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Abstract

This paper proposes a novel part-based representation
for modeling object categories. Our representation com-
bines the effectiveness of deformable part-based models
with the richness of geometric representation by defining
parts based on consistent underlying 3D geometry. Our key
hypothesis is that while the appearance and the arrange-
ment of parts might vary across the instances of object cat-
egories, the constituent parts will still have consistent un-
derlying 3D geometry. We propose to learn this geometry-
driven deformable part-based model (gDPM) from a set
of labeled RGBD images. We also demonstrate how the
geometric representation of gDPM can help us leverage
depth data during training and constrain the latent model
learning problem. But most importantly, a joint geometric
and appearance based representation not only allows us to
achieve state-of-the-art results on object detection but also
allows us to tackle the grand challenge of understanding 3D
objects from 2D images.

1. Introduction

While object detection remains one of the most stub-
bornly difficult problems in computer vision, substantial
progress has been made in the last decade, as evidenced
by steadily improving detection rates for common cate-
gories such as faces, cars, etc. However, there are reasons
to worry that current advancements might be reaching a
plateau. Consider the popular PASCAL object detection
benchmark [12]: after rapid gains early on, detection per-
formance has stagnated for most object classes at levels still
too low for practical use (e.g., bird, sofa and chair categories
are all below 20% AP). Interestingly, the standard trick of
boosting performance by increasing the size of the training
set does not seem to be working any longer: Zhu et al. [33]
report training a standard detector on 10 times more data
without seeing any improvement in performance. This in-
dicates the need for better models and learning approaches
to handle the intra-class variability of object categories.

At the forefront of detection research has been the de-
formable part-based model (DPM) [13] which has consis-
tently achieved state-of-the-art performance in object de-
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Figure 1. Examples of object detection and surface normal pre-
diction using the proposed gDPM model. Our gDPM not only
improves the state of the art performance in object detection but
it also predicts the surface normals with the detection. Legend for
normals: blue: X; green: Y; red: Z.

tection tasks. It models objects as a constellation of parts
where the parts are defined in an unsupervised manner
based on heuristics such as high gradient energy. This part-
based model is trained discriminatively; however, learning
this model is a complex task as it involves optimization of
a non-convex function over a set of latent variables (part lo-
cations and mixture memberships). In some cases, the parts
in the DPM have shown little or no improvement [10]. Due
to these reasons, recent work has focused on using strongly-
supervised part models [1] where semantically meaningful
part annotations are used to initialize the parts and improve
the learning process. However, using semantically mean-
ingful parts has two major problems: (1) manually labeling
these semantic parts can be quite cumbersome and requires
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a lot of human effort; (2) more importantly, unlike articu-
lated objects, for many object categories, such as beds, it is
not even clear what a semantic part corresponds to.

We propose a geometry-driven deformable part-based
model (gDPM) that can be learned from a set of labeled
RGBD images. In a gDPM, object parts are defined based
on their physical properties (i.e., their geometry) rather than
just their appearance. Our key hypothesis is that while the
arrangement of parts might vary across the instances of ob-
ject categories, the constituent parts will still have consis-
tent underlying 3D geometry. For example, every sofa has
a L-shaped part that is the intersection of a vertical surface
and a horizontal surface for sitting. Therefore, the under-
lying 3D geometry can provide weak supervision to define
and initialize the parts. While the learning objective in case
of gDPM is still non-convex (similar to [13]), we show how
the depth data can be used as weak supervision to impose
geometric constraints and guide latent updates at each step.
Empirically this leads to faster convergence, and a better
model in terms of detection performance. But more impor-
tantly, because our parts have a 3D geometrical representa-
tion they can be used to jointly detect objects and infer 3D
properties from a single 2D image. Figure 1 shows two ex-
amples of objects detected by our gDPM model and the pre-
dicted surface normal geometry by the gDPM. Notice how
our approach predicts nicely aligned flat horizontal surface
of the table within the bounding box and how the approach
predicts the horizontal and vertical surfaces of the couch.
Contributions: Our key contributions include: (1) We pro-
pose to marry deformable part-based model with the geo-
metric representation of objects by defining parts based on
consistent underlying 3D geometry. (2) We demonstrate
how the geometric representation can help us leverage depth
data during training and constrain the latent model learn-
ing problem. The underlying 3D geometry during training
helps us guide the latent steps in the right direction. (3)
Most importantly, a joint geometric and appearance based
representation not only allows us to achieve state-of-the re-
sults on object detection but also allows us to tackle the
grand challenge of understanding 3D objects from 2D im-
ages.

