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Abstract

Automatic facial action unit (AFA) detection from video

is a long-standing problem in facial expression analysis.

Most approaches emphasize choices of features and clas-

sifiers. They neglect individual differences in target per-

sons. People vary markedly in facial morphology (e.g.,

heavy versus delicate brows, smooth versus deeply etched

wrinkles) and behavior. Individual differences can dramat-

ically influence how well generic classifiers generalize to

previously unseen persons. While a possible solution would

be to train person-specific classifiers, that often is neither

feasible nor theoretically compelling. The alternative that

we propose is to personalize a generic classifier in an unsu-

pervised manner (no additional labels for the test subjects

are required). We introduce a transductive learning method,

which we refer to Selective Transfer Machine (STM), to per-

sonalize a generic classifier by attenuating person-specific

biases. STM achieves this effect by simultaneously learning

a classifier and re-weighting the training samples that are

most relevant to the test subject. To evaluate the effective-

ness of STM, we compared STM to generic classifiers and to

cross-domain learning methods in three major databases:

CK+ [20], GEMEP-FERA [32] and RU-FACS [2]. STM

outperformed generic classifiers in all.

1. Introduction

The face is one of the most powerful channels of nonver-

bal communication. Facial expression provides cues about

emotion, intention, alertness, pain, and personality, regu-

lates interpersonal behavior, and communicates psychiatric

and biomedical status among other functions. The Facial

Action Coding System (FACS) [14] is the most comprehen-

sive, anatomically-based system for encoding expression.

FACS segments the visible effects of facial muscle activa-

tion into “action units” (AUs). Each AU is related to one

or more facial muscles. FACS describes facial activity on

the basis of 33 unique action units (AUs), as well as several

categories of head and eye positions and other movements.

Facial movement is thus described in terms of constituent

components, or AUs.

Automatic facial action unit detection (AFA) confronts a
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Figure 1. (a) 2D PCA projections of positive and negative samples

for AU12 (lip-corner raiser). While ideal classifiers, trained and

tested separately for each subject, correctly separate positive and

negative samples (denoted by squares and circles, respectively) for

each subject, (b) generic classifiers trained on data from all 3 sub-

jects generalize poorly when applied to a previously unknown sub-

ject. Selective transfer machine, which personalizes the generic

classifier, reliably separates AU12 for the unseen subject.

series of challenges. These include changes in pose, scale,

illumination, occlusion, and individual differences in face

shape, texture, and behavior. Face shape and texture dif-

fer between and within sexes and ethnic and racial back-

grounds, differ with age and exposure to the elements, and

differ in rates of behavior. Some people smile broadly and

frequently; others rarely or with smile controls, which coun-

teract the upward pull of the zygomatic major on the lip

corners. These and other sources of variation represent

considerable challenges for computer vision. Then there

is the challenge of automatically detecting facial actions

that require significant training and expertise even for hu-

man coders, as has been recently reported in the first Facial

Expression Recognition and Analysis Challenge [32].
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To address these issues, previous work has focused on

identifying optimal feature representations and classifiers.

See [11, 21, 32] for a review. While improvements have

been achieved, generalizability of classifiers to previously

unseen persons remains a continuing challenge. Fig. 1(a)

illustrates an example of how a simple linear classifier can

separate the positive samples of AU12 (obliquely raised lip

corners, seen in smiling) from negative samples (i.e., all

other AUs). In this case, we use all available data of the

same subject for training, and we call this the ideal clas-

sifier. However, when a classifier is learned using training

data from all subjects (Fig. 1(b)) and tested on a subject

excluded from the training set, it fails to generalize well.

When a classifier is trained on all available subjects, it is re-

ferred as generic. We propose that impaired generalizabil-

ity occurs in part because of individual differences among

subjects. In the example shown, these differences include

sex, skin color, and illumination. Our guiding hypothesis is

that these factors lead generic classifiers to perform better

or worse on some subjects than others.

