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Abstract— We investigate the problem of a robot searching
for an object. This requires reasoning about both perception
and manipulation: certain objects are moved because the target
may be hidden behind them and others are moved because they
block the manipulator’s access to other objects. We contribute
a formulation of the object search by manipulation problem
using visibility and accessibility relations between objects. We
also propose a greedy algorithm and show that it is optimal
under certain conditions. We propose a second algorithm which
is optimal under all conditions. This algorithm takes advantage
of the structure of the visibility and accessibility relations
between objects to quickly generate optimal plans. Finally, we
demonstrate an implementation of both algorithms on a real
robot using a real object detection system.

I. INTRODUCTION

Imagine looking for the salt shaker in a kitchen cabinet.

Upon opening the cabinet, you are greeted with a cluttered

view of jars, cans, and boxes—but no salt shaker. It must be

hidden near the back of the cabinet, completely obscured by

the clutter. You immediately start searching for it by pushing

some objects out of the way and moving others to the counter

until, eventually, you reveal your target.

Humans frequently manipulate their environment when

searching for objects. If robotic manipulators are to be

successful in human environments, they require a similar

capability of searching for objects by removing the clutter

that is in the way. In this context, clutter removal serves

two purposes. First, removing clutter is necessary to gain

visibility of the target. Second, it is necessary to gain access

to objects that would be otherwise inaccessible.

Prior work has addressed the issues of interacting with ob-

jects to gain visibility and accessibility as separate problems.

The work on sensor placement [1] and search by navigation

[2]–[5] problems focuses on manipulating the sensor to gain

visibility. One canonical example of the sensor placement

problem is the Art Gallery problem [6], which would be

equivalent to instrumenting the cabinet with enough sensors

to guarantee that the salt shaker is visible. Similarly, the

search by navigation problem would entail moving a mobile

sensor through the cabinet to search for the target.

Conversely, the reconfiguration planning [7], [8] and ma-

nipulation planning among movable obstacles [9] problems

focus on moving objects to grant the manipulator access

to previously-inaccessible configurations. These approaches

would be effective at gaining access to the salt shaker once
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Fig. 1. An example of the object search problem on a real robot. The
robot is searching for a target object (highlighted by the bounding box) on
the table, but its view is occluded (drawn as gray regions) by other objects.
The robot must remove these objects to search for the target. Objects may
block the robot’s access to other objects.

its pose is known, but are incapable of planning before the

target is visually revealed. Recent work discusses the object

search by manipulation problem [10], [11] but without any

optimality guarantees.

One of our key insights is that the object search by ma-

nipulation problem requires simultaneously reasoning about

both perception and manipulation. Some objects are moved

because they are likely to hide the target, while others

are moved only because they prevent the manipulator from

accessing other objects in the scene.

Fig.1 shows a scene in which both situations occur. In

this figure, HERB [12]—a robotic platform designed by the

Personal Robotics Lab at Carnegie Mellon University—is

searching for the white battery pack hidden on a cluttered

table. HERB perceives the scene using its camera and uses

the MOPED [13] system to detect and localize objects. As

Fig.1-Top shows, HERB is initially unable to detect the

battery pack because it is occluded by the blue Pop-Tart box.

From HERB’s perspective, the battery pack could be hiding

in any of the occluded regions shown in Fig.1-Left. With no

additional knowledge about the location of the target, HERB

must sequentially remove objects from the scene subject to
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(b) A Removed

Fig. 2. An example of a scene containing a joint occlusion. Occlusions
are drawn as dark gray and the joint occlusions as light gray. After A is
removed, Vjoint is only occluded by B and becomes part of VB

the physical limitations of its manipulator until the target

is revealed. For example, Fig.1-Right shows that HERB is

unable to grasp the large white box without first moving the

brown juicebox out of the way.

