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Abstract—This paper investigates the issues of maintaining di-
versity in the Extended Compact Genetic Algorithm (ECGA) for
handling Dynamic Optimization Problems (DOPs). Specifically,
we focused on how a diversity maintenance mechanism places
samples in the search space, and derive an approach that is more
appropriate for DOPs that change progressively. The discussion
proceeds in two parts. First, we reaffirm the perspective that
the problem structure should be considered when maintaining
diversity for addressing DOPs. This point is demonstrated by
an additively decomposable DOP in which each subfunction has
two complementary optima. Following that, we further discuss
how we can better allocate the samples for DOPs that change
progressively by thinking about the current promising region,
which should contain the current optima, and its neighborhood.
Based on this notion, we devise a mechanism that utilizes the in-
formation provided by the probabilistic models from ECGA and
uses a trade-off between exploration and exploitation to achieve
the desired diversity allocation. The empirical results show that
our approach follows the changing optima better compared to
techniques that use Restricted Tournament Replacement (RTR).
Furthermore, it requires only half of the function evaluations
needed by approaches that use RTR.

I. INTRODUCTION

Estimation of Distribution Algorithms (EDAs) [1], [2], [3]
are a class of evolutionary algorithms that replace the tradi-
tional variation operators, such as mutation and crossover, by
the procedure of building a probabilistic model on promising
solutions and sampling the constructed model to generate new
candidate solutions. By using probabilistic models to summa-
rize the information, advanced EDAs are able to incorporate
techniques from machine learning and statistics to automat-
ically discover the multivariate interactions between problem
variables, which leads to an approximation of problem decom-
position and the recognition of important substructures that
constitute the promising solutions.

In the past studies, EDAs have demonstrated their use-
fulness in solving problems that were intractable with other
evolutionary algorithms or achieving significantly better results
compared to other techniques [4]. However, their application
to Dynamic Optimization Problems (DOPs) has been rather
limited [5], [6], [7], [8], [9], [10], [11], [12], [13]. Moreover,
most of the research has been focused on univariate EDAs [6],
[9], [10], [11], [12], which assume that problem variables are
independent of each other and comprise no structure learning
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capability. In this paper, we focus on using a multivariate EDA,
called Extended Compact Genetic Algorithm (ECGA) [14], to
address the DOPs.

There is some previous research on using ECGA for DOPs.
To handle DOPs properly, it is important to maintain or
introduce diversity so that the population can respond to the
changing environment quickly. In [5], ECGA was first modi-
fied to handle problems with non-stationary fitness landscape.
This approach is based on reinitializing the population after
each change so that the diversity can be increased at the
beginning of the new environment. This research demonstrated
a way to use learned structural information about the problem
to accelerate the growth of highly-fit substructures so that it
can adapt to the new environment more promptly. This work
was later extended [7] to include substructural niching [8]. In
substructural niching, niches are defined within the linkage
group rather than at the individual level. After the corre-
sponding schema average fitness [15] is calculated for each
substructure, the sampling probabilities are changed based on
their associated fitness. While this methodology can be used
to maintain diversity in the population, it is used in [8] as a
way to speed up the propagation of better substructures, using
the reinitialization of population as the sole source to provide
diversity.

Moreover, the approaches proposed in [5], [7], [8] assume
the signal to a change is given, so that it can introduce diversity
by restarting the population. In this work, we only discuss
approaches that maintain diversity throughout the run so that
ECGA can respond to changes without requiring additional
means to detect alteration in the fitness landscape. Two ap-
proaches within this category were proposed in [13], which
are based on Restricted Tournament Replacement (RTR). In
the first part of this paper, we will use these two RTR-
based approaches to demonstrate the idea that the problem
structure should be considered when maintaining diversity for
DOPs. Different from previous research that also advocates
this perspective (e.g. [13]), we propose a more illustrative test
problem that shows clearly the necessity of such consideration.