To mitigate the person-specific biases, this paper ex-

plores the idea of personalizing a generic classifier. Generic

classifiers are personalized using no AU labels from test

subjects. We propose a new transductive technique called

Selective Transfer Machine (STM). STM personalizes the

generic classifier in an unsupervised manner to compensate

for person-specific biases, and greatly improves generaliz-

ability, see Fig. 1(b). We illustrate the benefits of our ap-

proach in the task of facial AU detection in three major

datasets of posed and spontaneous facial expressions. To

the best of our knowledge, this is the first work to investi-

gate personalizing a classifier for facial expression analysis.

2. Related work

Related work includes AU detection and cross-domain

adaptation. We briefly review each in turn.

2.1. Facial AU detection

Automatic detection of AUs entails at least three steps.

These are tracking and registration, feature extraction and

possible data reduction, and classifier selection.

Tracking non-rigid facial features has been a long stand-

ing problem in computer vision. Most popular approaches

to non-rigid tracking have been Active Appearance Mod-

els [22] or more recent advances such as Constrained Local

Models [25] or discriminative AAMs [35]. It is beyond the

scope of this paper to review all of them but we refer the

reader to recent papers on this topic [25, 35].

Once the tracking is done and the face is registered, many

features have been proposed to use for AU detection such

as pixel intensities, edges, SIFT [39], DAISY [39], Ga-

bor jets [2], compositional features [37] and many others,

but as shown in the first facial expression recognition chal-

lenge [32], none of them has clearly been shown to be su-

perior to one another.

Two main approaches have been pursued for designing

classifiers for AU detection. One is static modeling, which

is typically posed as a discriminative classification problem

in which each video frame is evaluated independently [2].

The other is temporal modeling in which frames are seg-

mented into sequences and modeled with a variant of Dy-

namic Bayesian Networks (e.g., Hidden Markov Models,

Conditional Random Fields) [7, 26, 33]. For instance, Tong

et al. [30] used Dynamic Bayesian Networks with appear-

ance features to model AU co-occurrence. Alternatively,

Simon et al. [27] proposed to use a structural-output SVM

for detecting the starting and ending frames of each AU. Re-

cently, Rudovic et al. [24] considered the ordinal informa-

tion in a Conditional Random Field to model the relations

between temporal segments.

Interested readers may refer to [11, 21, 32] for more

complete surveys of AU detection methods. Common to

all of these approaches is the assumption that training and

test data come from the same distribution. STM makes no

such assumption. It therefore seeks to personalize the clas-

sifier by automatically re-weighting training samples that

are most relevant to each test subject.

2.2. Cross­domain adaptation

Our approach is motivated by increased concern about

database imbalance and bias in computer vision. In real-

world data, labels of interest often occur infrequently, and

features can vary markedly between and within datasets.

Torralba and Efros [31] discovered significant biases in ob-

ject categorization; as a remedy, they encouraged advances

in domain adaptation to cope with dataset biases. Aytar

and Zisserman [1] proposed to transfer pre-learned mod-

els to regularize the training of a new object class. Re-

cently, Khosla et al. [18] combined a specific and a common

discriminative model across several tasks to remove bias.

These techniques used a supervised approach to learning in

which one or more labeled instances are required from the

target domain. They cannot be applied to new domains or

subjects when one has no prior knowledge of them. In con-

trast, our approach is fully unsupervised, uses no labeled

instances, and hence well suited to the problem of general-

izing learning to new domains or new subjects in our case.

Close to our approach is a special case in unsupervised

domain adaptation known as covariate shift [28], where

training and test domains follow different distributions but

the label distributions remain the same. Dudı́k et al. [13]

inferred the re-sampling weights through maximum entropy

density estimation. Maximum Mean Discrepancy (MMD)

[3] measured the discrepancy between two different dis-

tributions in terms of expectations of empirical samples.

Without estimating densities, Transductive SVM (T-SVM)



[17] simultaneously learn a decision boundary and maxi-

mize the margin in the presence of unlabeled patterns. Do-

main adaptation SVM [5] extends T-SVM by progressively

adapting the discriminant function to the target domain.

SVM-KNN [38] labels a single query using an SVM trained

on its k neighborhood of the training data. Each of these

methods uses either all or a subset of the training data. Un-

like previous approaches, STM learns weights on individual

training instances and hence makes better use of the data.