2. Related Work

The idea of using geometric and physical representation
for objects and their categories has a rich history in com-
puter vision [5, 23, 24]. While these approaches resulted
in some impressive demos such as ACRONYM [6], these
systems failed to generalize. That led us to the modern era
in computer vision where instead of representing objects in
3D, the focus changed to representing objects using low-
level image features such as HOG [9] and using machine
learning to learn an appearance model of the object. The
most successful approaches in this line of work are the de-
formable part-based models [13] that extend the rigid tem-

plate from [9] to a latent part-based model that is trained dis-
criminatively. While there has been a lot of progress made
over the last decade, the performance of these appearance
based approaches seems to have been stagnated.

Therefore, recent research has now focused on develop-
ing richer representations for objects and effective ways of
learning these representations. Most of the recent work on
improving deformable part models can be broadly divided
in two main categories:

(a) Better 2D Representations and Learning: The first
and the most common way is to design better representa-
tions using 2D image features. In this area, researchers have
looked into using strongly-supervised models for parts [1, 4,
11, 32], using key point annotations to search for parts [3]
or discovering mid-level parts in a completely unsupervised
manner [28]. Other directions include using sharing to
increase data-size across categories [22] or finding visual
subcategories based on appearances before learning a part-
based model [7, 10].

(b) Using 3D Geometry: The second direction that has
been explored is to bring back the flavor of the past and
develop rich models by representing 3D geometry explic-
itly. One of the most common ways to encode viewpoint
information is to train a mixture of templates for differ-
ent viewpoints [17]. An alternative approach is to explic-
itly consider the 3D nature of the problem and model ob-
jects as a collection of local parts that are connected across
views [16, 27, 29, 30]. Another way to account for 3D rep-
resentation is to explicitly model the 3D object in terms of
planes [8, 14, 27, 31] or parts [26], and use a rigid tem-
plate [18], spring model [14] or a CRF [8].

Our approach lies at the intersection of two these direc-
tions. Unlike other approaches which incorporate geome-
try in DPM via CAD models [26] or manually-labeled 3D
cuboids [14, 18], our approach uses noisy depth data for
training (similar to [15]). This allows us to access more and
diverse data (hundreds of images compared to 40 or so CAD
models). The scale at which we build 3D priors and do ge-
ometric reasoning during latent learning allows us to obtain
improvements of as much as 11% in some categories (previ-
ous approaches performed at-par or below DPM). We would
also like to point out that even though our approach uses
depth information during training, it is used as a weak su-
pervisory signal (and not as an extra input feature) to guide
the training in the right direction. The discriminative model
is only learned in the appearance space. Therefore, we do
not require depth at test time and can use gDPM to detect
objects in RGB images. Most other work in object detec-
tion/recognition using RGBD [2, 20, 21] uses depth as an
extra input feature to learn an object model and therefore,
also requires depth information at test time.



3. Overview

As input to the system, at training, we use RGB images
of object instances along with their underlying geometry in
terms of depth data. We convert the depth data into surface
normals using the standard procedure from [25]. Our goal
is to learn a deformable part-based model where the parts
are defined based on their appearance and underlying ge-
ometry. We argue that using a geometric representation in
conjunction with appearance based deformable parts model
not only allows us to have a better initialization but also pro-
vides additional constraints during the latent update steps.
Specifically, our learning procedure ensures not only that
the latent updates are consistent in the appearance space but
also that the geometry predicted by underlying parts is con-
sistent with the ground truth geometry. Hence, the depth
data is not used as an extra feature, but instead provides
weak supervision during the latent update steps.

