alternation strategy.
For every iteration k the parameters are updated as,

Ak+1 = arg min
A
L(A,Ek, zk,∆qk, ξk1), (7)

Ek+1 = arg min
E
L(Ak+1,E, zk,∆qk, ξk1), (8)

zk+1 = arg min
z
L(Ak+1,Ek+1, z,∆qk, ξk2), (9)

∆qk+1 = arg min
∆q
L(Ak+1,Ek+1, zk+1,∆q, ξk1 , ξ

k
2), (10)

ξk+1
1 =ξk1 + µ(D(q) + J(q)∆qk+1 − Ak+1 − Ek+1),

(11)

ξk+1
2 =ξk2 + v(s(q) + Φ(q)∆qk+1 − s− zk+1), (12)

µk+1 =a · µk, (13)

vk+1 =a · vk. (14)

Here a is an incremental factor for the scalars µ and v. In
our implementation, the most efficiency was found using a =
1.25 by experiments.

A. Efficient Sub-Problems

ADMMs are extremely efficient as they enable one to
break a complex objective into a sequence of efficient sub-
problems. The sub-problems 7, 8 and 9 can be solved
efficiently by the soft threshold methods [12], [1],

(U,Σ, V ) = svd(D(q) + J(q)∆qk − Ek +
1

µ
ξk1), (15)

Ak+1 = US 1
µ

[Σ]VT, (16)

Ek+1 = Sλ1
µ

[D(q) + J(q)∆qk − Ak+1 +
1

µ
ξk1 ], (17)

zk+1
f,d = Tλ2

v
[s(q) + Φ(q)∆qk − s +

1

v
ξk2 ]i,j , (18)

where the soft threshold operators S and T are defined as:

Sk[a] =

 a− k if a > k,
0 if |a| <= k,

a+ k if a < −k,
(19)

or equivalently,

Sk[a] = (a− k)+ − (−a− k)+, (20)

and,

Tk[a] = (1− k/||a||2)+a. (21)

Equation 10 can be solved efficiently as a least squares
problem,

∆qk+1 = arg min
∆q

µ

2
||D(q) + J(q)∆q− Ak+1 − Ek+1+

1

µ
ξk1 ||22 +

v

2
||s(q) + Φ(q)∆q− s− zk+1 +

1

v
ξk2 ||22 . (22)
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Fig. 2. (a) shows three randomly selected frames of the IJAGS database aligned by CLMs [13]. It can be observed that for some particular points, the
alignment errors are in same directions; (b) is the absolute magnitude of the mean errors for all points across all frames; (c) is the histogram of absolute
magnitude of mean errors. It can be observed that the error distribution of a face tracker is not zero-mean.

V. AN EFFICIENT FRAMEWORK FOR LARGE SCALE
ALIGNMENTS

Through the employment of efficient optimization strate-
gies like ADMMs RASL can be applied to reasonably large
image ensembles. However, the computational cost of RASL
is exponential as a function of the number of images in
the ensemble, making the approach impractical for face se-
quences with tens of thousands of frames. In this section, we
propose an efficient framework which applies the anchored
RASL method to a subset of key frames to find a low rank
appearance basis A. This basis can then be employed within
a canonical person-specific Active Appearance Model fitting
strategy to efficiently track the residual frames. This strategy
is especially efficient as one can employ the “simultaneous”
AAM fitting algorithm.

arg min
p,λ
||I(p)−A0(0) + Aλ||2, (23)

where one solves simultaneously for the warp p and λ
appearance parameters. A number of approaches have been
proposed in the literature for fitting AAMs [11]. The most
notable and popular of these variants are approaches based
on the LK algorithm [10]. Like RASL, the objective function
in Equation 23 is difficult to solve as their is a non-
linear relationship between the shape parameters p and the
appearance parameters λ. A key insight, stemming from
Lucas & Kanade [10], was that a linear approximation can
be made between p and λ through the judicious use of
image gradients and the chain rule to form steepest descent
matrices (i.e. ∂A(p)

∂p ). In particular the employment of inverse
compositional extensions can allow for extremely efficient
per-image fitting.

VI. EXPERIMENTS

In this section we evaluate the performance of our An-
chored RASL method on a variety of face alignment tasks.
The PDMs emplyed in this paper was learnt from the
landmark points of all subjects of the IJAGS [11] database
and MultiPIE [6] database (5 subjects of IJAGS and 346
subjects in MultiPIE, with varying head poses and facial
expressions). The obtained PDMs consists of 19 degrees of
freedom with 66 landmark points. The image in the reference
shape frame was scaled to 10,000 pixels in each of the Red,
Green and Blue channels. The weight, λ1 was selected using
the same strategy as in [12], λ1 = 1/

√
N , where N is the

number of pixels in each aligned image (30,000 in our case).
The experimental result shows that the best performance was
found when using λ2 = 0.3/

√
D, where D is the number of

landmark points in every frame (66 in our implementation).

A. Simulation
To verify the robustness of our method to the biased

errors in the anchor points, we conducted a simulation using
synthetic data. A sequence of 40 frames of the same subject
with large head pose variations were selected from the IJAGS
database. The 66 landmark points of each frame were man-
ually annotated as the ground truth. We randomly selected
a sparse subset of N points. For the selected landmark
points, synthetic error was added to the ground truth in every
frame to create a biased/directional misalignment as anchors
and the initial landmark estimates. Two experiments were
conducted. Firstly we compared the performance of the L2-
norm2 method, grouped-L1-norm method and the L1-norm
method (without grouping) by selecting N = 13 or equiv-
alently 20% of the anchor points as outliers and perturbed
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Fig. 4. The RMS geometric errors. It can be observed that the L1-norm and
the grouped-L1-norm have better fitting performance and faster convergence
rate.

them with increasing error (Figure 3(a)). The experimental
results show that in L1-norm or grouped-L1-norm methods,
increasing the biased errors doesn’t affect the final result.
This is because the outliers have been successfully detected
and ignored by the L1 anchoring term.