Considering distribution mismatch, Kernel Mean Match-

ing (KMM) [16] directly infers the re-sampling weights

by matching training and test distributions. Following this

idea, Yamada et al. [36] estimated the relative importance

weight and learn from weighted training samples for 3D hu-

man pose estimation. Interested reader may refer to [23] for

a complete review. However, these methods take a two-step

approach that first estimates the sampling weights and then

trains a re-weighted classifier/regressor. On the contrary,

STM jointly optimize the weights as well as the classifier

parameters, and hence preserves discriminant property of

the new decision boundary. In Sec. 4 the benefit of STM

over KMM will become more apparent.

3. Selective Transfer Machine (STM)

This section describes the proposed STM approach for

personalizing a generic classifier. Unlike previous cross-

domain methods [1, 12, 18], STM will not require labels

from a test subject. We will use Support Vector Machine

(SVM) as the classifier because it has been a popular classi-

fication tool for AU detection [9, 27, 34]. However, STM is

not a classifier-dependent technique, and hence can be used

with any classifier.

Problem formulation: The main idea behind the STM

is to re-weight more the training samples that are closer to

the test samples. The classifiers trained on the re-weighted

training samples will be more likely to fit the test subject.

Let us denote the training set as Dtr = {xi, yi}
ntr

i=1
, yi ∈

{+1,−1} (see notation1). For notational simplicity, we

stack 1 in each data vector xi to compensate for the offset,

i.e., xi ∈ R
d+1. We formulate STM as:

(w, s) = argmin
w,s

Rw(Dtr, s) + λΩs(X
tr,Xte), (1)

where Rw(Dtr, s) is the SVM empirical risk defined on

training set Dtr with each instance weighted by s ∈ R
ntr ,

i.e., each entry si of s corresponds to a positive weight for

the sample xi. Ωs(X
tr,Xte) measures the distribution mis-

match between the training and test distribution as a func-

tion of s. The lower the value of Ωs, the more similar the

1 Bold capital letters X denote a matrix; Xi represents the ith column

of the matrix X. Bold lower-case letters a column vector x; xj denotes

the scalar in the jth element of x. All non-bold letters represent scalars.

In ∈ R
n×n is an identity matrix.

training and test distributions are. λ ≥ 0 is a tradeoff to bal-

ance the risk and the distribution mismatch. The goal of the

STM is to jointly optimize the penalized SVM w as well as

the selective coefficient s, such that the resulting personal-

ized classifier can better remove person-specific biases.

Penalized SVM: The first term in STM, Rw(Dtr, s), is

the empirical risk of a penalized SVM, where each training

instance is weighted by its relevance to the test data. The

instance-wise weighted SVM minimizes:

Rlin
w
(Dtr, s) =

1

2
‖w‖2 + C

ntr
∑

i=1

siLp(yi,w
⊤xi), (2)

where Lp(y, ·) = max(0, 1 − y·)p, and p is either 1 (hinge

loss) or 2 (quadratic loss), but generally, L could be any loss

function. Eq. (2) can be extended to a nonlinear version by

introducing a kernel matrix Kij := k(xtr
i ,x

tr
j ) correspond-

ing to a kernel function k induced from the nonlinear fea-

ture mapping ϕ(·). Using the representer theorem [8], the

penalized SVM in (2) can be rewritten as:

Rnonlin
β (Dtr, s) =

1

2
β⊤Kβ + C

ntr
∑

i=1

siLp(yi,K
⊤
i β). (3)

Unlike most existing work, we will train the kernel SVM

in the primal due to its simplicity and efficiency using the

Newton’s method that has quadratic convergence [8]. In ad-

dition, standard packages that solve the SVM in the primal

do not incorporate instance-wise weights. Details of the op-

timization will be given in Sec. 4.

Domain mismatch: The second term in STM,

Ωs(X
tr,Xte), is the domain mismatch, and it has the ob-

jective to find a re-weighting function for minimizing the

mismatch between training and test domains. In previous

cross-domain learning methods, the re-weighting function

may be computed by separately estimating the densities and

then the weights (e.g., [29]). However, this two-step strat-

egy is not practical and increases the estimation error while

taking the ratio of estimated densities [29].

