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Abstract— Neural prosthetics are a promising technology for
alleviating paralysis by actuating devices directly from the
intention to move. Typical implementations of these devices
require a calibration session to define decoding parameters
that map recorded neural activity into movement of the device.
However, a major factor limiting the clinical deployment of
this technology is stability: with fixed decoding parameters,
control of the prosthetic device has been shown to degrade over
time. Here we apply a dual estimation procedure to adaptively
capture changes in decoding parameters. In simulation, we find
that our stabilized dual Kalman filter can run autonomously
for hundreds of thousands of trials with little change in
performance. Further, when we apply our algorithm off-line to
estimate arm trajectories from neural data recorded over five
consecutive days, we find that it outperforms a static Kalman
filter, even when it is re-calibrated at the beginning of each day.

I. INTRODUCTION

Brain-computer interfaces (BCI) can restore movement to
those who are paralyzed by providing behavioral output di-
rectly from the intention to move, bypassing defective neural
transmission and muscle activation [7], [11], [13]. Most BCIs
require a calibration session to compute decoding parameters
that define how recorded neural activity will translate into
movement of the device. Calibration is necessary to build
models of how neural firing rates are modulated by desired
movement. However, these calibrations are not particularly
stable: decoding parameters estimated in one session will
often not apply even on the next day [2]. This instability
could be due to electrode drift, changes in background noise,
or changes in the neural tuning curves themselves [10].
Regardless of its source, the daily re-training of the decoding
algorithm necessary to achieve optimal performance is a
major factor limiting the clinical utility of this technology.

Some approaches have previously been proposed to com-
bat BCI decoder instability. In [8], Bayesian regression self-
training methods were used to update parameters based
on estimates from an unscented Kalman filter. In [12], a
kernelized auto-regressive moving average was employed
to change the decoder over time. Here we introduce an
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alternative method, based on a dual-Kalman filter, as a simple
extension to commonly used BCI decoders. Dual-estimation
can be sensitive to self-training, which appears to also be a
problem in our simulations. However, we find that two simple
heuristics can be implemented to substantially improve the
estimation stability. We find in both simulation and off-line
analysis that our stabilized dual Kalman filter remains robust
to parameter drift over long time scales.

II. DECODING MODEL

A. Kalman Filter: Fixed Decoding Model

Typical BCI decoders are based on the Kalman filter, due
to its rigorous theoretical framework and easy implemen-
tation [14]. In this framework, limb state is treated as an
unobserved vector that evolves over time. We define the state
vector at time t, denoted as xt, as the desired end-point
velocity of the effector augmented by 1, i.e., xt =

(
vTt , 1

)T
.

The state transition from one time-step to the next is assumed
to follow a random walk model (Eq. 1). The neural firing
rate for neuron i at time t, denoted as y(i)t , is treated as an
observation of this state vector (Eq. 2):

Evolution: xt+1 = xt + ωt, ωt ∼ N (0,W ) (1)

Observation: y
(i)
t = β(i)Txt + ε

(i)
t , ε

(i)
t ∼ N (0, σ2

ε ) (2)

where β(i) are the linear tuning parameters corresponding to
neuron i, and ωt and ε(i)t are zero mean Gaussian noise with
covariance matrix W and variance σ2

ε , respectively.
While the Kalman filter has successfully been used to

achieve proficient closed-loop BCI control [6], [14], the
implicit assumption that the linear model parameters are
fixed over time may limit its performance. A common
problem in BCI decoding is that neurons are unstable. Micro-
movements of the electrode array relative to the brain can
cause the amplitude of recorded neurons to change dramat-
ically [5]. Furthermore, there is evidence that neural tuning
curves themselves may change over time, slowly altering the
relationship between firing rate and intended movement [1],
[4], [10]. Traditional Kalman filters will not compensate for
this variation.

B. Parameter Tracking Algorithm

To compensate for neural tuning changes, we propose an
adaptive decoding model with parameter tracking. In this
model, we extract the parameter vector β(i) for every neuron
i and treat it as a state vector. If we also use a linear
dynamical system to model this state vector, then the history
of firing rates of neuron i and estimated limb states can be



used to track the evolution of β(i). Therefore, for n neurons,
the change of their tuning functions over time can be tracked
by a set of n Kalman filters running in parallel [9].

We rewrite the Kalman filter equations as follows:

Evolution: xt+1 = xt + ωt, ωt ∼ N (0,W ) (3)

Observation: y
(i)
t = β

(i)T
τ xt + ε

(i)
t , ε

(i)
t ∼ N (0, σ2

ε ) (4)

In contrast to Eq. 2, in Eq. 4 the linear model parameters
β
(i)T
τ are now time-varying, as indexed by the subscript τ .

We use t and τ to indicate different time scales for limb state
change and tuning parameter change.

