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Abstract

We study the problem of predicting a set
or list of options under knapsack constraint.
The quality of such lists are evaluated by a
submodular reward function that measures
both quality and diversity. Similar to DAgger
(Ross et al., 2010), by a reduction to online
learning, we show how to adapt two sequence
prediction models to imitate greedy max-
imization under knapsack constraint prob-
lems: CONSEQOPT (Dey et al., 2012a)
and SCP (Ross et al., 2013). Experiments
on extractive multi-document summarization
show that our approach outperforms existing
state-of-the-art methods.

1. Introduction

Many problem domains, ranging from web applica-
tions such as ad placement and content recommen-
dation (Yue & Guestrin, 2011), to identifying suc-
cessful robotic grasp trajectories (Dey et al., 2012a),
to extractive multi-document summarization (Lin &
Bilmes, 2010), require predicting lists of items. Such
applications are often budget-limited and the goal is
to choose the best list of items (from a large set of
items) with maximal utility.

In all of these problems, the predicted list should be
both relevant and diverse. For example, in extractive
multi-document summarization, one must extract a
small set of sentences (as a summary) to match human
expert annotations (as measured via ROUGE (Lin,

Presented at the International Conference on Machine
Learning (ICML) workshop on Inferning: Interactions be-
tween Inference and Learning, Atlanta, Georgia, USA,
2013. Copyright 2013 by the author(s).

2004) statistics). In this setting, selecting redundant
sentences will not increase information coverage (and
thus the ROUGE score). This notion of diminishing
returns due to redundancy is often captured formally
using submodularity (Guestrin & Krause).

Submodular function optimization is intractible. For-
tunately, for monotone submodular function, simple
forward greedy selection is known to have strong near-
optimal performance guarantees and typically works
very well in practice (Guestrin & Krause). Given ac-
cess to the monotone submodular reward function, one
could simply employ greedy to construct good lists.

However, in many settings such as document summa-
rization, the reward function is only directly measur-
able on a finite training set (e.g., where we have ex-
pert annotations for computing the ROUGE score).
As such it is increasingly common to take a super-
vised learning approach, where the goal is to learn a
model or policy (based on the training set) that can
make good predictions on new test examples where the
reward function is not directly measurable.

Prior (state-of-the-art) work on document summariza-
tion (Lin & Bilmes, 2010; Kulesza & Taskar, 2011) first
learn a surrogate submodular utility function that ap-
proximates the ROUGE score, and then perform ap-
proximate inference such as greedy using this surrogate
function. While effective, such approaches are only in-
directly learning to optimize the ROUGE score. For
instance, small differences between the surrogate func-
tion and the ROUGE score may lead to the greedy
algorithm performing very differently.

In contrast to prior work, we aim to directly learn
to make good greedy predictions, i.e., by learning (on
the training set) to mimic the clairvoyant greedy policy
with direct access to the reward function. We consider
two learning reduction approaches. Both approaches
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decompose the joint learning task into a sequence of
simpler learning tasks that mimic each iteration of the
clairvoyant greedy forward selection strategy.

The first learning reduction approach decomposes the
joint learning a set or list of predictions into a sequence
of separate learning tasks (Streeter & Golovin, 2008;
Radlinski et al., 2008; Streeter et al., 2009). In (Dey
et al., 2012b), this strategy was extended to the con-
textual setting by a reduction to cost-sensitive classi-
fication.1 In the second approach, (Ross et al., 2013)
proposed learning one single policy that applies to each
position in the list. Both approaches learn to maximize
a submodular reward function under simple cardinal-
ity constraints, which is unsuitable for settings where
different items exhibit different costs.2

In this paper, we extend both learning reduction ap-
proaches to knapsack constrained problems and pro-
vide algorithms with theoretical guarantees.3 Em-
pirical experiments on extractive document summa-
rization show that our approach outperforms existing
state-of-the-art methods.