An intuitive way to reassign weights is to compute the ra-

tio between training and test densities. However, such den-

sities are unavailable in real world applications. Here we

adopt the Kernel Mean Matching (KMM) [16] method to

reduce the difference between the means of the training and

test distributions in the Reproducing Kernel Hilbert Space

H. KMM computes the instance-wise re-weighting si that

minimizes

Ωs(X
tr,Xte)=

∥

∥

∥

∥

∥

∥

1

ntr

ntr
∑

i=1

siϕ(x
tr
i )−

1

nte

nte
∑

j=1

ϕ(xte
j )

∥

∥

∥

∥

∥

∥

2

H

. (4)

Introducing κi :=
ntr

nte

∑nte

j=1
k(xtr

i ,x
te
j ), i=1, . . . , ntr, that

captures the closeness between training and each test sam-

ple, finding a suitable s in (4) can be rewritten as a quadratic
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Figure 2. Fitting a line to a quadratic function using KMM and

other re-weighting approaches. Circles represent the training data

and squares the test data. The larger size (or more red) of train-

ing data, the more weight KMM adapted for fitting. As can be

observed, KMM put higher weights in the training samples closer

to the test samples. Compared to standard OLS or WOLS, this

allows to better approximate linear models (lines) for the test data.

programming (QP):

min
s

1

2
s⊤Ks− κ⊤s, (5)

s. t. si ∈ [0, B],

∣

∣

∣

∣

∣

ntr
∑

i=1

si − ntr

∣

∣

∣

∣

∣

≤ ntrǫ.

where B in the first constraint defines a scope bounding dis-

crepancy between the training/test distributions Ptr and Pte.

For B→ 1, we obtain the unweighted solution. The latter

constraint ensures that the resulting measure s(x)Ptr(x) is

close to a probability distribution according to Hoeffding’s

inequality [16] . Large values of κi indicate important ob-

servations xtr
i and are likely to lead to large si. A major ad-

vantage of KMM is that it does not require the estimation of

biasing densities or selection probabilities. Fig. 2 illustrates

its effect on a synthetic data. As shown, KMM can predict

the ideal fitting well, while standard Ordinary Least Square

(OLS) and Weighted OLS (WOLS) with training/test ratio

fail to predict the true test fitting.

Similarities and differences between STM and cross-

domain learning methods: Both STM and cross-domain

learning methods seek to compensate for data-specific bi-

ases. They differ in how they accomplish this. We compare

and contrast STM with three widely-used cross-domain

learning approaches: T-SVM [17], KMM [16] and DA-

SVM [5]. T-SVM [17] equally weights all the training data;

by contrast, STM gives greater weight to training data that

are more relevant to a given test subject. T-SVM is formu-

lated as integer programming, which is difficult to optimize

and scale to large problems. On the other hand, STM is for-

mulated as a biconvex problem and therefore assures con-

vergence. Both KMM [16] and STM re-weight the data.

KMM does re-weighing only once, while STM does so in

Algorithm 1: Selective Transfer Machine

Input : Xtr, Xte, parameters C, λ

Output: Classifier w and instance-wise weights s

1 Initialize training loss ℓp ← 0;

2 while not converged do

3 Find the instance-wise re-weighting s by solving

the QP in (6);

4 Find the classifier w by solving the penalized

SVM in (2) or (3);

an iterative manner. STM uses the outcomes of training to

refine the weighting at successive steps. In this way, STM

is able to correct sub-optimal weights. From this perspec-

tive, KMM can be viewed as a special case of STM (see

Sec. 4 for more discussions) in which re-weighting is per-

formed only at an initial step. DA-SVM [5], similar to T-

SVM, learns a classifier without re-weighting the training

data. STM, as noted, reassigns weights in light of succes-

sive outcomes. A further difference is that DA-SVM may

fail to converge, while STM always converges.

