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ABSTRACT

We place a small wireless camera inside an American football
to capture the ball’s point-of-view during flight to augment
a spectator’s experience of the game of football. To this end,
we propose a robust video synthesis algorithm that leverages
the unique constraints of fast spinning cameras to obtain a
stabilized bird’s eye point-of-view video clip. Our algorithm
uses a coarse-to-fine image homography computation tech-
nique to progressively register images. We then optimize an
energy function defined over pixel-wise color similarity and
distance to image borders, to find optimal image seams to
create panoramic composite images. Our results show that
we can generate realistic videos from a camera spinning at
speeds of up to 600 RPM.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mis-
cellaneous— Artificial, Augmented, and Virtual realities.

Keywords
Digital Sports, BallCam, Video Synthesis, Image Stitching.

1. INTRODUCTION

The visual component of experiencing sports through video
is a critical aspect of experiencing the game. In many sports,
videos of the game are taken from a third person point-of-
view (POV). The third POV is effective for broadcasting
many of the global aspects of sports (e.g., large-scale team
dynamics, excitement and response of the crowd). However,
there is an entirely hidden experience of the game that is
only accessible to the players on the field — the perspective
of the players and the ball. In an effort to bring the audi-
ence ‘closer’ to the game, technologies such as the SkyCam
(cable-suspended camera system) offer a perspective that
more closely resembles the visual experience of being on the
field. In this work, we desire to extend the frontiers of the
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Figure 1: American Football from a Ball’s POV

spectator experience, by capturing the excitement of being
‘on the field’ through the ball’s first-person POV.

While the idea of putting a camera in a spinning ball is
certainly not new [1], recent advances in technology now
provide a strong foundation on which such a system can
be realized. The framework proposed in this work is made
possible by key technological advances in wearable camera
devices and computer vision. Wearable cameras such as the
GoPro Hero can now capture high-quality images at a frame
rate of up to 240 FPS, at a price accessible to the general
public. These wearable cameras perform well under signifi-
cant camera motion and are used for sports such as Formula
1, surfing and sky-diving. In the field of computer vision, the
design of robust local visual feature for cross image match-
ing [8] and physics-based energy minimization techniques [2]
applied to image stitching now allow everyday users to cre-
ate wide angle panoramic images with a cellphone camera
[3].

Based on these underlying technologies, we will show that
we can generate a new viewing experience from a ball’s POV
using an embedded ball-camera system (Figure 1). In par-
ticular, we capture high frame-rate images with a wireless
camera system and use image compositing techniques to
seamlessly blend images to create a set of wide-angle images.



Using these images, we then generate a downward looking
video (a sequence of images) by interpolating the camera
motion between frames. The result is a highly dynamic
downward-looking video which gives the viewer a sense of
flying with the ball.

In this work, we improve on the initial prototype of Kitani
et al. [6] in three ways: (1) removal of rolling-shutter distor-
tion, (2) a robust coarse-to-fine image homography compu-
tation technique, and (3) an energy-based image stitching
technique to handle more complex image compositing. Pre-
viously, H. Mori et al. [9] developed a wired ball-camera sys-
tem using multiple cameras to generate a stabilized video.
Their system used an optical flow-based approach to esti-
mate camera rotation parameters. Kuwa et al. [7] gener-
ated a static wide-range image using a throwable camera.
The throwable camera system created a ribbon image by
connecting images taken by a single camera. Pfeil et al.
[11] introduced a system to capture a single static spherical
panorama by triggering an array of cameras with an ac-
celerometer. Their system detects the highest point of the
ball’s trajectory to trigger the shutters. After downloading
the picture from the ball, they generate a panoramic image
from the ball’s POV. In contrast to past systems, our system
generates a dynamic wide-angle video with a single camera
and is able to deal with extremely fast camera motion.

2. SYNTHESIZING THE BALL’S POV

Since a typical football rotates at roughly 600 RPM while
in flight, the high-speed motion of the camera poses sev-
eral significant challenges that make the task of extracting a
stabilized downward looking video very difficult. In this sec-
tion, we explain how, under certain domain assumption and
by leveraging the unique characteristics of camera images
recorded under high-speed rotation, we can create plausible
ball POV videos in the context of American football. In
particular, we outline a method for removing camera distor-
tion (Section 2.1), view expansion (Section 2.2), and video
motion interpolation (Section 2.3).

2.1 Removing Camera Distortion

The images taken by our spinning BallCam are significantly
distorted due to the rolling-shutter effect (the camera motion
is faster than the CMOS camera array read-in time). In this
work, we introduce a rolling-shutter distortion removal step
to overcome the image deformation which was not accounted
for in [6]. As depicted in Figure 2, notice the severe image
deformation before removing distortion, e.g., the lines on the
football field are curved. However, after removing the lens
and rolling-shutter distortion, we observe that the deviation
of the lines have decreased.