For parameter evolution, the history of firing rates and the
estimated velocity during the last T steps can be used to
track the evolution of the parameter vector [9],

Evolution: β
(i)
τ+1 = β

(i)
τ + ν

(i)
τ , ν

(i)
τ ∼ N (0,Π(i)) (5)

Observation: y
(i)
t|T = X̂T

t|Tβ
(i)
τ + ε

(i)
t|T , ε

(i)
t|T ∼ N (0, σ2

ε I)(6)

where y(i)
t|T represents the recorded firing rates during the

previous T steps, i.e., y(i)
t|T =

(
y
(i)
t−T+1, . . . , y

(i)
t

)T
, X̂t|T

represents the estimated limb state during the previous T
steps, i.e., X̂t|T =

(
x̂t−T+1, . . . , x̂t

)
and the noise ε(i)τ |T =(

ε
(i)
τ−T+1, . . . , ε

(i)
τ

)T
. We assume that parameter change is

quite slow compared to the state change, so parameters are
updated only every T steps, and are fixed between updates.

C. Heuristics for stabilizing the dual Kalman filter

In simulation, we have observed that tracking parameters
and limb state without any regularization tends to lead to
long-term parameter drift. To further constrain the tuning
parameters, we propose two heuristics for regularization:

1) Baseline firing rate estimation: For a sufficiently long
window of time, the average firing rate of each neuron will
converge to its baseline firing rate r(i)τ . This is because the
long-term average velocity of the prosthetic limb must be
zero. Thus,

ȳ
(i)
t|T = b(i)Tτ x̄t|T + ε̄

(i)
t|T ≈ r

(i)
τ (7)

where ȳ(i)t|T is the average fire rate between time t−T+1 and
t. To implement this in our parameter tracking algorithm,
when the decoding parameters are updated we take the
average firing rate over the previous T timesteps as the new
baseline firing rate.

2) Velocity Normalization: The second heuristic we im-
plement to stabilize and improve the parameter tracking algo-
rithm is to normalize the estimated velocity before the param-
eter update. Essentially, we assume that the subject’s velocity
over a sufficiently long time window will follow a stable dis-
tribution. To implement the velocity normalization, the me-
dian of the absolute value of the estimated velocity during T
steps, denoted as median(|X̂t|T |), is required to be the me-
dian of the absolute value of the velocity recorded from train-
ing data, denoted as z. Therefore, instead of using X̂t|T in
Eq. 6, we use CX̂t|T where C is a diagonal matrix with diag-
onal

(
z1/median(|X̂1,t|T |), z2/median(|X̂2,t|T |), 1

)
. Here

z1 is the element of the first dimension of z and X̂1,t|T is a
vector corresponding to the first dimension of X̂t|T .

III. RESULTS

A. Simulation

To test the efficacy of our parameter tracking algorithm,
we designed the following 100,000 trial simulation.

1) Kinematics: Our simulated subject repeatedly draws a
Lissajous curve in 2D. The velocity of the trajectory is given
by v(t) =

(
s1f1 sin(f1t), s2f2 cos(f2t)

)
, where t is the time

(in seconds), and s1 = 0.2m, s2 = 0.1m, f1 = 2/3π Hz,
f2 = 2π Hz.

Each trial is one complete cycle of the curve. We set the
time step ∆t = 3ms, so each trial consists of 100 steps.
Parameters are updated every 20 trials (described below),
comprising one session. We run 5,000 sessions in total.

2) Encoding Model: 100 neurons are simulated. The
initial parameters for neuron i include:

• the preferred direction, θ(i)0 , randomly sampled from [0, 2π);
• the baseline firing rate, r

(i)
0 , randomly sampled from

[5, 10]Hz;
• the modular depth, m(i)

0 , randomly sampled from [4, 8]m/s−1.

We use a vector b(i)0 to represent the initial parameters
associated with neuron i:

b
(i)
0 =

m
(i)
0 cos

(
θ
(i)
0

)
m

(i)
0 sin

(
θ
(i)
0

)
r
(i)
0

 (8)

The encoding model is assumed to be linear-Gaussian in
our simulation. That is, the firing rate of neuron i at time t
is a linear function of the state xt

y
(i)
t = b(i)Tτ xt + ε

(i)
t , ε

(i)
t ∼ N

(
0, σ2

ε

)
(9)

where ε(i)t represents the spiking noise.
3) Unstable Neurons: To model instability in the neural

tuning curves, the parameter vector’s dynamics are simulated
as

b
(i)
τ+1 = b(i)τ + v(i)τ , v(i)τ ∼ N

(
0, V (i)

)
(10)

As stated before, the parameter change is quite slow com-
pared to the velocity change. So in our simulation, the pa-
rameter changes every session (20 trials or 2,000 timesteps).

4) Decoding Algorithms: We compare the following de-
coding algorithms
• Static Kalman Filter (KF): The traditional Kalman filter

with the assumption that the linear model parameters are
fixed over time.