4. Optimization for STM

To minimize Eq. (1) we adopt the Alternate Convex

Search method [15] that alternates between solving two

convex subproblems over the hyperplane w and the selec-

tive coefficient s. As the STM objective in (1) is bicon-

vex, that is, convex in w when s is fixed (quadratic in w

and Lp is convex), and convex in s when w is fixed (since

K � 0). Under these conditions, the alternated optimiza-

tion approach is guaranteed to monotonically decrease the

objective function. Because the function is bounded below,

it will converge to a critical point. Algorithm 1 summarizes

the STM algorithm.

Minimizing over s: Denote the training losses as ℓp :=
Lp(yi,w

⊤xi), i=1, . . . , ntr. The optimization over s can

be rewritten into the following QP:

min
s

1

2
s⊤Ks+ (

C

λ
ℓp − κ)⊤s (6)

s. t. 0 ≤ si ≤ B, ntr(1− ǫ) ≤

ntr
∑

i=1

si ≤ ntr(1 + ǫ).

This can be solved efficiently using interior point methods

or other successive optimization procedure such as Alter-

nating Direction Method of Multipliers (ADMM) [4]. Since

K�0 by definition, the QP has only one global optima. To

make the algorithm numerically stable, it is possible to add

a small ridge σ on the diagonal, i.e., K=K+σIn (σ=10−8

in our case).

Note that the procedure here is different from the origi-

nal KMM as in each iteration the weighting will be refined
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Figure 3. Comparison of a generic SVM, personalized STM, and ideal classifier for synthetic data. The left most figure shows the conver-

gence curve of the objective value where STM converges in 12 iterations. Figures it#1,4,8,12 with training/test accuracy (Tr% and Te%)

show the hyperplanes in corresponding iterations, where grey (shaded) dots denote training data and white (unshaded) dots denote test

data; circle/square patterns denote positive/negative classes respectively. Note that it#1 indicates the result of KMM [16]. STM improves

separation relative to generic SVM as early as the first iteration and converges close to the ideal hyperplane by the 12-th iteration.

through the training loss ℓp given by the penalized SVM.

Since KMM is an unsupervised approach and does not use

the label information, it is possible that the selected sam-

ples are noisy. Introducing the training loss helps preserve

the discriminant property of the new decision boundary, and

hence leads to a personalized classifier that is close to the

ideal one. This effect can be also observed from minimiz-

ing the linear term in (6), where the instances with greater

loss will be given smaller weights. From this perspective,

the standard two-step KMM can be regarded as a special

case as the first iteration of STM.

Fig. 3 illustrates the iterative effect on a synthetic ex-

ample for learning a target-specific classifier. As shown in

it#1, KMM fails to approach the ideal hyperplane since it

does not impose any constraint in the classification perfor-

mance. On the other hand, STM simultaneously considers

training loss and the weightings, and thus encourages the

training samples close to the test samples be well classi-

fied. As can be observed in Fig. 3, as the iterations proceed,

the STM separation hyperplane approaches toward the ideal

one for the target data.

Minimizing over w: In the case of training loss ℓ2 being

quadratic, the gradient and Hessian of the penalized linear

SVM in (2) can be written as:

▽lin = w + 2C
∑

i∈sv

si(w
⊤xi − yi)xi, (7)

Hlin = Id + 2C
∑

i∈sv

sixix
⊤
i , (8)

where sv denotes the index set of support vectors. Let us

denote S = diag(s) ∈ R
n×n the re-weighting matrix, y ∈

R
n the label vector, and I0 ∈ R

n×n the proximity identity

matrix with the first nsv diagonal elements being 1 and the

others 0. We can derive the gradient w.r.t. the expansion

coefficient β for the penalized nonlinear SVM in (3) as:

▽nonlin = Kβ + 2CKSI0(Kβ − y), (9)

Hnonlin = K+ 2CKSI0K. (10)

Given the gradients and Hessians, the penalized SVMs can

be solved through standard Newton’s methods or conjugate

gradient. In the case of using the ℓ1 hinge loss that is not

differentiable, one can use subgradient methods or a differ-

entiable approximation of the Huber loss [8].