2. Background

Let S = {s1, . . . , sN} denote a set of items, where
each item si has length `(si). Let L1 ⊆ S and L2 ⊆ S
denote two sets or lists of items from S.4 Let ⊕ denote
the list concatenation operation.

We consider set-based reward functions f : 2|S| → R+

that obeys the following two properties:

1. Submodularity: for any two lists L1, L2 and
any item s, f(L1⊕ s)− f(L1) ≤ f(L1⊕L2⊕ s)−
f(L1 ⊕ L2).

1Essentially, each learning problem aims to build a pol-
icy that best predicts an item for the corresponding posi-
tion in the list so as to maximize the expected marginal
utility.

2In the document summarization setting, different sen-
tences have different lengths.

3This is similar to the DAgger approach (Ross et al.,
2011a;b; Ross & Bagnell, 2012) developed for sequential
prediction problems like imitation learning and structured
prediction. Our approach can be seen as a specialization
of this technique for submodular list optimization, and en-
sures that we learn policies that pick good items under the
distribution of list they construct. However, unlike prior
work, our analysis leverages submodularity and leads to
several modifications of that approach and improved guar-
antees with respect to the globally optimal list.

4Note that we refer to “lists” and “sets” interchangeably
in this section. We often use “list” to convey an implicit
notion of ordering (e.g., the order under which our model
greedily chooses the list), but the reward function is com-
puted over unordered sets.

2. Monotonicity: for any two lists L1, L2, f(L1) ≤
f(L1 ⊕ L2) and f(L2) ≤ f(L1 ⊕ L2).

Intuitively, submodularity corresponds to a diminish-
ing returns property and monotinicity indicates that
adding more items never reduces the reward. We as-
sume for simplicity that f takes values in [0,1], and in
particular f(∅) = 0.

We further enforce a knapsack constraint, i.e., that the
computed list L must obey

`(L) =
∑
s∈L

`(s) < W,

where W is a pre-specified budget. The knapsack con-
straint can be enforced by truncating5 f when the bud-
get is exceeded: f(L1 ⊕ L2) = f(L1), if `(L1) < W
and `(L1) + `(L2) > W . It is simple to show that this
truncation preserves monotonicity and submodularity.
Hence, adding any element or list that causes excess
of budget would not increase the function value. We

denote b(s | L) = f(L⊕s)−f(L)
`(s) as the unit/normalized

marginal benefit of adding s to list L.

For the multi-document summarization application, S
refers to the set of all sentences in a summarization
task, and `(s) refers to the byte length of sentence s.
The reward function f is then the ROUGE Unigram
Recall score, which can be easily shown to be mono-
tone submodular (Lin & Bilmes, 2011).

3. Contextual Submodular Sequence
Prediction

We assume to be given a collection of states x1, . . . , xT ,
where each xt is sampled i.i.d. from a common (un-
known) distribution D. Each state xt corresponds to
a problem instance (e.g., a document summarization
task) and is associated with observable features or con-
text. We further assume that features describing par-
tially contructed lists are also observable.

We consider learning a sequence of k policies Lπ,k =
(π1, π2, ..., πk) with the goal of applying them sequen-
tially to predict a list Lt for xt: policy πi takes
as input the features of xt and Lt,i−1 and outputs
an item s in St to append as the ith element af-
ter Lt,i−1. Therefore Lπ,k will produce a list Lt =
{π1(xt, Lt,0), π2(xt, Lt,1), ..., πk(xt, Lt,k−1)}.

We consider two cases. In the first case, each πi is
unique, and so we are learning a list of policies. In

5We allow the budget to be exceeded, and truncate the
function value accordingly only in training. As for predic-
tion, we always pick the element that ranks highest and fits
into budget. Hence, the budget would not be exceeded.



Knapsack Constrained Contextual Submodular List Prediction

Algorithm 1 Knapsack Constrained Submodular
Contextual Policy Algorithm.