In this paper, we present a proof-of-concept system for
building gDPM. We limit our focus on man-made indoor
rigid objects, such as bed, sofa etc., for three reasons: (1)
These classes are primarily defined based on their phys-
ical properties, and therefore learning a geometric model
for these categories makes intuitive sense; (2) These classes
have high intra-class variation and are challenging for any
deformable parts model. We would like to demonstrate that
a joint geometric and appearance based representation gives
us a powerful tool to model intra-class variations; (3) Fi-
nally, due to the availability of Kinect, data collection for
these categories has become simpler and efficient. In our
case, we use the NYU v2 dataset [25], which has 1449
RGBD images.

4. Technical Approach

Given a large set of training object instances in the form
of RGBD data, our goal is to discover a set of candi-
date parts based on consistent underlying geometry, and
use these parts to learn a geometry-driven deformable part-
based model (gDPM). To obtain such a set of candidate
parts, we first discover a dictionary of geometric elements
based on their depth information (section 4.1) in a category-
free manner (pooling the data from all categories). A
category-free dictionary allows us to share the elements
across multiple object categories.

We use this dictionary to choose a set of parts for every
object category based on frequency of occurrence and con-
sistency in the relative location with respect to the object
bounding-boxes. Finally, we use these parts to initialize and
learn our gDPM using latent updates and hard mining. We
exploit the geometric nature of our parts and use them to en-
force additional geometrical constraints at the latent update
steps (section 4.3).

Figure 2. A few elements from the dictionary after the initialization
step. They are ordered to highlight the over-completeness of our
initial dictionary.

Figure 3. A few examples of resulting elements in dictionary after
the refinement procedure.

4.1. Geometry-driven Dictionary of 3D Elements

Given a set of labeled training images and their corre-
sponding surface normal data, our goal is to discover a dic-
tionary of elements capturing 3D information that can act
as parts in DPM. Our elements should be: 1) representa-
tive: frequent among the object categories in question; 2)
spatially consistent with respect to the object. (e.g., a hori-
zontal surface always occurs on the top of a table and bed,
while it occurs at center of a chair and a sofa). To obtain a
dictionary of candidate elements which satisfy these prop-
erties, we use a two step process: first we initialize our dic-
tionary by an over-complete set of elements, each satisfying
the representativeness property; and then we refine the dic-
tionary elements based on their relative spatial location with
respect to the object.
Initializing the dictionary: We sample hundreds of thou-
sands of patches, in 3 different aspect-ratios (AR), from the
object bounding boxes in the training images (100 − 500
patches per object bounding box). We represent these
patches in terms of their raw surface normal maps. To ex-
tract a representative set of elements for each AR, we per-
form clustering using simple k-means (with k ∼ 1000), in
raw surface normal space. This clustering process leads to
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Figure 4. Refinement: After creating an initial dictionary we do the refinement procedure where we find the set of elements that occur at a
consistently occur at same spatial location with respect to the object center.

Figure 5. An example of detection/localization of discovered dic-
tionary elements in surface normal space.

an over-complete set of geometric elements. We remove
any cluster with less than N members, for not satisfying the
frequency property. We represent every remaining cluster
by an element which is the pixel-wise median of the near-
est N patches to the cluster center. A few examples of this
set of elements is shown in Figure 2. (See the website for
more elements and other AR clusters.) In practice, we use
N = 25. As one can notice from the figure, the dictio-
nary is over-complete. To reject the clusters with bad (non-
homogenous) members and to remove redundancy we fol-
low this clustering step with a refinement procedure.
Refinement: Given the clusters from the initialization step,
we first check each cluster for spatial consistency, i.e., how
consistent the cluster is with respect to the center of the ob-
ject. For this, we record the location of each member in
the cluster relative to the object center as: (dxi, dyi) =(