In this paper, we formally describe the object search by

manipulation problem by defining the expected time to find

the target as a relevant optimization criterion and the concept

of accessibility and visibility relations (Section II). Armed

with these definitions, we are able to propose and analyze

algorithms for object search by manipulation. We make the

following theoretical contributions:

Greedy is sometimes optimal: We prove that under an

appropriate definition of utility, the greedy approach to

removing objects is optimal under a set of conditions, and

provide insight into when it is suboptimal (Section III).

The connected components algorithm: We introduce an

alternative algorithm, called the connected components al-

gorithm and present a partial proof that it is optimal under

all situations, and takes advantage of the structure of the

scene to achieve polynomial time complexity on some scenes

(Section IV).

Finally, we demonstrate both algorithms on our robot

HERB (Section V) and provide extensive experiments that

confirm the algorithms’ theoretical properties (Section VI).

We are very excited about this research direction. The

interplay between visibility and accessibility has revealed

deep structure in the object search problem, structure that

we were able to identify and exploit to derive the connected

components algorithm. We discuss limitations and several

extensions in Section VIII. We believe that our algorithms

are a step towards enabling robots to perform complex

manipulation tasks under high clutter and occlusions.

II. OBJECT SEARCH BY MANIPULATION

We start with a scene S that is comprised of a known,

static world populated with the set of movable objects O,

each of which has known geometry and pose.

A robot perceives the scene with its sensors and has partial

knowledge of the objects that the scene contains. To the

robot, the scene is comprised of the set of visible objects

Oseen ⊂ O and the volume of space V that is occluded to its

sensors. In the object search problem, the occluded volume

hides a target object target ∈ O with known geometry, but

unknown pose. For the remainder of this paper, we study a

specific variant of the problem in which the target is the only

hidden object, i.e. O = Oseen ∪ {target}. We discuss the

presence of other hidden objects in Section VII.

The robot searches for the target by removing objects from

Oseen until the target is revealed to its sensors. We define

the order in which objects are removed from the scene as an

arrangement.

Definition 1 (Arrangement): An arrangement of the set of

objects o is a bijection Ao : {1, . . . , |o|} → o where Ao(i)
is the ith object removed.

Additionally, we define Ao(i, j) as the sequence of the ith

through the jth objects removed by arrangement Ao.

Given an arrangement Ao that reveals the target, the

expected time to find the target is

E(Ao) =

|o|
∑

i=1

PAo(i) · TAo(1,i) (1)

where PAo(i) is the probability that the target will be revealed

after removing object Ao(i) and TAo(1,i) is the time to move

all objects up to and including Ao(i).
Our goal is to find the arrangement A∗

Oseen
that minimizes

E(A∗
Oseen

); i.e. reveals the target as quickly as possible.

A. Visibility

When the robot removes a set of objects from the scene

it reveals the volume behind those objects.

Definition 2 (Revealed Volume): The volume of space Vo

revealed by removing objects o ⊆ Oseen from scene S .

In Fig.2a we show the revealed volumes of objects in an

example scene1. Vjoint is jointly occluded by object A and

B, and is not included in either VA or VB. This is because

Vjoint will not be revealed if only A or only B is removed

from the scene.

The volume that is revealed by removing an object may

change as the scene changes. In Fig.2b we show VB after A is

removed from the scene in Fig.2a. Since A is no longer in the

scene, VB now includes Vjoint. Similarly, VA would expand

to include Vjoint if B was the first object removed from the

scene. Regardless of the order in which A and B are removed,

the revealed volume of {A, B} is VA,B = VA + VB + Vjoint.

In the most general case, an arbitrary number of objects can

jointly occlude a volume. In that case, the volume would be

revealed only after all of the occluding objects are removed

from the scene.

We compute the probability that removing an object A will

reveal the target using the revealed volume:

PA =
VA

VOseen

(2)

We compute the revealed volume in the configuration

space (C-space) of the target object. In our implementation,

we assume that the target rests stably on the workspace; i.e.

the target’s pose can be represented by (x, y, θ) ∈ SE(2). We

1We use two-dimensional examples, e.g. Fig.2, throughout the paper
for clarity of illustration. Our actual formulation and implementation uses
complete three-dimensional models of the scene, objects, and the volumes.
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(b) A Removed

Fig. 3. A scene where the greedy algorithm performs suboptimally due
to an accessibility constraint. Removing object A is necessary to access B

and reveal the large volume VB.

discretize the target’s C-space to generate a set of candidate

poses and estimate Vo as the number of target poses that

become visible if o is removed.