We begin by removing the barrel distortion of the lens and
the rolling shutter distortion caused by the CMOS sensor
acquisition latency. If a camera has no lens distortion, an
image point distorted by the rolling-shutter effect x4 and its
rectified position @, are related by the following equation [5]:

. = KR ()K '@, (1)

where K is the calibration matrix of the camera and R(t)
is the camera rotation. Since the camera is moving, the
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Figure 2: Result of rolling-shutter and lens distor-
tion removal.

rotation depends on time ¢, and ¢ is different for each image
row.

In order to correct the lens distortion and the rolling-shutter
distortion simultaneously, we extend (1) as:

z, = KR" ()P (x4) (2)

where P~! represents the back-projection from the image
plane to 3D space. Note that this back-projection function
takes the lens distortion into account. We use a simple radial
distortion model in our implementation [4].

To perform image rectification, we need to compute the dis-
torted image point x4 for each rectified image pixel position
x,. We use the Gauss-Newton method to solve (2) for x4
and create a lookup table for image rectification. This result
of this procedure is illustrated in Figure 2.

2.2 View Expansion

Following [6] we use the mean intensity of the images to first
generate a sequence of images that share a similar viewing
angle. However, simply interpolating between sub-sampled
image results in a very shaky video since the axis of rota-
tion is not perfectly orthogonal to the camera axis and the
camera rotation is not in sync with the camera frame-rate.
Before we proceed to synthesize novel views between im-
ages to temporally up-sample the video, we would like to
first expand the field-of-view for each image frame. This is
needed because there is often large displacements between
subsampled frames and we must ensure we can interpolate
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Figure 3: View expansion.

between images without ‘holes’ in the image frames. We do
this by first generating small composite images using sets of
3 temporally neighboring images. Next, we further expand
the triplet image by using neighboring triplet images from
adjacent rotation cycles (Figure 3).

2.2.1 Coarse-to-Fine Homography Estimation

To generate composite images, it is necessary to compute the
image transformation between images by computing their
homographies. However, since the football field has many
repetitive patterns and the image distortion makes feature
matching very challenging, we introduce a robust coarse-
to-fine homography estimation technique to ensure reliable
image registration. In the coarse step, we assume an affine
motion model that only allows for translational motion T,
by solving the following linear equation (4),

=y

1= A Y, (3)
y 1

where

1 0 ta
a=lp Vv 4)
and z and y are the feature points in current frame image,
2’ and gy’ are the point of feature point in the next frame.

We can solve for A via linear regression and then proceed
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Figure 4: Bad point correspondences (marked in
red) identified via a coarse-to-fine motion estima-
tion
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Figure 5: Overlap region from merging images.

to remove outlier points which have high reprojection error.
With the remaining points we use RANSAC to estimate a
full homography matrix H to account for changes in per-
spective and scaling.

2.2.2 Image Stitching with Graphcuts

When we merge two images together to create a larger com-
posite image we must be careful about how we blend the two
images together to avoid various types of image noise. In our
method we overlap two images and find the optimal seam
at which we can merge the two images. Figure 5 illustrates
the overlap region caused by stacking two images. Our goal
is to compute an optimal seam through this overlap area to
merge the two images.

Simply blending the composite images using a homography
causes significant image noise since the world is not static
and planar. In contrast to [6] and [10] which only finds a
single seam, we pose the image merging problem as a graph
cutting problem that allows for multiple seams to be com-
puted. Formally, we use the pairwise color continuity cost
and inverse distance to image boundary cost as our binary
and unary potentials, respectively, to define our cost func-
tion.
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Figure 6: Optimal seam computed with the distance cost preserves spatial continuity.

The pairwise color continuity cost between two neighboring
pixels i and j, is computed as the color difference between
neighboring foreground pixels f(-) and background pixels

b-).
Ceotr(i ) = }V<||f<z'> ~ b +11£G) - b(j>||2>7 )

where f(-) and b(-) are 3 dimensional vectors of RGB val-
ues and the indices ¢ and j denote neighboring pixels. The
normalization factor N ensures that the value is between 0
and 1.

While the pairwise color continuity cost does finds the low-
est cost seam, it does not always preserve spatial continuity
in the center of the overlapped region. This effect is illus-
trated in Figure 6. The spatial continuity of the center of
the composite image is extremely important for the viewing
experience as it contains the most important information
about the game. In our experience, bad image compositing
in the center of the image is much more distracting that er-
rors at the perimeter of the image. Therefore, in order to
preserve spatial continuity of the center of the image we also
introduce a unary cost term that quantifies the inverse dis-
tance to image boarders to increase the cost of seams that
cross the center of the overlapped region,

Caist (i) = min ||b — 2(i)]| 5, (6)
ben

where b is the coordinate of the nearest boundary location
of all the boundary points B and «(7) is the coordinate of
i. This cost term has the effect of generating seams that are
near the image overlap boundaries.

