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Abstract

Sparse coding has become an increasingly popular
method in learning and vision for a variety of classifi-
cation, reconstruction and coding tasks. The canonical
approach intrinsically assumes independence between
observations during learning. For many natural sig-
nals however, sparse coding is applied to sub-elements
( i.e. patches) of the signal, where such an assumption
is invalid. Convolutional sparse coding explicitly mod-
els local interactions through the convolution operator,
however the resulting optimization problem is consid-
erably more complex than traditional sparse coding. In
this paper, we draw upon ideas from signal processing
and Augmented Lagrange Methods (ALMs) to produce
a fast algorithm with globally optimal subproblems and
super-linear convergence.

1. Introduction

Sparse dictionary learning algorithms aim to factor-
ize an ensemble of input vectors {x}N

n=1

into a lin-
ear combination of overcomplete basis elements D =
[d

1

, . . . ,d

K

] under sparsity constraints. One of the
most popular forms of this algorithm attempts to solve,
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||2
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subject to ||d
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||2
2

 1 for k = 1 . . . K, (1)

where � controls the L

1

penalty, and the inequality
constraint on the columns of D prevent the dictionary
from absorbing all of the system’s energy. This prob-
lem is also known as basis pursuit [5] or LASSO [19]
and has proven useful in a variety of perceptual classi-
fication [24], reconstruction [4], and coding tasks, and
numerous papers have been devoted to finding fast ex-
act and approximate solutions to this problem, signifi-
cantly the works of [1, 11, 13].

Figure 1. A selection of filters learned from an unaligned
set of lions. The spatially invariant algorithm produces
expression of generic Gabor-like filters as well as specialized
domain specific filters, such as the highlighted “eye”.

Sparse coding has a fundamental drawback however,
as it assumes the ensemble of input vectors {x

n

}N
n=1

are independent of one another, i.e. the components
of the bases are arbitrarily aligned with respect to the
structure of the signal.

This independence assumption, when applied to nat-
ural images, leads to many basis elements that are
translated versions of each other. Convolutional sparse
coding attempts to remedy this shortcoming by mod-
elling shift invariance directly within the objective,
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 1 for k = 1 . . . K. (2)

Now z

k

takes the role of a sparse feature map which,
when convolved with a filter d

k

and added over all
k, should approximate the input signal x: a full signal
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(e.g . image or audio sequence) rather than independent
patches as in the objective of Equation (1). Like tradi-
tional sparse coding the estimated sparse basis {d

k

}K
k=1

will be of a fixed spatial support. However, unlike tra-
ditional sparse coding the input signal x and the sparse
feature maps {z

k

}K
k=1

are of a di↵erent and usually
much larger dimensionality. Note also that we assume
there is only a single signal x in our formulation in
Equation (2); it is trivial in our proposed formulation
to handle multiple signals each of varying length. We
persist with the single signal assumption throughout
the derivation of our approach for the sake of clarity
and brevity.

Notation: Matrices are always presented in upper-
case bold (e.g ., A), vectors are in lower-case bold
(e.g ., a) and scalars in lower-case (e.g ., a). A 2D
convolution operation is represented as the ⇤ opera-
tor. The matrix I

D

denotes a D ⇥ D identity ma-
trix, and ⌦ denotes the Kronecker product opera-
tor. A ˆ applied to any vector denotes the Discrete
Fourier Transform (DFT) of a vectorized signal a such
that â  F(a) = Fa, where F() is the Fourier trans-
forms operator and F is the D ⇥ D matrix of com-
plex basis vectors for mapping to the Fourier domain
for any D dimensional vectorized image/signal. We
have chosen to use a Fourier representation in this
paper due to its particularly useful ability to rep-
resent convolutions as a Hadamard product in the
Fourier domain. Additionally, we take advantage of
the fact that diag(ẑ)â = ẑ � â, where � represents
the Hadamard product, and diag() is an operator that
transforms a D dimensional vector into a D ⇥ D di-
mensional diagonal matrix. Commutativity holds with
this property such that role of filter ẑ or signal â can
be interchanged. Any transpose operator T on a com-
plex vector or matrix in this paper additionally takes
the complex conjugate in a similar fashion to the Her-
mitian adjoint [17]. With respect to Equation (2) –
the objective of central interest in this paper – we will
often omit filter indices (e.g . d

k

refers to the kth filter
and z

k

refers to the kth filter response) when referring
to the variables being optimized. In these instances we
assume that d = [dT

1

, . . . ,d

T

K

]T and z = [zT
1

, . . . , z

T

K

]T .
When we employ Fourier notation ẑ on the super vec-
tor z, then ẑ = [F(z

1

)T , . . . , F(z
K

)T ]T is implied.