After reaffirming the utility of using structural information
about the problem, we will further discuss how we can allocate
our samples in the search space to better address DOPs that
change progressively. This means that we are considering the
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DOPs in which the optima, although moving in unpredictable
direction, will change to some neighboring point in the search
space in the next changing cycle. This assumption corresponds
to a class of problems in which its fitness landscape changes
gradually and frequently, and keeping pace with these partial
changes is key to the performance of the optimizer. It should
be noted that if the environment changes unboundedly or
drastically, on average no method will outperform restarting
the optimizer from scratch every time a change occurs.

The rest of this paper is organized as follows. The next
section gives a brief review of ECGA. After that, Section III
provides a description of two RTR-based approaches proposed
in [13]. In Section IV, an additive decomposable DOP is
proposed to demonstrate that the problem structure should
be considered when maintaining diversity for handling DOPs.
Section V discusses how we can allocate the samples in the
search space to better handle DOPs that changes progressively,
and proposes a mechanism to achieve the desired diversity
allocation. Finally, Section VI concludes this paper.

II. EXTENDED COMPACT GENETIC ALGORITHM

The extended compact genetic algorithm (ECGA) [14] uses
a product of marginal distributions on a partition of the
variables. This kind of probability distribution belongs to
a class of probabilistic models known as marginal product
models (MPMs). In this kind of model, subsets of variables can
be modeled jointly, and each subset is considered independent
of other subsets. In this work, the conventional notation is
adopted that variable subsets are enclosed in brackets. Table I
presents an example of MPM defined over four variables: X1,
Xo, X3 and X,. In this example, X5 and X, are modeled
jointly and each of the three variable subsets ([X1], [X2 X4]
and [X3]) is considered independent of other subsets. For
instance, the probability that this MPM generates a sample
X1X2X3X, = 0101 is calculated as follows,

P(X1X2X3X, = 0101)
:P(X]_:O)XP(X2:1,X4:1>XP(X3:0)
=04x04x0.5.

In fact, as its name suggests, a marginal product model
represents a distribution that is a “product” over the marginal
distributions defined over variable subsets.

In the ECGA, both the structure and the parameters of the
model are searched and optimized with a greedy approach to
fit the statistics of the selected set of promising solutions. The
measure of a good MPM is quantified based on the minimum
description length (MDL) principle [16], which assumes that
given all things are equal, simpler distributions are better
than complex ones. The MDL principle thus penalizes both
inaccurate and complex models, thereby, leading to a near-
optimal distribution. Specifically, the search measure is the
MPM complexity which is quantified as the sum of model
complexity, C.,, and compressed population complexity, C,.
The greedy MPM search first considers all variables as inde-
pendent and each of them forms a separate variable subset. In

each iteration, the greedy search merges two variable subsets
that yields the most Cy, +C), reduction. The process continues
until there is no further merge that can decrease the combined
complexity.

The model complexity, C,,, quantifies the model represen-
tation in terms of the number of bits required to store all the
marginal distributions. Suppose that the given problem is of
length ¢ with binary encoding, and the variables are partitioned
into m subsets with each of size k;, ¢ = 1...m, such that
¢=3""k;. Then the marginal distribution corresponding to
the ith variable subset requires 2% — 1 frequency counts to be
completely specified. Taking into account that each frequency
count is of length log,(n + 1) bits, where n is the population
size, the model complexity, C,,, can be defined as

m
Cp =logy(n +1) Z (2’“ -1) .
i=1

The compressed population complexity, C',, quantifies the
suitability of the model in terms of the number of bits
required to store the entire selected population (the set of
promising solutions picked by selection operator) with an
ideal compression scheme applied. The compression scheme
is based on the partition of the variables. Each subset of
the variables specifies an independent “compression block”
on which the corresponding partial solutions are optimally
compressed. Theoretically, the optimal compression method
encodes a message of probability p; using — log, p; bits. Thus,
taking into account all possible messages, the expected length
of a compressed message is ), —p;log, p; bits, which is
optimal. In information theory [17], the quantity — log, p; is
called the information of that message and ), —p; log, p; is
called the entropy of the corresponding distribution. Based on
information theory, the compressed population complexity, C,
can be derived as

m 2k

Cp=nY_ > —pijlogypij ,
i=1 j=1
where p;; is the frequency of the jth possible partial solution
to the ith variable subset observed in selected population.