In the second experiment, we compared the performance
of the three anchored RASL methods by increasing the
number of outliers n (Figure 3(b)). We can observe that L1-
norm and grouped-L1-norm perform much better than the
L2-norm2 method, where the best performance was found by
using grouped-L1-norm. Furthermore, the result shows that
L1-norm and grouped-L1-norm are able to detect outliers
accurately in a sequence with up to 22% outliers.

B. Evaluation using Controlled Data

To evaluate our method with anchor points generated by
the state-of-the-art face tracker, we initialized our Anchored
RASL approach by a public CLMs face tracker implemen-
tation, FaceTracker [13], on a subset of video sequence of a
single subject in the IJAGS database. Two experiments were
conducted. In the first experiment we aimed to study the
convergence performances of the three different anchoring
strategies. In every iteration, the RMS geometric errors were
determined by comparing the current landmark estimate and
the ground truth in the reference shape frame. The exper-
iment result (Figure 4) shows that L1-norm and grouped-
L1-norm methods significantly outperform the L2-norm2

method in terms of the alignment performance and the rate
of convergence.

In the second experiment, we have conducted an evalua-
tion on the proposed efficient alignment algorithm. In this
experiment, computational time and the alignment perfor-
mance have been evaluated at different numbers of RASL
sub-samples. The experimental result (Figure 5) shows that
this algorithm is able to reduce computational cost signifi-
cantly while maintaining good alignment performance (i.e.
At 180 frames, 84% of computational cost was saved by
subsampling 20 frames for the Anchored RASL).

C. Experimental Comparison with Existing method

To compare the performance of our method with Zhao et.
al’s approach [16], we have conducted two experiments. In

Adrian German Iain Jing Simon
Zhao et. al. [16] 9.15 7.53 8.34 8.27 5.31
Anchored RASL 4.31 3.84 3.70 5.35 3.63

TABLE I
EXPERIMENTAL COMPARISON OF THE RMS GEOMETRIC ERRORS

BETWEEN ZHAO’S METHOD AND OUR METHOD WITH IJAGS DATABASE

the first experiment, we selected 40 frames of each IJAGS
subject for evaluation. In our implementation, the generic
facial appearance model used in Zhao et. al.’s method was
obtained from all 346 subjects of MultiPIE database. This
came with 181 appearance basis. Both methods are initialized
with CLMs, and the final geometric errors are determined
by the RMS point-point error in the reference shape. The
experimental results are presented in Table I.

To visually compare the performance of each method with
image sequences taken under uncontrolled conditions, in the
second experiment we applied both alignment approaches
to two video clips of television interviews collected by
the YouTube Celebrities Face Tracking and Recognition
Dataset [8]. For the visualization of the alignment results,
selected frames of each sequence are demonstrated with the
plotted landmark positions of the initial alignments by CLMs
(Saragih et. al. [14]) and the final refined alignments using
each method. The experimental results show that our method
significantly outperforms the earlier method in terms of
alignment accuracy, even when the initial alignment is very
noisy and the quality of data is very poor (low resolution,
complex background etc.). Although the result in Figure
6(f) is not as perfect as we expected, it has still refined
the landmarks to a reasonable location from the extreme
initialization as shown in Figure 6(d).

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an alternative RASL extension
approach for deformable face ensemble alignment. We em-
ployed a constraint on the shape of the face to enable RASL
for deformable face alignment tasks. To choose the best way
to apply the shape constraint, we analysed the tracking error
of the state-of-the-art face tracker, and showed that most
alignment errors are biased (the mean errors are not zero).
Then we proposed to constrain the RASL objective with
grouped-L1-norm anchoring and showed that grouped-L1-
norm method is more robust to the biased outliers, compared
with the L2-norm2 method. To enable our method for
large video sequences, we proposed an efficient framework
which significantly reduces the computational cost by using
RASL and AAM serially on different subsets of frames.
Experimental results show that our method outperformed
the earlier method in terms of the alignment accuracy. The
visual results show the proposed method is able to refine
the alignment even when the data is of poor quality (low
resolution, complex background, and big facial expressions).

In this paper the grouped-L1 constraint was proposed
as we believed points should be treated as a whole (not
separated into x- and y- components). One of the unexpected
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Fig. 3. Performance comparison between anchors of L2-norm2, L1-norm and grouped-L1-norm (referred to as L1L2-norm); (a) The fitting performances
with increasing biased errors. (b) The fitting performances with increasing number of outliers.
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Fig. 5. (a) The computational time of the sub-sample sizes of 180 (all), 20, 40, 60. (b) The fitting performance curve (the proportion of frames versus the
maximum RMS geometric error). The experimental results show that our algorithm is able to reduce computational cost significantly while maintaining
the identical alignment performance

results of this paper is that it seems to make little difference
in practice. We shall explore this phenomenon further in the
future.
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Fig. 6. Alignment performances of the initial CLMs alignment, Zhao et. al.’s method and our grouped-L1-norm Anchored RASL method. (a)(b)(c) Faces
in complex background which have similar color as human skin. (d)(e)(f) Faces in extreme condition, low resolution, complex background, and big facial
expressions. The alignments are refined by our method even when the data is of poor quality.