Prior Art: The idea that sparse part-based represen-
tations form the computational foundations of visual
systems has been supported by Olshausen and Field
[15, 16] and many other studies [8, 20, 21]. Neurons
in the inferotemporal cortex respond to moderately
complex features which are invariant to the position of
stimulus within the visual field. Based on this observa-

tion, Hashimoto proposed a model which allowed fea-
tures to be shifted by a given amount within each image
patch [8]. The resulting features were complex patterns
rather than the Gabor-like features obtained by sparse
coding. [23] and [7] extended the approach to a more
general set of linear transforms applied to each patch
with similar results. The idea of truly shift-invariant
or “convolutional” sparse coding was first proposed by
Lewicki and Sejnowski for discrete 1D time-varying sig-
nals [12], and later generalized to images by Mrup et
al . [14].

Zeiler et al .’s work in convolutional sparse coding
was motivated by the study of deconvolutional net-
works [26, 27], which are closely related to the semi-
nal works of Lecun on convolutional networks [9, 10].
Zeiler et al . proposed to solve the objective in Equation
(2) through an alternation strategy where one solves
a sequence of convex subproblems until convergence.
The approach alternates between solving the subprob-
lem d given a fixed z, and the subproblem z given a
fixed d. A drawback to this strategy however, is the
computational overhead associated with both subprob-
lems. The introduction of convolution necessitates the
use of gradient solvers for each subproblem, with lin-
ear convergence properties dramatically a↵ecting the
convergence properties of the overall algorithm.

Zeiler further introduced an auxiliary variable, t, to
separate the convolution from the L

1

regularization (al-
lowing for an explicit and e�cient solution to t using
soft thresholding). Instead of enforcing the equality
constraint z = t explicitly, the authors add a quadratic
term µ

2

||z� t||2
2

to penalize violations. This quadratic
penalty can be reinterpreted as a trust region con-
straint ||z� t||2

2

 ✏ where ✏ / µ

�1. In order to satisfy
the equality constraint, µ must be increased arbitrar-
ily large, which simultaneously forces the new estimate
of z to be within ✏ of t and increases numerical error.
The optimal value of subproblem d requires solution of
a QCQP. To avoid this added computational burden,
Zeiler normalizes the solution to an unconstrained min-
imization, and while this tends to work in practice, it
is an approximation not guaranteed to converge to the
global minima of the original constrained objective (see
Figure 2).

Similar to Zeiler’s method is FISTA, from the family
of proximal gradient methods [1]. It is a well known it-
erative method capable of solving L

1

regularized least
squares problems with quadratic convergence proper-
ties. For FISTA to approach the L

1

-min however,
� ! 0. Augmented Lagrange methods (ALMs) – such
as the method of multipliers (ADMM) we use – have
similar quadratic convergence properties under more
modest conditions [2, 25] and through their capacity



to compose functions, present fast, scalable and dis-
tributed solvers.

Contributions: We make four specific contributions
in this paper:

• We advocate the use of Alternating Direction
Method of Multipliers (ADMMs) approach, over
the traditional continuation method, for separat-
ing the L

1

penalty from the convolutional compo-
nent of the objective using auxilliary variables. We
argue that an algorithmic speedup can be obtained
by applying an ADMM approach to the objective
as a whole rather than the L

1

subproblem alone.
• We demonstrate that the convolution subprob-

lem can be solved e�ciently and explicitly in the
Fourier domain; outperforming conventional gra-
dient solvers that use spatial convolution. By in-
corporating this approach within an ADMM op-
timization strategy the inequality constraints on
the norm of the dictionary elements can be satis-
fied exactly by scaling the solution to an isotropic
problem through the introduction of an additional
auxillary variable.

• We propose a quad-decomposition of the objec-
tive into subproblems that are convex and can
be solved e�ciently and explicitly without the
need for gradient or sparse solvers. As a result,
we demonstrate an improvement in the compu-
tational e�ciency of convolutional sparse coding
over canonical methods (i.e. Zeiler et al .).