5. Experiments

STM was compared for AU detection with generic SVM

and cross-domain learning approaches in three widely used

databases that vary in duration, extent of out-of-plane head

motion, and spontaneity of facial expression. The 8 most

frequently occurring AUs across the databases were se-

lected for analysis.

5.1. Datasets

1) Extended Cohn-Kanade (CK+) [20] contains image

sequences of posed and non-posed spontaneous expres-

sions with frontal pose. Image sequences average about 20

frames in length; they begin with neutral expression and

proceed to a peak, which is AU-labelled. We used 593

posed images sequences from 123 subjects.

2) GEMEP-FERA [32] is a subset of the GEMEP corpus.

Head pose is frontal. Trained actors portray 18 emotions.

We used the training subset of 87 videos from 7 actors,

which ranged in length between 40 and 110 frames.

3) RU-FACS [2] consists of recorded interviews of 100

young adults. Interviews were approximately 2.5 minutes

in duration. Head pose was frontal with small to moderate

out-of-plane rotation. We had access to 34 of the interviews,

of which video from 5 subjects could not be processed for

technical reasons (e.g., noisy video). Thus, the experiments

reported here were conducted with data from 29 participants

with more than 180,000 frames in total.

5.2. Experimental settings

Face tracking/alignment: 66 landmarks in the face

were tracked using person-specific Active Appearance

Models (AAMs) [22].

Feature extraction: Appearance features were ex-

tracted as SIFT descriptors [39]. Because AUs are localized



Table 1. Comparison between STM and PS classifiers

AUC F1 Score

AU PS1-SVM PS2-SVM STM PS1-SVM PS2-SVM STM

1 48.0 72.4 79.2 45.0 54.8 61.9

2 46.5 71.1 80.2 45.9 55.7 64.3

4 62.6 61.9 66.5 46.6 40.7 60.4

6 70.3 80.0 86.4 60.2 69.7 78.5

7 47.5 54.3 72.4 49.4 55.3 58.4

12 65.7 74.0 72.3 69.5 70.4 72.6

15 41.4 64.0 70.5 44.5 49.0 56.0

17 32.6 70.3 61.7 25.0 40.3 36.3

Avg 51.8 68.5 73.6 48.3 54.5 61.0

Table 2. Comparisons on the CK+ dataset [20]

AUC F1 Score

AU SVM KMM TSVM DASVM STM SVM KMM TSVM DASVM STM

1 79.8 68.9 69.9 72.6 88.9 61.1 44.9 56.8 57.7 62.2

2 90.8 73.5 69.3 71.0 87.5 73.5 50.8 59.8 64.3 76.2

4 74.8 62.2 63.4 69.9 81.1 62.7 52.3 51.9 57.7 69.1

6 89.7 87.7 60.5 94.7 94.0 75.5 70.1 47.8 68.2 79.6

7 82.1 68.2 55.7 61.4 91.6 59.6 47.0 43.8 53.1 79.1

12 88.1 89.5 76.0 95.5 92.8 76.7 74.5 59.6 59.0 77.2

15 93.5 66.8 49.9 94.1 98.2 75.3 44.4 40.4 76.9 84.8

17 90.3 66.6 73.1 94.7 96.0 76.0 53.2 61.7 81.4 84.3

Avg 86.1 72.9 64.7 81.7 91.3 70.0 54.7 52.7 64.8 76.6

to specific face regions, descriptors were computed within

36×36 pixel regions at predetermined facial landmarks (9

for the upper face and 7 for the lower face). Dimensionality

was reduced using PCA, retaining 98% of energy .

AU selection & evaluation: The 8 most frequently oc-

curring AU across the databases were selected for analy-

sis. Positive samples were frames in which a given AU was

present, and negative samples in which it was not. To pro-

vide a more objective evaluation, we report both Area Un-

der the ROC Curve (AUC) and F1 score, which is defined

as F1 = 2·Recall·Precision
Recall+Precision

. Both metrics are widely used in

the literature and convey non-redundant information. AUC

quantifies the relation between true and false positives. F1
quantifies the trade-off between recall and precision.