III. RESTRICTED TOURNAMENT REPLACEMENT

The Restricted Tournament Replacement (RTR) [18] is a
niching method that has been used successfully as a diversity
maintenance mechanism in EDAs [19]. In RTR, each newly
generated solution x will be incorporated into the current
population by the following procedure:

1) Randomly select a set of solutions Y of size w from the

current population.

2) Find the solution y in Y that is most similar to x in

terms of Hamming distance.

3) Replace y with x if x is better, otherwise discard x.
The window size w is usually set to the problem size, as
suggested in [19]. RTR is incorporated into ECGA [13] as
follows: after sampling the MPM to generate new solutions,
those newly created solutions are incorporated one by one

1541



TABLE I
AN EXAMPLE OF MARGINAL PRODUCT MODEL THAT DEFINES A JOINT DISTRIBUTION OVER FOUR VARIABLES. THE VARIABLES ENCLOSED IN THE SAME
BRACKETS ARE CONSIDERED DEPENDENT AND MODELED JOINTLY. EACH VARIABLE SUBSET IS CONSIDERED INDEPENDENT OF OTHER SUBSETS.

[ [X1] [

[X2 X4] [

[X5] |

P(X1=0)=04
P(X1=1)=06

P(X;=0,X4=0)=04
P(Xo=0,X4=1
P(X;=1,X4=0)=0.1
P(Xo=1,X4=1)=04

P(X3=0)=05

=01 | P(X3=1)=05

~—

into the current population using RTR. Note that in dealing
with DOPs, the fitness of the original population has to be
reevaluated before RTR takes place, so that the fitness values
are properly updated in case that a change occurs. Thus the
consumption of function evaluations is twice the amount of
that is used when solving stationary problems.

It was further proposed in [13] to use, instead of Hamming
distance, a similarity metric based on substructural distance.
The substructural distance between two solutions is defined as
the number of substructures in which they differ, according
to the problem decomposition provided by the MPM. For
example, suppose the MPM built by ECGA has structure
[X1X2X3X4][X5X6X7X8][X9X10X11X12], assuming a12-
bit problem. When comparing a newly created solution:

x: 1111-0000-1111
with two solutions in the current population:

y1: 0000-0000-1111, and
y2: 0111-0100-0111,

the measure based on substructure assigns the distance be-
tween x and y; to be 1 (they only differ in the first sub-
structure), and the distance between x and y, to be 3. In
comparison, the Hamming distance between x and y; is 4,
and the Hamming distance between x and y5 is 3.

This illustrates that considering similarity at the substruc-
tural level is very different from using Hamming distance,
and it will have a better effect in preserving substructure-
wise diversity. In the next section, we will show that main-
taining diversity in a substructure-wise fashion is important
for addressing DOPs. Different from previous works that
also possess such belief, we will provide a more evident
demonstration by proposing an additively decomposable DOP
that overwhelms RTR using Hamming distance.

IV. DUAL-PEAK PROBLEM

This section serves to reaffirm the perspective that main-
taining diversity at a substructural level is beneficial, some-
times even necessary, for addressing DOPs. This idea is
demonstrated by comparing the performance of two different
kinds of RTRs described in the previous section. We use
an additively decomposable DOP, in which each subfunction
has two complementary optima, to show that overlooking
the problem structure when maintaining diversity could be
unfavorable to the performance.