• Finally, we present a convolutional sparse cod-
ing library, which can plug-and-play directly into
existing image and audio coding applications:
hiltonbristow.com/software.

2. Problem Reformulation

Our proposed approach to solving convolutional
sparse coding involves the introduction of two auxiliary
variables t and s as well as the posing of the convolu-
tional portion of the objective in the Fourier domain,

arg min
d,s,z,t

1

2D

||x̂�
K

X

k=1
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k

� ẑ
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||2
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K
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||t
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subject to ||s
k
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2

 1 for k = 1 . . . K

s

k

= �

T

d̂

k

for k = 1 . . . K

z

k

= t

k

for k = 1 . . . K. (3)

� is a D ⇥M submatrix of the Fourier matrix F =
[�,�?] that corresponds to a small spatial support of
the filter where M ⌧ D. Fourier convolution is not
exactly equivalent to spatial convolution due to the

di↵erent manner in which boundary e↵ects are han-
dled. Ignoring these for the moment (see Boundary
E↵ects on mitigating these di↵erences) the objective
in Equation (3) is equivalent to the original objective
in Equation (2).

In our proposed Fourier formulation d̂

k

is a D di-
mensional vector like x̂ and ẑ

k

, whereas in the original
spatial formulation in Equation (2) d

k

2 RM is of a
significantly smaller dimensionality to M ⌧ D corre-
sponding to its small spatial support. We enforce the
smaller spatial constraint through the auxiliary vari-
able s, which now becomes separable (in terms of vari-
ables) to the convolutional component of the objective.
In a similar spirit to Zeiler et al .’s original approach,
we also separate the L

1

penalty term from the convo-
lutional component of the objective using the auxiliary
variable t.

Augmented Lagrangian: In this paper we propose
to handle the introduced equality constraints through
an augmented Lagrangian approach [3]. The aug-
mented Lagrangian of our proposed objective can be
formed as,

L(d, s, z, t,�s,�t) =

1

2D

||x̂�
K

X

k=1

d̂

k

� ẑ

k

||2
2

+ �||t||
1

+ �T

s (s� [�T ⌦ I

K

]d̂) + �T

t (z� t)
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µs

2
||s� [�T ⌦ I

K

]d̂||2
2

+
µt

2
||z� t||2

2

subject to ||s
k

||2
2

 1 for k = 1 . . . K. (4)

where �p and µp denote the Lagrange multiplier and
penalty weighting for the two auxiliary variables p 2
{s, t} respectively. Augmented Lagrangian Methods
(ALMs) are not new to learning and computer vision,
and have recently been used to great e↵ect in a number
of applications [3, 6]. Specifically, the Alternating Di-
rection Method of Multipliers (ADMMs) has provided
a simple but powerful algorithm that is well suited to
distributed convex optimization for large learning and
vision problems. A full description of ADMMs is out-
side the scope of this paper (readers are encouraged
to inspect [3] for a full treatment and review), but
they can be loosely interpreted as applying a Gauss-
Seidel optimization strategy to the augmented Lagra-
gian objective. Such a strategy is advantageous as it
often leads to extremely e�cient subproblem decompo-
sitions. Del Bue et al . [6] recently applied this approach
with success to a variety of bilinear forms common to
computer vision (e.g . structure from motion, photo-
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metric stereo, image registration, etc.). A full descrip-
tion of our proposed algorithm is presented in Algo-
rithm 1. We detail each of the subproblems following:

Subproblem z:

z

⇤ = arg min
z

L(z;d, s, t,�s,�t) (5)

= F�1{arg min
ˆz

1

2
||x̂� D̂ẑ||2

2

+

�̂
T

t (ẑ� t̂) +
µt

2
||ẑ� t̂||2

2

} (6)

= F�1{(D̂T

D̂ + µtI)
�1(D̂T

x̂ + µtt̂� �̂t)} (7)

where D̂ = [diag(d̂
1

), . . . , diag(d̂
K

)]. Although the size
of the matrix D̂ is KD ⇥ KD, it is sparse banded,
and an e�cient variable reordering exists (see Figure 3)
such that the optimal z⇤ can be found as the solution
to D independent K ⇥K linear systems.