Partial views of objects are often hard to detect. Therefore,

our visibility condition is conservative: we consider the target

at a certain pose visible if the sensor can see it completely.

We achieve this by sampling points on the target, shooting

rays from the sensor to those points, and requiring that no

ray is occluded by another object.

B. Accessibility

The manipulator uses a motion planner to grasp an object

and remove it from the scene. To achieve this, the object must

be accessible to the manipulator. Accessibility is blocked by

other visible objects, and also by the occluded volume, which

the manipulator is forbidden from entering.

Definition 3 (Accessibility Constraint): There is an acces-

sibility constraint from an object A to object B if A must be

removed for the manipulator to access B.

Any arrangement of objects in a scene must respect the

objects’ accessibility constraints. For example, in Fig.1-

Right, the access to the big box is blocked by the smaller

box in front of it.

We identify the accessibility constraints by using a motion

planner, which returns a manipulator trajectory for each

object in the scene. The manipulator trajectory for an object

sweeps a certain volume in the space (illustrated as light blue

regions in Fig.1). Objects that penetrate the swept volume

result in accessibility constraints. Additionally, objects for

which the occluded volume penetrates the swept volume also

result in accessibility constraints.

We also use the manipulator trajectory for an object A to

compute TA by estimating the time necessary to execute the

trajectory on the robot. Since there is only a single action

for each object, TA is constant for a given scene and does

not depend on the sequence in which objects are removed.

III. UTILITY AND GREEDY SEARCH

In this section, we discuss a greedy approach to solving

the object search by manipulation problem.

While the overall goal is to minimize the amount of time

it takes to find the target, a greedy approach requires a utility
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(b) A Removed

Fig. 4. A scene where the greedy algorithm performs suboptimally due to
a visibility constraint. Volumes VA and VB are individually small, but VA,B
is large because of the joint occlusion between A and B.

function to maximize at every step. The faster the robot

reveals large volumes, the sooner it will find the target. We

define the utility of an object much like the utility measures

defined for sensor placement [1], [2].

Definition 4 (Utility): The utility of an object A is given

by

U (A) =
VA
TA

This measure naturally lends itself to greedy search. A

greedy algorithm for our problem ranks the accessible objects

in the scene based on their utility and the removes highest

utility object. This results in a new scene, whereby the

algorithm repeats until all objects are removed.

Unsurprisingly, it is easy to create situations where greedy

search is suboptimal. Consider the scene in Fig.3. In this

scene, VB ≫ VC > VA. For the sake of simplicity we assume

that the time to move each object is similar, hence U(C) >
U(A). As B is not accessible, the greedy algorithm compares

U(A) and U(C) and chooses to move C first, producing the

final arrangement C → A → B. However, moving the lower

utility A first is the optimal choice because it reveals VB faster

(Fig.3b), and gives the optimal arrangement A → B → C. It

is easy to see that greedy can be made arbitrarily suboptimal

by adding more and more objects with utility U(C) to the

scene.

We present a second example of greedy’s suboptimality

in Fig.4. In this scene, all objects are accessible, VC > VA,

and VC > VB. The greedy algorithm inspects the utilities

and moves C first. However, there is a large volume jointly

occluded by A and B, such that when either A or B is removed,

the volume revealed by the second object significantly in-

creases. We illustrate this in Fig.4b where A is removed.

Hence, the optimal arrangement is A → B → C because it

quickly reveals the large volume jointly occluded by A and

B.

The examples in Fig.3 and Fig.4 may suggest a k-step

lookahead planner for optimality. However, the problem is

fundamental: one can always create scenes where arbitrarily

many objects jointly occlude large volumes, or where arbi-

trarily many objects block the accessibility to an object that

hides a large volume behind it.