Specifically, we use a k-bit dual-peak function, which can
be specified by its two complementary optima s1ss - - - S and
$153 - - - Sk, to construct our test problem. A dual-peak function

is defined as

k, if x; =s; forall i =1...k
ds,so..sp(X122..x) =k, ifax; =g forall i =1...k
1, otherwise

where §; is the inverse of s; (0 = 1 and 1 = 0). For
example, djjoo(x) has two optima at 1100 and 0011. By
concatenating ten 4-bit dual-peak functions, we construct a
40-bit test problems,

flrrme -+ x40) = dsy s, (X1 - 24) + dsss5(T5 - 28) + -+

+ d537'“840 ((E37 T C540)

where syso---S40 are set to all zeros initially. To make
the problem dynamic, at each environmental shift, one sub-
function is randomly picked and its optima are changed to
some other values randomly (i.e., the corresponding s;’s are
set to some other values.) Note that the design of this test
problem is in accord with our notion of DOP that changes
progressively as described in Section I.

Using the DOP defined above, we test the ECGA with two
different kinds of RTRs described in the previous section. We
want to observe the ability of each method to track the chang-
ing global optima. To simulate different pace of variation, we
use changing cycles range from 2 to 4 generations. For all
experiments, the population size is set to n = 4000, and we
use tournament selection with tournament size 16. Each run
terminates after 60 time steps (generations). All the results are
averaged over 30 independent runs.

The empirical results are presented in Table II and Fig-
ure 1*. It can be observed from the figures that after 2 or 3
changing cycles, ECGA with RTR lost track of the global
optima, and cannot recover from that. On the other hand,
ECGA with substructural RTR gave much better performance.
Quantitatively, Table II gives a comparison between them
in terms of the number of generations that each approach
obtained the global optima. It can be seen that there is a huge
difference between maintaining diversity in a substructure-
wise fashion and using Hamming distance in dealing with this
problem.

Clearly the dual-peak problem overwhelms the ability of
RTR in maintaining diversity. The cause of this can be
explained with the example presented in the previous section.
If we use Hamming distance, x will replace y, instead of

*The third approach, substructural scattering, will be described in Sec-
tion V. Here we discuss the difference between RTR and substructural RTR,
and its implication that the problem structure should be considered when
maintaining diversity for addressing DOPs.
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Fig. 1.
The figures shows the results averaged over 30 runs.

replacing y; (assuming x is better), thus losing the diversity in
a substructure-wise sense. Moreover, two optima to the dual-
peak function are complementary, so a distance of k is added
every time we compare two different optimal substructures
using Hamming distance, which leads to the situation that this
kind of destructive replacement happens more frequently. This
inaccuracy in replacement is accumulated and eventually the
RTR will be unable to preserve the substructures needed to
deal with the change.

This experiment demonstrates an instance in which it is
necessary to consider problem structure when maintaining
diversity. Note that the stationary version of the dual-peak
problem can be easily solved by ECGA, so the source of
difficulty resides in the dynamic property of the problem.
It demonstrates a way to mislead the diversity maintenance
mechanism that overlooks the structural information of the
problem, and shows that without such consideration, the

30

Generation

(h) Substructural RTR (cycle = 4)

30 P 40 45 80 &5
Generation

3 40 46 80 85 B0 mo1e W B B0

(i) Substructural Scattering (cycle = 4)

Empirical results for the dual-peak problem. Three different changing cycles (from 2 to 4) are experimented to simulate different paces of variation.

TABLE 11
THE NUMBER OF GENERATIONS IN WHICH EACH APPROACH OBTAINED
THE GLOBAL OPTIMA FOR THE DUAL-PEAK PROBLEM. A RUN LASTS FOR
60 GENERATIONS. THE RESULTS ARE AVERAGED OVER 30 RUNS.

change cycle RTR Substructural | Substructural
(generations) RTR Scattering
2 6.2/60 45.2/60 56.7/60
3 7.1/60 54.2/60 57.4/60
4 7.6/60 55.7/60 57.6/60

operation can be destructive.