Subproblem t:

t

⇤ = arg min
t

L(t;d, s, z,�s,�t) (8)

= arg min
t

µt

2
||z� t||2

2

+ �T

t (z� t) + �||t||
1

(9)

Unlike subproblem z, the solution to t cannot be ef-
ficiently computed in the Fourier domain, since the
L

1

norm is not rotation invariant. Solving for t first
requires projecting ẑ and �̂t back into the spatial
domain. Since the objective in Equation (9) does
not contain any rotations of the data, each element
of t = [t

1

, . . . , t

D

]T can be solved independently,

t

⇤ = arg min
t

�|t| + �(z � t) +
µ

2
(z � t)2 (10)

where the optimal solution for each t can be found ef-
ficiently using the shrinkage function,

t

⇤ = sgn

✓

z +
�t

µt

◆

· max

⇢

|z +
�t

µt
|� t, 0

�

. (11)

Subproblem d:

d

⇤ = arg min
s

L(d; s, z, t,�s,�t) (12)

= F�1{arg min
ˆd

1

2
||x̂� Ẑd̂||2

2

+

�̂
T

s (d̂� ŝ) +
µs

2
||d̂� ŝ||2

2

} (13)

= F�1{(ẐT

Ẑ + µsI)
�1(ẐT

x̂ + µsŝ� �̂s)} (14)

where Ẑ = [diag(ẑ
1

), . . . , diag(ẑ
K

)]. In a similar
fashion to subproblem z, even though the size of the
matrix Ẑ is KD⇥KD, a similar variable reordering ex-
ists such that finding the optimal d⇤ involves solution
to D independent K ⇥K linear systems.

Subproblem s:

s

⇤ = arg min
s

L(s;d, z, t,�s,�t) (15)

= arg min
s

µs

2
||d̂� [�T ⌦ I

K

]s||2
2

+

�̂
T

s (d̂� [�T ⌦ I

K

]s)

subject to ||s
k

||2
2

 1 for k = 1 . . . K .(16)

In its general form, solving Equation (16) e�ciently
is problematic as it is a quadratically constrained
quadratic programming (QCQP) problem. Fortu-
nately due to the kronecker product with the identity
matrix I

K

it can be broken down into K independent
problems,

s

⇤
k

= arg min
sk
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2
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||2
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)
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k

||2
2

 1 . (17)

Further, since � is orthonormal (ignoring the
p

D scal-
ing factor) projecting the optimal solution to the un-
constrained problem (see Figure 2) can be found e�-
ciently through,

s

⇤
k

=

⇢ ||s̃
k

||�1

2

s̃

k

, if ||s̃
k

||2
2

� 1
s̃

k

, otherwise
(18)

where,

s̃

k

= (µs��

T )�1(�d̂

k

+ ��̂sk) . (19)

Finally, the solution to Equation (19) can be found very
e�ciently using

s̃

k

= M
n 1

µs

p
D

�1

�F�1{d̂
k

} + F�1{�̂sk}
�

o

(20)

where F�1{} is the inverse FFT and M{} : RD ! RM

is a mapping function that preserves only M ⌧ D ac-
tive values relating to the small spatial structure of the
estimated filter. As a result one never needs to actually
construct the sub-matrix � in order to estimate s

k

.

Lagrange Multiplier Update:

�(i+1)

t  �(i)

t + µt(z
(i+1) � t

(i+1)) (21)

�(i+1)

s  �(i)

s + µs(d
(i+1) � s

(i+1)) (22)

Penalty Update: Superlinear convergence of the
ADMM may be achieved if µ

(i) !1 [18]. In practice,
we limit the value of µ to avoid poor conditioning and
numerical errors. Specifically, we adopt the following
update strategy:

µ

(i+1) =

⇢

⌧µ

(i) if µ

(i)

< µ

max

µ

(i) otherwise
(23)



(a) (b)

|s|2
2

= |s⇤|2
2

|s|2
2

= |s⇤|2
2

|s|2
2

= 1 |s|2
2

= 1

Figure 2. (a) Solving the isotropic ridge regression problem of Equation (17) with a trust region (red arrow) is equivalent
to projecting the optimal unconstrained solution (black arrow) onto the unit sphere. (b) The same cannot be said for the
general case of anisotropic problems, where projection of the unconstrained solution is di↵erent to the trust region solution.

Figure 3. Variable reordering in the sparse banded systems
of subproblems s and z. Each output pixel is dependent
only on the K filters, thus each distinct set of K pixels can
be found by reordering and solving a K ⇥K linear system.