Surprisingly, however, it is possible to create nontrivial

scenes where greedy search is optimal. We define the re-

quirements of such scenes in the following theorem.

Theorem 3.1: In a scene where all objects are accessible

and no volume is jointly occluded, a planner that is greedy

over utility minimizes the expected time to find the target.

Proof: Suppose that A∗ is a minimum expected time

(i.e. optimal) arrangement. For any i, 1 ≤ i < |Oseen|, we

can create a new arrangement, A, such that the ith and (i+
1)th objects are swapped; i.e. A(i) = A∗(i + 1) and A(i +
1) = A∗(i). A must be a valid arrangement because all

objects are accessible.

No volume is jointly occluded, so the revealed vol-

ume of all objects will stay the same after the swap; i.e.

VA∗(i) = VA(i+1) and VA∗(i+1) = VA(i). Since the rest of

the two arrangements are also identical, using (1) and (2),

we can compute the difference between E (A) and E (A∗)
to be:

E (A)−E (A∗) = VA∗(i) ·TA∗(i+1)−VA∗(i+1) ·TA∗(i). (3)

E (A∗) is optimal, therefore E (A)− E (A∗) ≥ 0 and

VA∗(i)

TA∗(i)
≥

VA∗(i+1)

TA∗(i+1)
,

which is simply U(A∗(i)) ≥ U(A∗(i + 1)). Hence, the

optimal arrangement consists of objects sorted in weakly-

descending order by their utilities.

There can be more than one weakly-descending ordering

of the objects if multiple objects have the same utility. To see

that all weakly-descending orderings are optimal, the same

reasoning can be used to show that swapping two objects

of the same utility does not change the expected time of an

arrangement.

This result is rather startling. The greedy algorithm is

incredibly efficient in terms of computational complexity.

At each step, the algorithm finds the accessible object with

maximum utility in linear time. In a scene of n objects, this

results in a total computational complexity of O(n2). We

show in Section IV that the worst-case complexity of the

optimal search is O(n22n). The theorem, however, shows

that there are scenes in which greedy is optimal. We shall

show in Section VI that these scenes do occur surprisingly

regularly even with randomly generated objects.

In the next section we present a new algorithm which uses

the collective utility of sequences of objects and generates

an optimal plan.

IV. CONNECTED COMPONENTS ALGORITHM

The structure of the object search problem becomes more

clear once we represent the visibility and accessibility con-

straints of a scene as a graph. Each node of this graph

corresponds to an object in the scene. There is an edge

between the nodes A and B if:

• A is blocking the access to B, or vice versa; or

• A and B are jointly occluding a non-zero volume.

An example scene and the corresponding graph is in Fig.5.
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Fig. 5. Left: An example scene. Volumes occluded by a single object
are shown in dark gray, joint occlusions are shown in light gray, and
swept volumes are shown as light blue rectangles. Right: The corresponding
graph with three connected components. Edges exist between nodes if the
corresponding objects jointly occlude a volume or if one object blocks the
access to the other.

Algorithm 1: ObjectSearchWithConnectedComponents

1 {c1, c2, ..., cm} ← FindConnectedComponents

2 foreach connected component ci do

3 A∗
ci
← A*(ci)

4 A∗
Oseen

← ∅
5 repeat

6 bag ← ∅
7 foreach component arrangement A∗

ci
do

8 for j ← 1 to |ci| do

9 bag.Add( Aci(1, j) )

10 seq ← argmax
A∈bag

U(A)

11 A∗
Oseen

.Append(seq)

12 Remove seq from the A∗
ci

it belongs

13 until all objects are in the plan

14 return A∗
Oseen

We can divide the constraint graph into connected compo-

nents. A connected component of the graph is a subgraph

such that there exists a path between any two nodes in

the subgraph [14]. For example, there are three connected

components in Fig.5: {A, B, C}, {D}, and {E, F}.
A key insight is that the objects in a connected component

do not affect the utility of the objects in another connected

component. Hence, we can solve the arrangement problem

for a connected component independently and then merge the

solutions to produce a complete arrangement of the scene.