(pi
x−po

x)
wo ,

(pi
y−po

y)

ho

)
, where po, wo and ho are the object

center, width and height respectively, and pi is the center
of element i. Examples of this voting scheme are given in
Figure 4, where each blue dot represents a vote from the
cluster’s member, and red dot represents object center. To
capture consistency in relative locations, we sort the clus-
ters based on min(σ2

x(dx), σ
2
y(dy)) (minimum variance of

their relative x, y locations). Clusters like the legs of furni-
ture (consistently below the object and closer to the center)
and sides of a bed (consistently near the center of object)
rank much higher than noisy cluster shown at the right. Af-
ter pruning bad clusters by thresholding, we perform a step
of agglomerative clustering to merge good clusters which
are close in feature space (raw surface normals) as well as
have consistent distribution of (dx, dy). This gives us a dic-
tionary D of 3D elements. A few examples of resulting
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Figure 6. From 3D Parts to object hypothesis: (a) few examples
images in the cluster; (b) all the geometrically consistent candidate
parts selected (before greedy selection); (c) final part hypothesis
for initializing gDPM (after greedy selection)

elements are shown in Figure 3.
4.2. From 3D Parts to Object Hypothesis

Given a dictionary of geometric elements D, we would
like to discover which geometric elements can act as parts
for which object categories. Since our categories share the
geometric elements, every element in the dictionary can act
as a part for any number of object categories. We repre-
sent a part pj for an object category with three aspects:
(a) the geometric element ei ∈ D; (b) the relative location
lj : (dxj , dyj) of the part with respect to object center (in
normalized coordinates); (c) the spring model (or variance
in (dx, dy)) for the part, which defines how spatially consis-
tent a part is with respect to the object. Note that an object
part is different from the geometric element and a geomet-
ric element can act as different parts based on the location
(e.g., two armrests for the chair; an armrest is a geometric
element but two different parts). The goal is to find set of
parts (or an object hypothesis) p =

[
p1, . . . , pN

]
, where

pj : (ei, l
j), that occur consistently in the labeled images.

Similar to DPM [13], we represent each object category
as a mixture of components and each component is loosely
treated as a category of its own. Therefore, our goal is to
find a set of parts for each component of all object cate-
gories. Given a set of training images for a component, we
first localize each element e in the surface normal map. For



example, Figure 5 shows the elements detected in the case
of a sofa. We then pool the element localizations from all
images and find the most frequent elements at different lo-
cations in an object. These frequent elements act as candi-
date parts for representing an object. Figure 6(b) shows the
candidate parts for one component of three categories: bed,
sofa and table.

We now use a greedy approach to select the final parts
with the constraints that we have 6-12 parts per object com-
ponent and that these parts cover at least 60% of the object
area. At each step, we select the top-most part hypothesis
based on the frequency of occurrence and consistency in the
relative location with respect to the object. Therefore, if a
geometric element occurs quite frequently at a particular lo-
cation, then it is selected as a part for the object. Once we
have selected a part, the next part is selected based on fre-
quency and consistency of occurrence, and its overlap with
the already selected parts (a part that overlaps a lot with al-
ready selected parts is rejected).

4.3. Learning gDPM

Once we have obtained a set of parts for a given object
category, we can now use it to initialize the learning of our
proposed gDPM model. Following the general framework
of deformable part models [1, 11, 13, 32], we model an ob-
ject by a mixture of M components, each of which is a non-
rigid star-shaped constellation of parts. The key difference
between learning the gDPM and the original DPM lies in
the scoring function. Unlike the original model which only
captures appearance and location of parts, we explicitly in-
clude a geometric consistency term in the scoring function
used at the latent update step. This allows us to enforce ge-
ometric consistency across the latent update steps and guide
the latent updates in the right direction. We will now first
discuss a few preliminaries about DPM and then discuss
how we add the geometric consistency term to the scoring
function.