5.3. Comparison with person­specific classifiers

A natural comparison with STM is a person-specific (PS)

classifier. PS can be defined in at least two ways. One,

which is more common, is a classifier that has been trained

and tested on the same subject. We refer to this usage as

PS1. The other meaning, which we refer to as PS2 or quasi-

PS, is a classifier that has been tested on a subject that was

included among others in a training set. For instance, con-

sider the case in which data from five subjects are randomly

assigned to training and testing sets. A PS2 classifier is

trained and then tested on the test set. Thus each subject

had data in both train and test sets. The GEMEP-FERA

[32] defined PS in this way. For SVM, we evaluated PS

both ways. For STM, only PS2 was possible.

We trained person-specific SVMs on both scenarios, and

trained STM only on PS2 to show the selection ability. It is

not surprising that PS2-SVM perform better than PS1-SVM

since PS1-SVM was trained only on limited training data

and thus suffers from overfitting. As PS2-SVM was trained

on all available subjects, it can be viewed as a generic classi-

fier, as used in most literature on AU detection. However, as

discussed in Sec. 1, generic classifiers could suffer from the

biases and lead to suboptimal performance. On the other

hand, STM consistently outperforms both person-specific

classifiers since STM allows to select only relevant training

data and fits better the test distribution. Fig. 4 shows the se-
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Figure 4. Selection ratio of STM for different subjects on the

initialization and convergence step on PS1. Each row sums to 1

and denotes a test subject. Each entry shows the portion of selected

training samples w.r.t. each test subject.

lection ratio of STM on initialization and after convergence

using PS2. Each row sums to 1 and each entry shows the

portion of selected samples of training subjects with respect

to each test subject. As shown in Fig. 4(b), when STM con-

verges, it selects most of the training data that belongs to

the target subject (higher diagonal values).

5.4. Comparison with generic classifiers and do­
main adaptation approaches

This experiment compares the performance of STM

against generic classifiers learned on the entire dataset,

the covariate shift method KMM [16], a semi-supervised

T-SVM [10], and the domain adaptation method DA-

SVM [5]. We compared the methods on the CK+, RU-

FACS and GEMEP-FERA databases. In this experiment,

any sample of the test subjects is excluded from training.

We used the Gaussian kernel with a bandwidth that is

the median distance between sample points. For KMM and

STM we set B=1000 so that none of si reached the upper

bound, ǫ=
√
ntr−1√
ntr

, and cross-validated on the unweighted

data (as suggested on [16]). For T-SVM we used the im-

plementation in [10] since the original T-SVM [17] solves

an integer programming and is not scalable to large size

problem such as detecting AUs for a video of thousands of

frames. We used a linear SVMs in all the methods. For the

DA-SVM method we used LibSVM [6] and the penalized

SVM discussed in Sec. 4 for the bound minimization prob-

lem with τ =0.5 and β=0.03. Parameters for all methods

were selected by cross-validation.



Table 3. Comparisons on the GEMEP-FERA dataset [32]

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

STM SVM KMM
T-

SVM
DA-
SVM

STM

1 71.5 43.3 72.2 83.3 84.3 56.5 48.5 60.3 59.1 68.1

2 73.9 51.0 74.3 76.8 73.3 56.9 50.2 58.5 57.1 65.5

4 58.5 53.5 42.8 66.6 60.0 43.5 39.8 36.9 46.3 43.3

6 80.4 60.2 81.1 91.1 87.7 63.7 58.7 63.8 72.7 71.6

7 66.9 59.4 70.8 76.9 75.4 63.1 63.5 63.7 68.3 66.2

12 77.7 58.8 74.8 74.5 84.7 79.1 68.4 77.6 75.5 82.1

15 55.5 58.7 67.2 67.5 67.8 33.4 35.2 35.2 41.3 39.3

17 59.8 51.8 63.8 66.5 63.3 32.0 27.8 36.2 42.0 35.9

Avg 68.0 54.6 68.4 75.4 74.5 53.5 49.0 54.0 57.8 59.0

Table 4. Comparisons on the RU-FACS dataset [2]