The examples in Fig.3 and Fig.4 show that the utility of a

single object is not informative enough for general optimality

when the scene contains joint occlusions or accessibility con-

straints. Instead, we need to consider the utility of removing

multiple objects from the scene.

Definition 5 (Collective Utility): The collective utility of

a set of objects o is given by

U(o) =
Vo

To

We present a new algorithm in Algorithm 1 that uses the

collective utility of sequences from connected components to

generate an optimal arrangement of the complete scene. It

first identifies the connected components in the scene. Then



���������	AB

�C�����D�E�F���

�C����D�E����

�C����D�E���

�C����D�E����

�C����D�E���

�C����D�E��� �C����D�E����

Fig. 6. Greedy planner. We present the utility of all accessible objects at each step. The pose of the target (unknown to the robot) is marked with dashed
lines in the illustration.
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Fig. 7. Optimal connected-components planner. The utilities of partial
sequences from different connected components are presented at each step.

it finds the optimal arrangement internal to a connected com-

ponent using an A*-search implementation described below.

It then merges these arrangements iteratively by finding the

maximum utility2 prefixes of the optimal arrangements of

the connected components.

The way Algorithm 1 merges the sequences from different

connected components guarantees that the final arrangement

is optimal. In Appendix we present a partial proof.

A. A* Search Algorithm

We use A* search to find the optimal arrangement inside

a connected component. A* works with a directed-acyclic-

graph structure where the nodes are the set of remaining

objects in the scene. Neighbors are scenes with one accessi-

ble object removed. Assume the partial arrangement A of k
objects in the scene reaches a node in the search graph. The

cost-to-come is

f =

k
∑

i=1

(

VA(i)

VOseen

)

TA(1,i)

The cost-to-go can be approximated as

g =

(

VOseen
− VA(1,k)

VOseen

)

(TA(1,k) + min
a∈{Oseen\A(1,k)}

(Ta))

2In the rare event that that multiple sequences share the maximum utility,
the algorithm breaks the tie by choosing the sequence with the maximum
utility prefix.

The cost-to-go heuristic optimistically reasons that in the

(k + 1)th action, all the remaining occluded volume will be

revealed. Among the remaining objects, Oseen \A(1, k), we

find the object that can be removed with the minimum time

and use its time as the time of the (k + 1)th action. The

heuristic is admissible as it underestimates the time to find

the target.

The A* search produces the optimal arrangement. How-

ever, running it on a large scene is intractable due to its

high computational complexity. A* must search over a graph

containing up to 2n nodes and O(n2) edges, resulting in a

worst-case complexity of O(n22n).

B. Complexity of the Connected Components Algorithm

The connected components algorithm divides the set of

objects into smaller sets, runs A* on each connected com-

ponent, and then merges the plans for each component

optimally. If the scene has no constraints, then there is one

object per connected component and this algorithm reduces

to the greedy algorithm. Conversely, if the constraint graph

is connected, this algorithm is equivalent to running A* on

the full scene. Therefore, the performance of this algorithm

ranges from O(n2), the performance of the greedy algorithm,

to O(n22n), the performance of A*, depending upon the

size of the connected components. Geometric limitations put

an upper bound on the number of accessibility and joint

occlusion constraints that are possible in a given scene,

so it is unlikely that any scene will exercise the worst

case performance. These performance gains will be most

significant on large scenes in which objects are spatially

partitioned, e.g. on different shelves in a fridge, but will be

modest on small, densely packed scenes.