Input: policy class Π, budget length W .
Pick initial policy π1

for t = 1 to T do
Observe features of a sampled state xt ∼ D and item
set St
Construct list Lt using πt.
Define |Lt| new cost-sensitive classification examples

{(vti, cti, wti)}|Lt|i=1 where:

• vti is the feature vector of state xt and list Lt,i−1

• cti is a cost vector such that ∀s ∈ St : cti(s) =
maxs′∈St b(s

′|Lt,i−1, xt)− b(s|Lt,i−1, xt)

• wi = [
∏|Lt|
j=i+1(1 − `(st,j)

W
)]`(st,i) is the weight of

this example

πt+1 = Update(πt, {(vti, cti, wti)}|Lt|i=1 )
end for
return πT+1

the second case, we enforce that each πi is actually
the same policy, and so we are learning just a single
policy. We refer to πt as the online learner’s current
policy when predicting for state xt (which can be either
a list of policies or a single policy depending on the
algorithm). For both cases (described below), we show
how to extend them to deal with knapsack constraints.

3.1. CONSEQOPT: Learning a sequence of
(different) policies

CONSEQOPT(Dey et al., 2012a) learns a sequence
of policies under cardinality constraint by reducing
the learning problem to k separate supervised cost-
sensitive classification problems in batch. We consider
the knapsack constraint case and provide and error
bound derived from regret bounds for online training.

3.2. SCP: Learning one single policy

SCP (Ross et al., 2013) learns one single policy that
applies to each position for the list. The algorithm and
theoretical analysis apply to cardinality constrained
problems. Under the same online learning reduction
framework (Ross et al., 2010), we extend the analysis
and algorithm to the knapsack constraint setting.

3.3. Algorithm

Algorithm 1 shows our algorithm for both knapsack
constrained CONSEQOPT and SCP. At each itera-
tion, SCP/CONSEQOPT constructs a list Lt for state
xt using its current policy/list of policies. We get
the observed benefit of each item in St at every po-

sition of the list Lt, organized as |Lt| sets of cost sen-

sitive classification examples {(vti, cti, wti)}|Lt|i=1 , each
consisting of |St| instances. These new examples are
then used to update the policy. Note that the online
learner’s update operation (Update) is different for
CONSEQOPT and SCP. CONSEQOPT has one on-
line learner for each of its position-dependent policy
and {(vti, cti, wti)} is used to update the ith online

learner, while SCP would use all of {(vti, cti, wti)}|Lt|i=1

to update a single online learner.

3.3.1. Reduction to Ranking

In the case of a finite policy class Π, one may leverage
algorithms like Randomized Weighted Majority and
update the distribution of policies in Π. However,
achieving no-regret for a policy class that has infinite
number of elements is generally intractable. As men-
tioned above, both learning reduction approaches re-
duce the problem to a better-studied learning problem,
such as cost-sensitive classification.6

We use a reduction to ranking that penalizes ranking
an item s above another better item s′ by an amount
proportional to their difference in cost. Essentially,
for each cost-sensitive example (v, c, w), we generate
|S|(|S|− 1)/2 ranking examples, one for every distinct
pair of items (s, s′), where we must predict the best
item among (s, s′) (potentially by a margin), with a
weight of w|c(s)− c(s′)|.

For example, if we train a linear SVM with feature
weight h, this would be translated into a weighted
hinge loss of the form: w|c(s) − c(s′)|max(0, 1 −
h>(v(s)− v(s′))sign(c(s)− c(s′))). At prediction time
we simply predict the item s∗ with highest score,
s∗ = arg maxs∈S h

>v(s).

This reduction is equivalent to the Weighted All Pairs
reduction (Beygelzimer et al., 2005) except we directly
transform the weighted 0-1 loss into a convex weighted
hinge-loss upper bound – this is known as using a con-
vex surrogate loss function. This reduction is often
advantageous whenever it is easier to learn relative or-
derings rather than precise cost.