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

STM SVM KMM
T-

SVM
DA-
SVM

STM

1 72.0 74.0 72.0 77.0 83.9 40.8 37.7 37.4 35.5 55.3

2 66.6 58.6 71.1 76.5 82.4 35.7 32.2 36.2 34.1 52.6

4 74.8 62.2 50.0 76.4 82.4 25.2 14.5 11.2 35.3 30.4

6 89.1 88.8 61.6 60.3 93.1 58.3 39.2 33.1 42.9 72.4

12 86.7 87.0 86.7 84.4 92.3 61.9 63.0 62.6 71.4 72.3

14 71.8 67.8 74.4 70.4 87.4 31.3 25.8 25.8 40.9 51.0

15 72.5 68.8 73.5 58.1 86.1 32.3 29.5 32.3 34.9 45.4

17 78.5 76.7 79.5 75.7 89.6 39.5 35.6 44.0 46.5 55.3

Avg 76.5 72.3 71.1 72.3 85.3 40.6 37.3 40.6 42.7 54.3

Tables 2∼4 show the AUC and F1 scores on the CK+,

GEMEP-FERA and RU-FACS databases. The linear SVM

served as a baseline generic classifier. KMM failed to

perform better than the baseline because it estimated the

weights without using label information during the train-

ing. T-SVM performed similar to SVM in GEMEP-FERA

and RU-FACS, but worse than SVM in CK+. This is be-

cause in CK+ the negative (neutral frames) and positive

(peak frames) samples are more distinct compared to con-

secutive frames in GEMEP-FERA or RU-FACS. It is im-

portant to notice that for CK+, we used the last one third

frames in the sequence to evaluate the generalization abil-

ity. Although the results are not directly comparable, STM

achieved 91% AUC, which is slightly better than the best

published results with 90.5% [19]. Note that by including

the frames that are further away from the peak frames, the

problem is more challenging for STM.

Unlike STM that used a penalized SVM, T-SVM did not

consider re-weighting for training instances and make use

of the losses for all training data. Hence it still suffer from

person-specific biases, where irrelevant subjects still con-

tribute equally during training. DA-SVM extends T-SVM

by progressively labelling test patterns and removing la-

belled training patterns. Not surprisingly, DA-SVM shows

better performance than KMM and T-SVM, because it used

more relevant training samples and resulted in a better per-

sonalized classifier. However, similar to T-SVM, DA-SVM

did not update the re-weightings using label information.

Moreover it is not always guaranteed to converge to a cor-

rect solution. In our experiments, we faced the situation

where DA-SVM failed to converge due to large amount

of samples lying within the margin bounds. By contrast,

STM is a biconvex formulation, and therefore guarantees

to converge to a critical point and outperforms existing ap-

proaches. Observe that in Table 3, STM performed slightly

worse in terms of AUC due to imbalanced data. However,

using the F1 criterion, which is better suited for imbalanced

detection task (as noted above), STM shows an improve-

ment. In the larger RU-FACS dataset where more data is

available, the improvement became clearer.

6. Conclusions

This paper proposed a transductive method to personal-

ize a generic classifier for facial Action Unit (AU) detec-

tion. Our STM framework simultaneously learns the pa-

rameters of a classifier and the selective weights that mini-

mizes the mismatch between the training and the test dis-

tributions. We show that STM translates to a biconvex

problem, and propose a simple alternated minimization ap-

proach to optimize it in the primal. By attenuating the

influence of inherent biases in morphology and behavior,

we have shown that STM can achieve results that surpass

non-personalized generic classifiers and approach the per-

formance of classifiers that have been trained for individ-

ual persons (i.e., person-dependent classifiers). The results

have clearly demonstrated that STM outperforms existing

classifiers when using the same protocol for training and

testing. That is, STM proved comparable to cross-domain

methods in the smaller CK+ and FERA databases. In the

larger RU-FACS database, STM outperformed the cross-

domain methods.

We observed in the experiments that the accuracy usu-

ally falls when there are limited AU occurring in the test

data. This leads to high values in the estimated weights for

training instances that were not reliable. We are currently

working on this issue. Finally, it is worth pointing out that

STM is a general framework with applicability beyond the

AU detection problem, and could be easily applied to other

domains such as object or activity recognition.
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