V. IMPLEMENTATION

We implemented the greedy, and connected components

algorithms on our robot HERB. We used HERB’s camera

and the MOPED [13] system to detect and locate objects

in the scene. We present an example scene where HERB

successfully found the target object using the greedy al-

gorithm in Fig.6. In this scene the target object, a battery

pack, is hidden behind the large box, which also occludes the

largest volume. Since the large box is inaccessible, the greedy
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Fig. 9. (a) 95th percentile of expected time to find the target (b) Two
example scenes where greedy performed poorly. The black lines denote the
workspace boundary.

planner compares the utilities of the other three objects, and

removes the largest utility object at each step. Even though

the large box is hiding a large volume, the greedy planner

removes it last, resulting in a long task completion time.

In Fig.7 the scene is the same but HERB uses the

optimal connected components algorithm. There are three

connected components in this scene {BlueBox}, {Bottle},
and {LargeBox, SmallBox}. The connected components al-

gorithm considers the collective utilities of multiple objects

from each connected component. In the scene the algorithm

considers both U(SmallBox) and U(SmallBox, LargeBox).
The utility of SmallBox is very small compared with the

other immediately accessible objects, but combined with

LargeBox, their utility is large enough that the algorithm

removes SmallBox as the first object. It then removes the

large box and finds the target object. We present the actual

footage of these experiments in the accompanying video.

VI. EXPERIMENTS AND RESULTS

We also investigated the performance of the different

algorithms we presented through extensive experiments in

simulation. We implemented the greedy, A*, and connected

components algorithms in OpenRAVE [15]. We also im-

plemented a baseline algorithm which randomly picks an

accessible object and removes it from the scene. We eval-

uated these algorithms on randomly generated scenes. Each

scene contained n objects—half juice bottles and half large

boxes—that were uniformly distributed over a wide 1.4×0.8
m workspace. None of the generated scenes contained hidden

objects and the planner used a simulated motion planner

based on the capabilities of a simple manipulator. The

manipulator was only capable of moving straight, parallel

to the table and at a constant speed of 0.1 m/s. Visibility

was simulated using the pinhole camera model under the

conservative assumption that an object is visible iff it is

completely unoccluded.

We present results from scenes with 4, 6, 8, 10, and 12

objects in Fig.8 along with the 95% confidence intervals. We

conducted approximately 400 simulations for each different

number of objects, resulting a in total of 2000 different

scenes. The data in Fig.8a shows that the greedy algorithm

becomes increasingly suboptimal as the number of objects

increases. All three algorithms significantly outperform the

random algorithm, which serves as a rough upper bound for

the expected search duration. Unfortunately, the optimality

of A* comes with the cost of exponential complexity in the

number of objects. This complexity causes the planning time

of A* to dominate the other planning times shown in Fig.8b.

While still optimal, the connected components algorithm

achieves much lower planning times than A*. By running

A* on smaller subproblems, the connected components al-

gorithm is exponential in the size of the largest connected

component, k, instead of the size of the entire scene. Fig.8c

shows that k ≈ n/2 for n ≤ 8 and increases when n = 10,

causing the large increase in planning time between n = 8
and n = 10 in Fig.8b. With fixed computational resources,

these results show that the connected components algorithm

is capable of solving most scenes of size 2n in the amount

of time it would take A* to solve a scene of size n. For

sparse scenes, the connected components algorithm achieves

optimality with planning times that are comparable those of

the greedy algorithm.

One surprising results of our experiments is that, while

greedy is not optimal in the general case, it does very well on

average. We found that in 50% of the 2000 different scenes,

the greedy algorithm produced the optimal sequence. Our

explanation for greedy’s performance is that the geometry



Fig. 10. Example of replanning on a scene with two hidden objects. Each
replanning stage is shown as a separate frame along with the corresponding
plan. Hidden objects are shown as semi-transparent and the workspace
bounds are indicated by a black line.

of our workspace enforces a tradeoff between the volume

occluded by an object and the number of objects that block

its accessibility. For an object to occlude a large volume,

it must be near the front of the workspace. This makes it

unlikely that multiple objects can be placed in front of it.

To see how poorly greedy can perform, in Fig.9a we plot-

ted expectations, this time using only 5% of the scenes where

greedy performed poorly. Among all the different scenes,

the worst performance was 2.04 times the expected time of

the optimal sequence. We show two example scenes where

greedy performs poorly in Fig.9b. In all these examples small

bottles are making a large box inaccessible, with very little

volume hidden behind the bottles.