3.4. Theoretical Guarantees

We now present theoretical guarantees of Algorithm
1 relative to a randomization of an optimal policy L̃∗π
that takes the following form. Let L∗π = (π∗1 , . . . , π

∗
W )

denote an optimal deterministic policy list of size W .
Let L̃∗π denote a randomization of L∗π that gener-

6The reduction is implemented via the Update subrou-
tine in Algorithm 1.
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ates predictions Lt in the following way: Apply each
π∗i ∈ L∗π sequentially to xt, and include the prediction
π∗i (xt, Lt,i−1) picked by π∗i with probability probabil-
ity p = 1/`(π∗i (xt, Lt,i−1)), or otherwise discard. Thus,
we have

Lt,i =

{
Lt,i−1 ⊕ π∗i (xt, Lt,i−1) w.p. 1

`(π∗i (xt,Lt,i−1))

Lt,i−1 w.p. 1− 1
`(π∗i (xt,Lt,i−1))

We can also think of each policy as having probabil-
ity of being executed to be inversely proportional to
the cost of the element it picks. Therefore, in expec-
tation, each policy will add the corresponding normal-
ized/unit benefit to the reward function value.

Ideally, we would like to prove theoretical guaran-
tees relative to the actual deterministic optimal pol-
icy. However, L̃∗π can be intuitively seen as an average
behavior of deterministic optimal policy. We defer an
analysis comparing our approach to the deterministic
optimal policy to future work.

We present learning reduction guarantees that relate
performance on our actual submodular list optimiza-
tion task to the regret of the corresponding online cost-
sensitive classification task. Let {`t}Tt=1 denote a se-
quence of losses in the corresponding online learning
problem, where `t : Π → R+ represents the loss of
each policy π on the cost-sensitive classification exam-

ples {vti, cti, wti}|i=1Lt| collected in Algorithm 1 for
state xt. The accumulated regret incurred by the
online learning subroutine (Update) is denoted by

R =
∑T
t=1 `t(π

t)−minπ∈Π

∑T
t=1 `t(π).

Let F (π) = Ex∼D[fx(π(x))] denote the expected
value of the lists constructed by π. Let π̂ =
arg maxt∈{1,2,...,T} F (πt) be the best policy found by
the algorithm, and define the mixture distribution π
over policies such that F (π) = 1

T

∑T
t=1 F (πt).

We will focus on showing good guarantees for F (π),
as F (π̂) ≥ F (π). We now show that, in expectation,
π (and thus π̂) must construct lists with performance
guarantees close to that of the greedy algorithm over
policies in Π if a no-regret subroutine is used:

Theorem 1. After T iterations, for any δ ∈ (0, 1),
we have that with probability at least 1− δ:

F (π) ≥ (1− 1/e)F (L̃∗π)− R

T
− 2

√
2 ln(1/δ)

T

Theorem 1 implies that the difference in reward be-
tween our learned policy and the (randomization of
the) optimal policy is upper bounded by the regret of
the online learning algorithm used in Update divided

by T , and a second term that shrinks as T grows.7

Running any no-regret online learning algorithm such
as Randomized Weighted Majority (Littlestone &
Warmuth, 1994) in Update would guarantee

R

T
= O

(√
WgT ln |Π|

T

)

for SCP and CONSEQOPT,8 where g is the largest
possible normalized/unit marginal benefit. Note that
when applying this approach in a batch supervised
learning setting, T also corresponds to the number of
training examples.