V. DIVERSITY ALLOCATION

In the previous section, we established that the problem
structure should be considered when maintaining diversity
in the context of DOPs, i.e., diversity should be maintained
at a substructural level. In this section, we further discuss
how we can allocate our samples in the search space to
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better address DOPs that change progressively. Similar to the
previous section, this discussion will be demonstrated by a
test problem. This test problem is made intentionally simple
to better reflect our perspective.

Specifically, we use a k-bit single-peak function, which has
only one optimum and is flat elsewhere, to construct our test
problem. A single-peak function is defined as

k, ifx;=s;foralli=1..k

hsysa.si (@122 :{ 1, otherwise
b

where s153---Sg is the optimum to the function. Again, we
use ten 4-bit single-peak functions as sunfunctions to construct
our test problem,

9(1‘11’2 T 51340) = hs1.~~s4 (Il co I4) + h85m38 (!175 to

+ Psgresa0 (T37 Ta0)

where s1S92---840 are set to all zeros initially. As before,
at each changing cycle, one subfunction will be selected at
random and its optimum will be changed randomly to some
other value. Compared to dual-peak problem, this problem is
simpler in the sense that at any given time step, there is only
one global optimum in the search space. Thus, it allows us
to discuss the promising region and its neighborhood more
intuitively.

Our first step of analysis is based on the observation of
how substructural RTR allocates samples in the search space.
Figure 2 shows that after 30 generations, the distribution of
the solutions according to their fitness values when solving the
single-peak problem. It can be seen that a large portion of the
population is of low fitness values. This is because the aim of
substructural RTR is to keep as many different substructures
as possible in the population, so the low fitness portion
corresponds to the solutions that are composed of mostly non-
optimal substructures. However, if our goal is to address DOPs
that change progressively, such diversity preservation may be
excessive. Recall that our assumption for this type of DOPs
is that the optimum, although moving in some unpredictable
direction, will most likely change to some neighboring point
in the search space in the next environmental shift. To account
for this kind of gradual change, it is more beneficial to place
samples around the current promising region than spending
our search effort on low fitness area, because in this way, we
are more likely to keep pace with the changing optimum.

This perspective fits nicely into the framework of EDA,
because the probabilistic model built by EDA can be seen
as a description of our current belief of where the promising
region is. To produce the desired allocation of samples, i.e.,
dense around the current promising region and sparse in the
distant area, we can generate samples using a distribution that
is slightly diverted from the one encoded in the probabilistic
model to cover the vicinity of the current promising region.
In ECGA, we can achieve this in a principled way: assuming
the MPM is composed of m marginal models (i.e., a solution
is decomposed into m substructures), we can devise an “ex-
ploration” mechanism that creates some of the substructures

x8)+...

1400 -

1200 B

1000 R

600 B

Mumber of Solutions

400 B

200 H
. A R || I

o
10 15 20 25 30 35
Fitness

=

Fig. 2. Fitness distribution of substructural RTR when dealing with the
single-peak problem.

in a solution not by sampling the constructed MPM, but by
generating them uniformly randomly.

Of course, any good search algorithm will try to balance
between exploration and exploitation. In ECGA, exploitation
can be defined as sampling the constructed MPM, which cor-
responds to placing samples in the current promising region.
To incorporate our mechanism of exploration, we introduce a
tunable trade-off between exploration and exploitation. Sup-
pose an “exploitation rate” £ (0 < & < 1) is specified, then it
could be saying that in the next generation, approximately & of
the population should be created by sampling the MPM. Now
let the probability of invoking the exploration mechanism be
p, we have that

(1-pm=¢

which says that the probability that a solution is created
entirely according to the built model is £. Base on that, we
can derive

p=1-¢/m

In implementation, when composing a new solution, most
of the time we generate each substructure by sampling the
corresponding marginal model in the MPM, but with prob-
ability p as derived above (based on specified &), we place
a partial solution that is generated uniformly randomly for
that substructure. In this way, we can control the trade-off
between exploration and exploitation (by specifying &), and
make the “exploration points” dense near the current promising
region but sparse in more distant area (on average, only mp
substructures in a solution are not generated according to
the constructed MPM.) We call this approach substructural
scattering because our goal is to distribute the search effort to
cover the vicinity of the current promising region in a manner
where the samples are like being dispersed from the promising
region.