2.3 Video Motion Interpolation

To generate a virtual camera path, we compute a series of
image warps based on the computed homographies between
composite images. From a homography we can compute a
per-pixel mapping, by applying the homography as follows,

z = hao X  + ha1 X y + haa, (7)
JJ/ = (hoo X x + ho1 X Y+ h02)/z7 (8)
y/ = (hm Xx+hin Xy+ h12)/z7 (9)

where z is the normalization constant, ' and y’ are the
transformed points of the x and y and h;; is an element of
the homography matrix,

hoo hor  hoz2
H= |hio hi1 hi2f|. (10)
hao  ha1  hoo

The forward mapping My (x,y) describes how a single pixel
in frame ¢ can be forward mapped to a pixel in frame t +
1. We can generate an arbitrary view between these two
frames using linear interpolation between an identity map-
ping M;(z,y) and the forward map My or backward map-
ping M, for frame ¢ and ¢ + 1, respectively,

F($,y) = (17Q)M1(x7y)+aMf(l’vy)v (11)
B(z,y) = (a)Mi(2,y) + (1 — a) M (z,y). (12)

The new mapping F' is indexed by the parameter 0 < o <1
and contains the mapping from the image at time ¢ to ¢t + 1.
Likewise, B contains the mapping from image ¢ 4+ 1 back to
image t. For example, when the weight a equal 0, F'(z,y) is
exactly M;(z,y) (image ¢ remains unchanged) and B(zx,y)
is exactly My(z,y) (image t + 1 has been projected to the
coordinate frame of image t). By gradually increasing the
value of o we can generate a synthesized video of the motion
between image t and image ¢ + 1.

However, simply applying linear interpolation between im-
age homographies (first-order interpolation), introduces a
undesirable high-frequency motion component as an arti-
fact of aliasing (i.e. the synthesized view sways from side to
side). This is mainly caused by the fact that the balls axis
of rotation is not exactly aligned with the major axis of the
ball. In order to account for this camera motion noise, we
use second-order interpolation by interpolating between half
maps.

We generate half maps by forward warping images to the
half way point (i.e., o = 0.5) and we then recompute all of
the homography between these intermediate images. Then
we use linear interpolation to warp between two successive
intermediate images. This has the effect of minimizing the
swaying motion introduced by off-axis ball rotation.



3. RESULTS AND DISCUSSION

Figure 7 shows several the results generated by our ball’s
POV system. Notice that the image distortion has been re-
duced and the image stitching has joined to together neigh-
boring images to create a very wide-angle image. However,
the results are best viewed as video which can be found on
the author’s website.

We have shown that we can remove much of the image dis-
tortion caused by the imaging conditions. However, close
examination of the images will show remaining evidence of
image distortion (lines are still slightly curved) and motion
blur. Since our model of rolling-shutter distortion assumes
no distortion over image rows, this assumption is actually
being violated for very fast spinning cameras and will re-
quire a more expressive distortion model for high-quality
rectification. As for the motion blur, this can be addressed
with a faster camera sensor or techniques such as motion
deblurring and image super-resolution.

Our current framework also assumes that we roughly know
a ball’s axis of rotation, which is only true in the case of
an American football thrown with a clean spiral. This is
obviously not the case for other types of ballistic sports.
Future work will focus on developing techniques that can
automatically infer the ball’s rotational axis through visual
motion estimation or additional motion sensors.

4. POTENTIAL APPLICATIONS

In the current context of American football we believe that
our approach can be used to augment the current viewing
paradigm by providing a ball’s POV in highlight videos of
pass completions. Our BallCam will give the audience access
to the up-close battle that ensues as defenders try to grab
the ball away from the receiver.

Our system can also be combined with other image-based
technology such as tracking and face detection to generate
human-centric videos focused on a particular player. We also
envision potential interactions with other cameras that are
already available on the playing field. For example, by or-
chestrating the movement of the ballCam, cable-suspended
cameras and wide-area camera, we can also stitch images
and videos across different different cameras, providing the
ability to zoom-in and zoom-out on a very dynamic scale
(similar to first-person POV video games).

5. CONCLUSION

We have proposed a robust method for generating novel
ball’s POV video sequences from a spinning camera. Our
system shows a new type of spectator technology that can
be applied to ball-based sports. We believe that our pro-
totype system is a strong proof-of-concept that shows that
embedded ball-camera systems have the potential to change
the viewing paradigm of ballistic sports.
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Figure 7: Sample images from the video sequence