3.4.1. Convex Surrogate Loss Functions

Note that we could also use an online algorithm that
uses surrogate convex loss functions (e.g., ranking loss)
for computational efficiency reasons when dealing with
infinite policy classes. As in (Ross et al., 2013), we
provide a general theoretical result that applies if the
online algorithm is used on any convex upper bound
of the cost-sensitive loss. An extra penalty term is
introduced that relates the gap between the convex
upper bound to the original cost-sensitive loss:

Corollary 1. If we run an online learning algorithm
on the sequence of convex losses Ct instead of `t, then
after T iterations, for any δ ∈ (0, 1), we have that with
probability at least 1− δ:

F (π) ≥ (1− 1/e)F (L̃∗π)− R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of convex
losses Ct, and G = 1

T [
∑T
t=1(`t(π

t) − Ct(π
t)) +

minπ∈Π̃

∑T
t=1 Ct(π) − minπ′∈Π̃

∑T
t=1 `t(π

′)] is the
“convex optimization gap” that measures how close the
surrogate losses Ct are to minimizing the cost-sensitive
losses `t.

The gap G may often be small or non-existent. For
instance, in the case of the reduction to regression or
ranking, G = 0 in realizable settings where there ex-
ists a predictor which models accurately all the costs
or accurately ranks the items by a margin. Similarly,

7Note that we compare against (1−1/e)F (L̃∗π) because
exact submodular optimization (with perfect knowledge of
f) is intractable but forward greedy selection has a (1−1/e)
approximation guarantee.

8Naively, CONSEQOPT would have average regret that

scales as O

(
k(
√
WgT ln |Π|)
T

)
, since we must run k separate

online learners. However, similar to lemma 4 in (Streeter
& Golovin, 2008) and corollary 2 in (Ross et al., 2013), it
can be shown that the average regret is the same as SCP.
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in cases where the problem is near-realizable we would
expect G to be small. We emphasize that this convex
optimization gap term is not specific to our particular
scenario, but is (implicitly) always present whenever
one attempts to optimize classification accuracy, e.g.
the 0-1 loss, via convex optimization.9 This result im-
plies that whenever we use a good surrogate convex
loss, then using a no-regret algorithm on this convex
loss will lead to a policy that has a good approximation
ratio to the optimal list of policies.

4. Application to Document
Summarization

We apply our knapsack versions of the SCP and CON-
SEQOPT algorithms to an extractive multi-document
summarization task. Here we construct summaries
subject to a maximum budget of characters W by ex-
tracting sentences in the same order of occurrence as
in the original document.

Following the experimental set up from previous work
of (Lin & Bilmes, 2010) (which we call SubMod) and
(Kulesza & Taskar, 2011) (which we call DPP), we use
the datasets from the Document Understanding Con-
ference (DUC) 2003 and 2004 (Task 2) (Dang, 2005).
The data consists of clusters of documents, where each
cluster contains approximately 10 documents belong-
ing to the same topic and four human reference sum-
maries. We train on the 2003 data (30 clusters) and
test on the 2004 data (50 clusters). The budget length
is 665 bytes, including spaces.

We use the ROUGE (Lin, 2004) unigram statistics
(ROUGE-1R, ROUGE-1P, ROUGE-1F) for perfor-
mance evaluation. Our method directly attempts learn
a policy that optimizes the ROUGE-1R objective with
respect to the reference summaries, which can be eas-
ily shown to be monotone submodular (Lin & Bilmes,
2011).

Intuitively, we want to predict sentences that are both
short and capture a diverse set of important concepts
in the target summaries. This is captured in our def-
inition of cost using the difference of normalized ben-
efit cti(s) = b(s|Lt,i−1, xt) − maxs′∈S b(s

′|Lt,i−1, xt).
We use a reduction to ranking as described in Section
3.3.10

9For instance, when training a SVM in standard batch
supervised learning, we would only expect that minimizing
the hinge loss is a good surrogate for minimizing the 0-1
loss when the analogous convex optimization gap is small.

10We use Vowpal Wabbit (Langford et al., 2007) for on-
line training and the parameters for online gradient descent
are set as default.