We observed good convergence for ⌧ 2 [1.01 1.5], and
µ

max

= 1.0e

5. Larger values of ⌧ enforced the equal-
ity constraints quickly, but at the expense of primal
feasibility. Smaller values of ⌧ led to slow, linear con-
vergence. Adaptive strategies can also be entertained
to balance the rate of primal and dual convergence [22].

Boundary e↵ects: Zeiler et al . state that one rea-
son for avoiding convolution in the Fourier domain is
the boundary e↵ects that are introduced. Circular con-
volution, implied by the Fourier convolution theorem,
assumes periodic extension of the signal. To determine
the degree to which boundary e↵ects were corrupt-
ing our solution, we replaced circular convolution in
our method with symmetric convolution which assumes
symmetric extension of the signal across the boundaries
- a more reasonable real-world assumption for natural
signals such as images and speech. The resulting filters
learned not only looked qualitatively similar to those
from circular convolution, but the final objective value

Algorithm 1 Convolutional Sparse Coding using
Fourier Subproblems and ADMMs

1: Intialize z

(0), t(0), s(0), �(0)

s , �(0)

t .

2: Perform FFT z

(0), t(0), s(0), �(0)

s , �(0)

t ! ẑ

(0), t̂(0),

ŝ

(0), �̂
(0)

s , �̂
(0)

t .
3: i = 0
4: repeat

5: Solve for d̂

(i+1) using Eqn. (14)

given ẑ

(i)

, ŝ

(i)

, �̂
(i)

s .
6: Perform inverse FFT F�1{d̂(i)}! d

(i+1).
7: Solve for s̃

(i+1) using Eqn. (20) given d

(i+1).

8: Preserve only the M local pixels in d

(i+1)

k

and

scale by 1p
D

to estimate s̃

(i+1)

k

= 1p
D

M{d(i+1)

k

}
- Eqn. (16) - for all k = 1 . . . K.

9: Project s̃(i+1)

k

onto the isotropic trust region con-

straint to estimate s

(i+1)

k

for all k = 1 . . . K.
10: Solve for ẑ

(i+1) using Eqn. (7)

given t̂

(i)

, �̂
(i)

t , d̂

(i+1)

11: Perform inverse FFT F�1{ẑ(i+1)}! z

(i+1).

12: Solve for t

(i+1) using Eqn. (9) given z

(i+1)

,�(i)

t

13: Update Lagrange multiplier vector

�(i+1)

t  �(i)

t + µt(z(i+1) � t

(i+1))
14: Update Lagrange multiplier vector

�(i+1)

s  �(i)

s + µs(d(i+1) � s

(i+1))
15: Perform FFT on t, s, �s, �t ! t̂, ŝ, �̂s, �̂t.
16: i = i + 1
17: until z, s,d, t has converged

was also comparable (within a 1 ⇥ 10�3 margin of er-
ror).

We surmise that the large size of the input images
(100 ⇥ 100 or larger) compared to the support of the



filters being learned (12⇥ 12) results in negligible con-
tributions from pixels a↵ected by boundary e↵ects to
the overall objective. For large support filters, the
Discrete Fourier Transform (DFT) can be replaced by
the Discrete Cosine Transform (DCT) which diagonal-
izes symmetric convolution, and like a DFT can be
applied extremely e�ciently [17]. Kavukcuoglu et al .
point out, however, that even spatial convolution intro-
duces boundary e↵ects since the boundary pixels have
less contributions than inner pixels, so no convolution
method is truly exempt from boundary e↵ects.

Complexity Analysis: Here we briefly analyse the
complexity properties of our method versus current
first order methods (i.e. Zeiler et al .). We consider
the cost of evaluating a single iteration of subproblems.
Both methods are linear in the number of training ex-
amples, so we assume a single example for clarity. The
cost of our method is dominated by the solution to the
linear systems arising from the z and d subproblems.

K

3

D

| {z }

Linear systems

+ KDlog(D)
| {z }

Fourier transforms

+ KD

|{z}

Soft thresholding

(24)

= O(K3

D) (25)

Because Zeiler’s method is iterative within the z and
d subproblems, the cost of convolution is multiplica-
tive with the cost of the conjugate gradient method.
Although our method uses a more costly direct solver,
the contribution of convolution is additive to the over-
all complexity.