Figure 3 gives a qualitative examination of our approach. It
shows that after 30 generations, the distribution of the solu-
tions according to their fitness values when solving the single-
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Fig. 3. Fitness distribution of substructural scattering when dealing with the
single-peak problem. The exploitation rate is set to £ = 1/16.

TABLE III
THE NUMBER OF GENERATIONS IN WHICH EACH APPROACH OBTAINED
THE GLOBAL OPTIMA FOR THE SINGLE-PEAK PROBLEM. A RUN LASTS
FOR 60 GENERATIONS. THE RESULTS ARE AVERAGED OVER 30 RUNS.

change cycle RTR Substructural | Substructural
(generations) RTR Scattering
2 36.0/60 42.9/60 46.2/60
3 47.0/60 49.1/60 54.0/60
4 49.8/60 53.3/60 56.0/60

peak problem. Different from that when using substructural
RTR, now the solutions are mostly allocated at one to four
substructures away from the global optimum.

To empirically verify the effectiveness of our method in
following the changing optimum, we compared the perfor-
mance of it with the RTR-based approaches. The experimental
settings are the same as what we used for the dual-peak
problem. For substructural scattering, the exploitation rate is
set to & = 1/16 T. The results are presented in Table III and
Figure 4. It can be seen from Table III that substructural scat-
tering performed better compared to the other two RTR-based
methods. It obtained the global optimum more frequently
under all three different paces of change. Moreover, Figure 4
shows that our approach is able to recover more consistently
than the other two methods. To be more comprehensive about
the performance of substructure scattering, we also include the
experiment results of it when solving the dual-peak problem
in the third column of Table II and Figure 1(c), (f) and (i).

Furthermore, because substructural scattering does not use
any replacement operation as the two RTR-based approaches
do (in each generation, substructural scattering generates a
population anew), there is no extra cost on reevaluating
previous population in order to incorporate new solutions.
Thus, the consumption of fitness evaluation for substructural

TThe rationale behind this choice is that we use tournament selection with
tournament size 16. Therefore the MPM is built roughly based on 1/16 of
the current population. Thus, it might be a good idea to place 1/16 of the
next population in the current promising region. Although we don’t have any
theoretical justification for this yet, it shows good performance empirically.

scattering is half of that required by RTR or substructural RTR.

VI. CONCLUSION

In this paper, we looked into two issues regarding the
diversity maintenance for addressing dynamic optimization
problems. First, we discussed the perspective that the problem
structure should be taken into account when maintaining
diversity, and used an additively decomposable DOP called
dual-peak problem to demonstrated this situation. Following
that, we continued to discuss how we can better allocate the
samples in the search space to deal with DOPs that change
progressively. This idea is based on considering the current
promising region, and how we can place samples in its vicinity
to better keep pace with the changing optimum. We designed a
mechanism with a tunable trade-off between exploration and
exploitation to achieve the desired diversity allocation. The
empirical results showed that this method outperformed the
two RTR-based approaches in terms of the ability to follow
the changing optimum.

As a future work, we are interested in how to automatically
adjust the trade-off between exploration and exploitation.
Specifically, we would like to investigate whether we can use
the change in the fitness of the population, along with the
information provided by the probabilistic model, to control
the ratio of the exploration operation. Hopefully, this would
lead to a mechanism that gives a more reliable and responsive
performance.
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Fig. 4. Empirical results for the single-peak problem. Three different changing cycles (from 2 to 4) are experimented to simulate different paces of variation.
The figures shows the results averaged over 30 runs.
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