System ROUGE-1F ROUGE-1P ROUGE-1R
SubMod 37.39 36.86 37.99
DPP 38.27 37.87 38.71
CONSEQOPT 39.02± 0.07 39.08±0.07 39.00±0.12
SCP 39.15±0.15 39.16±0.15 39.17±0.15
Greedy (Oracle) 44.92 45.14 45.24

Table 1. ROUGE unigram statistics on the DUC 2004 test
set

4.1. Feature Representation

The features for each state/document xt are sentence-
level features. Following (Kulesza & Taskar, 2011),
we consider features fi for each sentence consisting
of quality features qi and similarity features φi (fi =
[qTi , φ

T
i ]T ). The quality features, attempt to capture

the representativeness for a single sentence. We use the
same quality features as in (Kulesza & Taskar, 2011).

Similarity features qi for sentence si as we construct
the list Lt measure a notion of distance of a proposed
sentence to sentences already included in the list. A
variety of similarity features were considered, the sim-
plest being average squared distance of tf-idf vectors.
Performance varied little depending on the details of
these features. The experiments presented use three
types: 1) following the idea in (Kulesza & Taskar,
2011) of similarity as a volume metric, we compute
the squared volume of the parallelopiped spanned by
the TF-IDF vectors of sentences in the set Lt,k ∪ si,
which is equivalent to the determinant of submatrix
det(GLt,k∪si) of the Gram Matrix G, whose elements
are pairwise TF-IDF vector inner products; 2) the
product between det(GLt,k∪si) and the quality fea-
tures; 3) the minimum absolute distance of quality
features between si and each of the elements in Lt,k.

4.2. Results

Table 1 documents the performance (ROUGE unigram
statistics) of knapsack constrained SCP and CONSE-
QOPT compared with SubMod and DPP (which are
both state-of-the-art approaches). “Greedy (Oracle)”
corresponds to the oracle used to train DPP, CONSE-
QOPT and SCP. This method directly optimizes the
test ROUGE score and thus serves as an upper bound
on this class of techniques. We observe that both SCP
and CONSEQOPT outperform SubMod and DPP in
terms of all three ROUGE Unigram statistics.
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Appendix - Proofs of Theoretical
Results

This appendix contains the proofs of theoretical results
presented in this paper. We also encourage readers
to refer to (Ross et al., 2013) and its supplementary
materials for the proof of the cardinality constrained
case.

Preliminaries

We begin by proving a number of lemmas about mono-
tone submodular functions, which will be useful to
prove our main results. Note that we refer to “lists”
and “sets” interchangeably in this section. We often
use “list” to convey an implicit notion of ordering (e.g.,
the order under which our model greedily chooses the
list), but the reward function is computed over un-
ordered sets.

Lemma 1. Let S be a set and f be a monotone sub-
modular function defined on a list of items from S.
For any lists A,B, we have that:

f(A⊕B)− f(A) ≤ |B|(Es∼U(B)[f(A⊕ s)]− f(A))

where U(B) denotes the uniform distribution on items
in B.

Proof. For any two lists A and B, let Bi denote the
list of the first i items in B, and bi the ith item in B.
We have that:

f(A⊕B)− f(A)

=
∑|B|
i=1 f(A⊕Bi)− f(A⊕Bi−1)

≤
∑|B|
i=1 f(A⊕ bi)− f(A)

= |B|(Eb∼U(B)[f(A⊕ b)]− f(A))

where the inequality follows from the submodularity
property of f .

Corollary 1. Let S be a set and f be a monotone sub-
modular function defined on a list of items from S. Let
B̃ = {b̃1, . . . , b̃|B|} denote a stochastic list generated
stochastically from the corresponding deterministic list
B as follows:

∀i : b̃i =

{
bi w.p. 1

`(bi)

ø (empty) otherwise
.

Then we have that:

E[f(A⊕B̃)]−f(A) ≤ |B|Es∼U(B)

[
f(A⊕ s)− f(A)

`(s)

]
,

where the first expectation is taken over then random-
ness of B̃, and U(B) denotes the uniform distribution
on items in B.