VII. REPLANNING FOR HIDDEN OBJECTS

All of the algorithms described above can be easily gen-

eralized to handle environments that contain hidden objects

in addition to the target. Objects must be smaller than the

target object or there is danger of the arm colliding with an

hidden object while searching for the target. If this condition

holds, then one can simply re-execute the planner on the

remaining objects whenever an hidden object is revealed.

This strategy is optimal given the available information if

there is no a priori information about the type, number, or

location of the hidden objects. If there are k hidden objects,

then this replanning strategy multiplies the total planning

time of an optimal algorithm by a factor of O(k). In the

case of the greedy or random algorithm, the replanning adds

O(k) overhead from reevaluating visibility after each object

is revealed.

Fig.10 shows an example of replanning on a scene con-

taining six objects. Two objects, shown as semi-transparent

in the figure, are initially hidden and are revealed once

the occluding objects are removed. The robot begins by

executing the connected components planner on a scene

containing the four visible objects. After executing the first

two actions in that plan, the robot detects that a new object

has been revealed and replans for the remaining objects. In

this case, the optimal ordering is unchanged and the newly-

revealed object is simply appended to the existing plan. After

executing another action, the second hidden object is revealed

and the robot must replan a second time. Order of the optimal

sequence is changed by the addition of the hidden object and

it is suboptimal to continue executing the previous plan.

VIII. FUTURE WORK

In future work, we are excited about exploring this prob-

lem deeper and relaxing some of the simplifying assump-

tions.

Perception Model. Our framework allows for any sensor

model. We will explore relaxing the conservative requirement

of the entire target being visible to other perceptual models

that address partial visibility.

Placement Planner. Currently, we assume that objects re-

moved can be place in an empty space nearby. A natural

extension is planning the placement of objects. Doing so

will require considering a number of constraints, e.g. will the

replaced object make regions inaccessible, are we permitted

to move the object more than once, and so on.

Complex Motion Planners. We use a straight-path reaching

for objects, which is conceptually simple: there is a single

action for an object. We are excited to study how a more

complex motion planner, e.g. one returning a minimum-

constraint violation trajectory [16], can be integrated into

our system.

Sensor Planning. Aside from reaching to objects, the robot

does not move its base. By combining the ability of search

through manipulation with sensor planning, the robot could

find targets quicker. Sensor planning would include working

with multiple camera poses and planning for the base when

searching for a target in a larger environment.

APPENDIX

Here we show that Algorithm 1 produces an optimal

solution to the object search by manipulation problem.

We state a property of the collective utility as a lemma.

Lemma 8.1: Given an arrangement Ao,

U(Ao(1, |o|)) ≥ U(Ao(1, k))

=⇒ U(Ao(k + 1, |o|)) ≥ U(Ao(1, |o|))

In other words, if the utility of the complete arrangement is

larger than the utility of the first k objects, then the utility

of the last |o| − k objects must be larger than the utility of

the complete arrangement.

Proof: We are given that

VAo(1,k) + VAo(k+1,|o|)

TAo(1,k) + TAo(k+1,|o|)
≥

VAo(1,k)

TAo(1,k)

Rearranging yields

VAo(k+1,|o|) · TAo(1,k) ≥ VAo(1,k) · TAo(k+1,|o|)

Adding VAo(k+1,|o|) ·TAo(k+1,|o|) to both sides and rearrang-

ing, we get

VAo(k+1,|o|)

TAo(k+1,|o|)
≥

VAo(1,k) + VAo(k+1,|o|)

TAo(1,k) + TAo(k+1,|o|)

Theorem 8.1: Given an optimal arrangement of a scene

A∗, for any two adjacent sequence of objects in the arrange-

ment A∗(i, j) and A∗(j+1, k), where i ≤ j < k, if there are

neither accessibility constraints nor joint occlusions between

the objects in the two sequences (i.e. if the sequences are

from different connected components), then the utility of the

former sequence is greater than or equal to the utility of the

latter sequence: U(A∗(i, j)) ≥ U(A∗(j + 1, k)).