DPM Preliminaries For each mixture component, in-
dexed by c ∈ {1, . . . ,M}, the object hypothesis is specified
by z = (l0, l1, . . . , lnc

), where li = (ui, vi, si) denotes the
(u, v)-position of i-th filter (every part acts a filter) at level
si in the feature pyramid (root is indexed at 0, and l0 cor-
responds to its bounding-box) and nc is number of parts in
component c. Following [13], we enforce that each part is
at twice the resolution of the root.

The score of a mixture component c, with model param-
eter βc, at any given z (root and part locations) in an image
I is given by

S(I, z, βc) =

nc∑
i=0

Fi · φ(I, li)−
nc∑
i=1

di · ψ(li − l0) + b (1)

where the first term scores appearance using image features
φ(I, li) (HOG features in this case) and model’s appearance
parameters (F0, . . . , Fnc

). The second term enforces the

deformation penalty using ψ(li − l0) = {dx, dy, dx2, dy2}
where (dx, dy) = (lxi , l

y
i ) − (2(lx0 , l

y
0) − vi) and vi is the

anchor position of the part. Thus, each component’s model
parameter is βc = {F0, . . . , Fnc

, d1, . . . , dnc
, b}.

The final score of a DPM model for an object category
on an image I at any z is given by

S(I, z) = max
c∈{1...M}

S(I, z, βc), (2)

which is the maximum over scores of all the components.
Thus, the final object model parameter is β = (β1, . . . , βM )
which encapsulates all M mixture components.

4.3.1 Enforcing Geometric Constraints & Learning

Given the training data {(xi, yi)}1,...,N , we aim to learn a
discriminative gDPM. In our case, x = {I, IG, l}, where I
denotes an RGB image, IG denotes the surface normal map
and l is location of the bounding box, and y ∈ {−1, 1}.
Similar to [1, 11, 13, 32], we minimize the objective func-
tion:

LD(β) =
1

2
‖β‖2 + C

N∑
i=1

max(0, 1− yifβ(xi)), (3)

fβ(x) = max
z
S(I, z) = max

z,c
S(I, z, βc). (4)

The latent variables, z (root and part locations) and c (mix-
ture memberships), make (3) non-convex. [13] solves this
optimization problem using a coordinate-descent based ap-
proach, which iterates between a latent update step and a
parameter learning step. In the latent update step, they es-
timate the latent variables, z and c, by relabeling each pos-
itive example. In the parameter learning step, they fix the
latent variables and estimate the model parameter β using
stochastic gradient descent (SGD).

The latent updates in [13] are made based on image ap-
pearance only. However, in our case, we also have a geo-
metric representation of our parts and the underlying depth
data for training images. We exploit this and constrain the
latent update step such that the part geometry should match
the underlying depth data. Intuitively, depth data provides
part-level geometric supervision to the latent update step.
Thus, enforcing this constraint only affects the latent up-
date step in the above optimization. This is achieved by
augmenting the scoring function S(I, z, βc) with a geomet-
ric consistency term:

fβ(x) = max
c∈{1...M},z

[
S(I, z, βc) + λ

nc∑
i=1

SG(e
i, ω(IG, li))

]

(5)

where ei is the geometric element (raw surface normal) cor-
responding to i-th part, ω(IG, li) is the raw surface normal
map extracted at location li, SG(·) is the geometric similar-
ity function between two raw surface normal maps and λ is
the trade-off parameter, controlling how much we want the
optimization to focus on geometric consistency. We train
our gDPM models using a modified version of the Latent
SVM solver from [13]. In our coordinate-descent approach,



Table gDPM Model 1 Table gDPM Model 2 
Table gDPM Model 3 

Bed gDPM Model 3 Bed gDPM Model 2 Bed gDPM Model 1 

Sofa gDPM Model 3 Sofa gDPM Model 2 Sofa gDPM Model 1 

Figure 7. Learned gDPM models for classes bed, sofa and table. The first visualization in each template represents the learned appearance
root filter, the second visualization contains learned part filters super-imposed on the root filter, the third visualization is the surface normal
map corresponding to each part and the fourth visualization is of the learned deformation penalty.

the latent update step on positives uses fβ from (5) to esti-
mate the latent variables; then we apply SGD to solve for β
by using standard fβ (4) and hard-negative mining. At test
time, we only use the standard scoring function (2) (which
is also equivalent to setting λ = 0 in (5)).