Proof.

E[f(A⊕ B̃)]− f(A)

=
∑|B̃|
i=1 E[f(A⊕ B̃i)]− E[f(A⊕ B̃i−1)]

≤
∑|B̃|
i=1 E[f(A⊕ b̃i)]− f(A)

=
∑|B̃|
i=1

1
`(bi)

f(A⊕ bi) + (1− 1
`(bi)

)f(A)− f(A)

=
∑|B|
i=1

f(A⊕bi)−f(A)
`(bi)

= |B|Eb∼U(B)[
f(A⊕b)−f(A)

`(b) ]

where the inequality follows from the submodularity
property of f .

Lemma 2. Let S, f , A, B̃, B, and U(B) be de-

fined as in Corollary 1. Let `(A) =
∑|A|
i=1 `(ai) de-

note the sum of length of each element ai in A, and
let Aj denote the list of the first j items in A. De-

fine εj = Es∼U(B)[
f(Aj−1⊕s)−f(Aj−1)

`(s) ] − f(Aj)−f(Aj−1)
`(aj)

as the additive error term in competing with the av-
erage marginal normalized benefits of the items in B
when picking the jth item in A (which could be positive
or negative). Then for α = exp (−`(A)/|B|), we have

f(A) ≥ (1−α)E[f(B̃)]−
|A|∑
i=1

 |A|∏
j=i+1

(
1− `(aj)

|B|

) `(ai)εi.
Proof. Using the monotonicity property of f and
Corollary 1, we have that:

E[f(B̃)]− f(A) ≤ E[f(A⊕ B̃)]− f(A)

≤ |B|Es∼U(B)

[
f(A⊕ s)− f(A)

`(s)

]
.

Define ∆j = E[f(B̃)]− f(Aj). We have that:

∆j ≤ |B|Es∼U(B)

[
f(Aj ⊕ s)− f(Aj)

`(s)

]
= |B|Es∼U(B)

[
f(Aj ⊕ s)− f(Aj)

`(s)

−f(Aj+1)− f(Aj)

`(aj+1)
+
f(Aj+1)− f(Aj)

`(aj+1)

]
=

|B|
`(aj+1)

(`(aj+1)εj+1 + ∆j −∆j+1) .

Rearranging the terms yields

`(aj+1)

|B|
∆j ≤ `(aj+1)εj+1 + ∆j −∆j+1

∆j+1 ≤
(

1− `(aj+1)

|B|

)
∆j + `(aj+1)εj+1.
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Recursively expanding, we get

∆|A| ≤
|A|∏
i=1

(
1− `(ai)

|B|

)
∆0 +

|A|∑
i=1

|A|∏
j=i+1

(
1− `(aj)

|B|

)
`(ai)εi.

The term
∏|A|
i=1(1− `(ai)

|B| ) is maximized when all `(ai)

are equal, therefore
∏|A|
i=1(1− `(ai)

|B| ) ≤ (1− `(A)
|A||B| )

|A| ≤
exp(|A| log(1 − `(A)

|A||B| )) ≤ exp(−|A| `(A)
|A||B| ) = α. Rear-

ranging the terms and using the definition of ∆|A| =

f(B̃)− f(A) and ∆0 = f(B̃) prove the statement.

Proofs of Main Results

We now provide the proofs of the main results in this
paper. We refer the reader to the notation defined in
section 3 and 5 for the definitions of the various terms
used.

Theorem 1. After T iterations, for any δ ∈ (0, 1),
we have that with probability at least 1− δ:

F (π) ≥ (1− 1/e)F (L̃∗π)− R

T
− 2

√
2 ln(1/δ)

T

Proof.