KD

|{z}

Conjugate gradients

⇥ KDM

| {z }

Spatial convolution

+ KD

|{z}

Soft thresholding

(26)

= O(K2

D

2

M) , (27)

where M corresponds to the support of the filter.
Our method has better asymptotic performance than
Zeiler’s under very mild conditions: K < DM . We
show following that our algorithm not only has good
asymptotic properties, but is also fast in practice.

3. Experiments

We show three key results of our algorithm: (i) it
has faster convergence than current state of the art
methods, (ii) it consistently converges to local minima
of equal quality to these existing methods, and (iii) that
when applied to natural images our method produces
structured Gabor-like and higher complexity filters.

We compare our method to the underlying learn-
ing method of Zeiler et al . [27]. We use their “Fruit”
dataset consisting of 10 images, apply local contrast
normalization and select random 50 ⇥ 50 subimages
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Figure 4. Time to convergence as a function of (left) the
number of filters learned with fixed number of input images,
and (right) the number input images with fixed number of
filters.

0 500 1000 1500 2000 2500 3000
10−2

100

102

104

106

108

1010

1012

Time (s)

N
or

m
al

is
ed

 o
bj

ec
tiv

e 
va

lu
e

 

 
Our Method
Zeiler et al

Figure 5. Comparison of objective when learning 64 filters
from the experiments of Figure 4. Our objective starts at
a much larger value than Zeiler et al .’s, due to added La-
grange multipliers and penalty terms, but quickly converges
to a good solution.

from each. We perform two experiments, first holding
the number of training examples fixed whilst varying
the number of filters learned, then visa versa. We use
the relative residual between two iterations as the stop-
ping criteria. The results are shown in Figure 4.



Figure 6. A representative set of 450 filters learned on a laptop using a collection of whitened natural images. The set
contains Gabor-like components, as well as more expressive centre-surround and cross-like components which appear since
the spatially-invariant learning strategy produces less spatially shifted versions of the filters.

Our method (blue line) consistently converges nearly
an order of magnitude faster than Zeiler et al .’s method
(red line) with respect to the number of filters being
learned. This is largely due to two contributing factors:
(i) the direct methods we use to solve each subprob-
lem have super-linear convergence properties, whereas
the conjugate gradient method employed by Zeiler et
al . is limited to linear convergence, and (ii) convolu-
tion in the Fourier domain involves a simple Hadamard
product whereas convolutions must be explicitly re-
computed for each iteration of conjugate gradients.

Our method also has better scalability for increasing
number of input examples. We do not use any batch-
ing techniques during training: learning is performed
jointly across the entire training set.

In Figure 5 we show a representative trial from the
Experiments of Figure 4. System variables d, s, z and t

are randomly initialized with Gaussian noise. The ini-
tial Lagrange multipliers are set to zero. Our method
starts at a much larger objective value, due to the addi-
tional Lagrange multiplier and penalty terms. The ob-
jective quickly decreases however, as these terms vanish
and the equality constraints are satisfied. The over-
all curve of our objective is typical of ADMMs: steep
convergence to begin with, followed by flat-lining and
minimal convergence beyond that point.

Applying sparse coding algorithms to the original
Olshausen and Field dataset [15] has become a stan-

dard “sanity check”, to ensure that the method is ca-
pable of producing Gabor-like oriented edge filters. We
do the same by dividing the original 512⇥512 pixel im-
ages into 16 subimages, for a total training set of 160
images each of 128⇥ 128 pixels. A visualization of the
learned filters is presented in Figure 6.

While our convolutional algorithm produces some
Gabor-like responses, it also has a greater expression of
non-Gabor filters which are tailored more towards the
semantics of the dataset. Figure 1 shows a compelling
example of this artifact, with one of the filters clearly
synthesizing an “eye” feature from a set of unaligned
lions.

4. Conclusions

We presented a method for solving convolutional
sparse coding problems in a fast manner through quad-
decomposition of the original objective into subprob-
lems that have an e�cient parameterization in the
Fourier domain. These components working in union
allow us to solve the rotation invariant L

1

subproblem
for each index independently using soft thresholding,
and transform the quadratically constrained filter up-
date equation to an unconstrained isotropic system. As
filter support size increases, the appeal of Fourier con-
volution becomes more apparent, and where boundary
e↵ects are problematic the Fourier transform can be
seamlessly replaced by the Discrete Cosine Transform.
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