Proof: The proof proceeds similar to the proof

of Theorem 3.1. We create a new arrangement A that

is identical to A∗ except that the two adjacent se-

quences are swapped: A(i, i+ k − j) = A∗(j + 1, k) and

A(i+ k − j + 1, k) = A∗(i, j). A must be a valid arrange-

ment since we are given that no object in A∗(i, j) is blocking

access to A∗(j+1, k). Then we can compute the difference

E (A)− E (A∗) to be:

j
∑

l=i

(

VA∗(l)

VOseen

· TA∗(j+1,k)

)

−
k

∑

l=j+1

(

VA∗(l)

VOseen

· TA∗(i,j)

)

Since A∗ is optimal, E(A)−E(A∗) ≥ 0. After canceling

out the common terms and rearranging, we are left with

j
∑

l=i

VA∗(l)

TA∗(i,j)
≥

k
∑

l=j+1

VA∗(l)

TA∗(j+1,k)

Simply, U(A∗(i, j)) ≥ U(A∗(j + 1, k)).
We state a lemma without proof.

Lemma 8.2: The relative ordering of objects in the opti-

mal arrangement of a connected component will be preserved

in the optimal ordering for the complete scene. Formally, if

A∗
c is the optimal arrangement for a connected component

c, and A∗
o is the optimal arrangement of o, such that c ⊆ o,

then

i < j =⇒ A∗
o
−1(A∗

c(i)) < A
∗
o
−1(A∗

c(j))

where 1 ≤ i, j ≤ |c|, and A∗
o
−1 returns the index of an object

in the arrangement A∗
o.

Finally we can prove that the connected components

algorithm is optimal.

Theorem 8.2: Let’s say we are given m connected com-

ponents of a set of objects, o, and we are also given an

optimal arrangement for each connected component Aci

for i = 1, . . . ,m. Let’s say we computed the utility of

all sequences of objects in the form Aci(1, j) for all i =
1, . . . ,m and j = 1, . . . , |ci|, and found Ac∗(1, j

∗) to have

the maximum utility. Then an optimal arrangement for o
starts with Ac∗(1, j

∗).
Proof: Assume that the optimal arrangement A∗

o does

not start with Ac∗(1, j
∗). We will prove that this is not

possible.

Given an arrangement of o, we can view it as a series

of partitions, where each partition consists of a contiguous

sequence of objects from the same connected component.

Due to Lemma 8.2, each such partition in A∗
o can be

represented as subsequences of the connected component

arrangements Aci . In particular, we are interested in two

partitions of the optimal arrangement of o:

A∗
o = [Ac′(1, j

′) . . .Ac∗(k, l) . . . ]

where c′ is one of the connected components, and

1 ≤ j′ ≤ |c′|. Ac∗(k, l) is the partition that includes the

object Ac∗(j
∗), hence k ≤ j∗ ≤ l. We know that Ac∗(1, j

∗)
has the maximum utility of all the sequences in the

form Aci(1, j) where ci is any connected component and

j = 1, . . . , |ci|. Then,

U(Ac∗(1, j
∗)) > U(Ac∗(1, k − 1)) (4)

and also

U(Ac∗(1, j
∗)) > U(Ac′(1, j

′)) (5)

Using Lemma 8.1 and (4), we get

U(Ac∗(k, j
∗)) > U(Ac∗(1, j

∗))

Then from (5),

U(Ac∗(k, j
∗)) > U(Ac′(1, j

′)) (6)

Considering the utilities of all the partitions in A∗
o up

to Ac∗(k, l), we know that they should be ordered in

descreasing order of utility and be larger than Ac∗(k, j
∗)

(Theorem 8.1):

U(Ac′(1, j
′)) > ... > U(Ac∗(k, j

∗))

which contradicts (6).
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