5. Experiments

We now present experimental results to demonstrate the
effectiveness of adding geometric representation and con-
straints to a deformable part-based model. We will show
how adding 3D parts and geometric constraints not only
help improve the performance of our object detector but also
help us to develop 3D understanding of the object (in terms
of surface normals). We perform our experimental evalua-
tion on the NYU Depth v2 dataset [25]. We learn a gDPM
model for five object categories: bed, chair, monitor+TV
(M.+TV), sofa and table. We use 3 components for each
object category and some of the learned models are shown
in Figure 7. This dataset has 1,449 images; we use the train-
test splits from [25] (795 training and 654 test images). We
convert the object instance segmentation masks (provided
by [25]) to bounding boxes for training and testing object
detectors. For surface normal prediction for the object, we
superimpose the surface normals corresponding to each part
and take the pixel-wise median. We also use colorization
from [25] to in-paint missing regions in the object for visu-
alization.

Qualitative: Figure 8 shows the performance of gDPM de-
tector on a few examples. Our gDPM model not only local-
izes the object better but is also able to predict the surface
normals for the detected objects. For example, in the first
row, gDPM not only predicts the flat sittable surface of the
couch but it also predicts the vertical backrest and the hori-
zontal surface on the top of it. Similarly, in the second row,
our approach is able to predict the horizontal surface of the
small table. Figure 9 shows one of the false positives of
our approach. In this case, a chair is predicted as a sofa by
gDPM but notice the predicted surface normals by gDPM.
Even in the case of wrong category prediction, gDPM does

Table 1. AP performance on the task of object detection.

Bed Chair M.+TV Sofa Table

DPM (No Parts) 20.94 10.69 6.38 5.51 2.73
DPM 22.39 14.44 8.10 7.16 3.53

DPM (Our Parts, No Latent) 26.59 5.71 2.35 6.82 3.41
DPM (Our Parts) 29.15 11.43 4.17 8.30 1.76

gDPM 33.39 13.72 9.28 11.04 4.05

a reasonable job on the task of predicting surface normals
including the horizontal support surface of the chair.

Quantitative: We now evaluate gDPM quantitatively on
the task of 2D object detection. As a baseline, we compare
our approach against the standard DPM model with and
without parts. We also evaluate the performance of DPM
by treating our initial part hypothesis as strong supervision
(ground truth parts) and not doing any latent updates. Fi-
nally, we also evaluate the performance of our parts with the
standard latent updates which do not consider the geometric
constraint based on depth data. Table 1 shows the average
precision (AP). Our approach improves over the standard
DPM by approximately 3.2% mean AP over 5 categories;
and for categories like bed and sofa, the improvement is as
much as 11% and 4% respectively. We also evaluate our
surface normal prediction accuracy in a small quantitative
experiment. Against Geometric Context [19], our surface
normal prediction is 2◦ better, in terms of median per-pixel
error.

6. Conclusions

We proposed a novel part-based representation,
geometry-driven deformable part-based model (gDPM),
where the parts are defined based on their 3D properties.
gDPM effectively leverages depth data to combine the
power of DPMs with the richness of geometric representa-
tion. We demonstrate how depth data can be used to define
parts and provide weak supervision during the latent update
steps. This leads to a better model in terms of detection
performance. But more importantly, a joint geometric and
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Figure 8. Qualitative Results: Our gDPM not only localizes the object but also predicts the surface normals of the objects.



Input Image DPM Detection gDPM Detection Predicted Geometry
Figure 9. False Positives: Our sofa detector detecting chair. Notice that the geometry still looks plausible.

appearance based representation allows us to jointly tackle
the grand challenge of object detection and understanding
3D objects from 2D images.
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