F (π̄) =
1

T

T∑
t=1

F (πt)

= Ex∼D

[
1

T

T∑
t=1

fx(πt(x))

]

=

(
1− 1

e

)
Ex∼D[fx(L̃∗π(x))]

− Ex∼D

[(
1− 1

e

)
fx(L̃∗π(x))− 1

T

T∑
t=1

fx(πt(x))

]

=

(
1− 1

e

)
Ex∼D[fx(L̃∗π(x))]

−
(

1− 1

e

)
1

T

T∑
t=1

(
fxt(L̃

∗
π(xt))− fxt(Lt)

)
− 1

T

T∑
t=1

Xt,

where

Xt = (1− 1/e){Ex∼D[fx(L̃∗π(x))]

− fxt(L̃∗π(xt))} − {Ex∼D[fx(πt(x))]− fxt(Lt)}.

Because each xt is sampled i.i.d. from D, and the
distribution of policies used to construct Lt only de-
pends on {xτ}t−1

τ=1 and {Lτ}t−1
τ=1, then each Xt when

conditioned on {Xτ}t−1
τ=1 will have expectation 0, and

because fx ∈ [0, 1] for all state x ∈ X , Xt can vary
in a range r ⊆ [−2, 2]. Thus the sequence of ran-
dom variables Yt =

∑t
i=1Xi forms a martingale where

|Yt − Yt+1| ≤ 2. By the Azuma-Hoeffding’s inequality,
we have that

P (YT /T ≥ ε) ≤ exp(−ε2T/8).

Hence for any δ ∈ (0, 1), we have that with probabil-

ity at least 1 − δ, YT /T = 1
T

∑T
t=1Xt ≤ 2

√
2 ln(1/δ)

T .

Hence we have that with probability at least 1− δ:

F (π)

≥ (1− 1/e)Ex∼D[fx(L̃∗π(x))]

−[(1− 1/e) 1
T

∑T
t=1 fxt(L̃

∗
π(xt))

− 1
T

∑T
t=1 fxt(Lt)]− 2

√
2 ln(1/δ)

T

Let st,i denote the ith element in Lt and wi =

[
∏|Lt|
j=i+1(1− `(st,j))

k )]`(st,i). From lemma 2, we have:

(1− 1/e) 1
T

∑T
t=1 fxt(L̃

∗
π(xt))− 1

T

∑T
t=1 fxt(Lt)

≤ 1
T

∑T
t=1

∑|Lt|
i=1 wi(Eπ∼U(L∗π)[

fxt (Lt,i−1⊕π(xt,Lt,i−1))

`(π(xt,Lt,i−1)) ]

− fxt (Lt,i)−fxt (Lt,i−1)

`(st,i)
)

= Eπ∼U(L∗π)
1
T

∑T
t=1

∑|Lt|
i=1 wi(

fxt (Lt,i−1⊕π(xt,Lt,i−1))

`(π(xt,Lt,i−1))

− fxt (Lt,i)−fxt (Lt,i−1)

`(st,i)
)

≤ maxπ∈Π
1
T

∑T
t=1

∑|Lt|
i=1 wi(

fxt (Lt,i−1⊕π(xt,Lt,i−1))

`(π(xt,Lt,i−1))

− fxt (Lt,i)−fxt (Lt,i−1)

`(st,i)
)

= R/T

Hence combining with the previous result proves the
theorem.

Corollary 1. If we run an online learning algorithm
on the sequence of convex losses Ct instead of `t, then
after T iterations, for any δ ∈ (0, 1), we have that with
probability at least 1− δ:

F (π) ≥ (1− 1/e)F (L̃∗π)− R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of convex
losses Ct, and G = 1

T [
∑T
t=1(`t(π

t) − Ct(π
t)) +

minπ∈Π

∑T
t=1 Ct(π) − minπ′∈Π

∑T
t=1 `t(π

′)] is the
“convex optimization gap” that measures how close the
surrogate losses Ct are to minimizing the cost-sensitive
losses `t.

Proof. Follows immediately from Theorem 1using the

definition of R, R̃ and G, since G = R−R̃
T