• Ground-truth Kalman Filter (KFGT ): In simulation we
always know the exact values of the parameters. There-
fore, we also run the ideal Kalman filter where at
each step the tuning parameters b(i)τ are set to be
the ground truth. This method has the best decoding
performance that can be achieved in the presence of
unknown observation noise. We use this as a benchmark
on which to test the performance of our parameter
tracking algorithm.
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Fig. 1. Simulation results: MISE (in log scale) of each of the different
methods under various observation noise levels, σε, and parameter noise
levels, σγ .

• Parameter Tracker without stabilization (PTNS): The
parameter tracking algorithm without either stabilization
heuristics.

• Parameter Tracker with baseline stabilization (PTb0 ):
The parameter tracking algorithm using only the base-
line firing rate estimation as the stabilization heuristic.

• Parameter Tracker with velocity normalization (PTV N ):
The parameter tracking algorithm using only the veloc-
ity normalization as the stabilization heuristic.

• Stabilized Parameter Tracker (PT): The parameter track-
ing algorithm using both heuristics for stabilization.

5) Parameter Setting: All algorithms are initialized at
time zero with the ground truth parameters, β(i) = b

(i)
0 .

The state-evolution covariance matrix W is estimated from
the actual kinematics. We take T to be 2000 time steps. We
quantify performance with the mean integrated squared error
(MISE) between the decoded velocity and the actual velocity.

We ran several simulations with varying amounts of noise.
The standard deviation of the observation noise, σε, took on
values of e−1 and e−3 Hz. The parameter evolution noise
was set to V (i) = σ2

γI , where σγ took on values of e−1 and
e−3 (units of Hz(m/s)−1 for the first two dimensions and Hz
for the last dimension).

6) Simulation Results: The MISE results are shown in
Fig. 1. KFGT always has the lowest MISE and the perfor-
mance does not change much as the experiment runs. KF
has very low MISE at the beginning, but diverges very fast
since it assumes the parameters are fixed. The performance
of PT is close to KFGT and demonstrates that PT can track
the parameter evolution quite well. From the results we
can see the parameter tracker without stabilization doesn’t
perform very well due to the over-fitting problem. However,
the performance improves substantially with either heuristic.
An interesting phenomenon is that the MISE of KFGT decays
over time under the noise setting σε = e−1, σγ = e−1.
This is because under the random-walk model, the magnitude

of the tuning parameters can grow over time, effectively
increasing the signal to noise ratio. We did not attempt to
constrain this parameter in our simulations.

The reconstructed velocity of different methods of the
100,000th trial is shown in Fig. 2. KFGT represents the
best decoding performance we can get with this level of
observation noise. The performance of PB at the 100,000th
trial is similar to KFGT , while the performance of KF is
quite biased.

B. Offline Trajectory Reconstruction

We also demonstrate the efficacy of our approach by
reconstructing off-line the trajectories of actual arm reaches
over 5 consecutive days using simultaneously recorded neu-
ral data.

1) Experimental Details: Briefly, a Rhesus macaque was
trained to sit in a primate chair and make center-out and
out-center reaches to 26 targets presented in 3D space.
Hand position samples were tracked at 30Hz in 3D space
using an Optotrak recording system. Spike trains from 53
neurons were recorded with a Utah microelectrode array and
tracked over the 5 days of the experiment. Firing rates were
computed in 100ms sliding windows sampled at 30Hz. Full
experimental details can be found in [3]. We used a fixed
lag of three timesteps between neural activity and predicted
kinematics for all neurons.

2) Reconstruction Methods: We compare the ability of
each of the algorithms described above to reconstruct the
actual trajectories made by the subject over the 5 consecutive
days. However, instead of using a ground truth Kalman filter,
as done in simulation, we compare the decoding results to a
static Kalman filter calibrated only on day 1 (KF), as well as
to a static Kalman filter recalibrated using the first session
at the beginning of each day (KFSD).

3) Parameter Estimation: Data recorded from day 1,
session 1 are used for training to learn the parameters,
including β(i) for Kalman filter, β(i)

0 for parameter tracker,
W and σε. To learn the covariance matrix Π for parameter
evolution we first notice that there are two kinds of parameter
evolutions, one between sessions, denoted as Πsession, and
one between days, denoted as Πday . We use the data from
day 1 to learn Πsession and the data from all 5 days to
learn Πday . We assume the covariance matrixes of parameter
evolution are the same for each neuron.

4) Results: The results are shown in Fig. 3. On day
1, each of the algorithms performs similarly, as expected.
However, on subsequent days the static Kalman filter returns
progressively worse trajectory reconstructions. In contrast,
the parameter-tracking algorithms perform well on all days,
and even outperform a static Kalman filter calibrated on the
trials at the beginning of each day.

IV. CONCLUSIONS

Current brain-computer interface systems require daily re-
calibration of decoding parameters to optimize performance.
These re-calibration sessions can be lengthy, and may limit
the clinical utility of neural prosthetic systems. In order
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to eliminate the need of calibration, we implement a dual
Kalman filter to track both the limb states and the parameters,
augmented with two stabilizing heuristics: baseline firing
rate estimating and velocity normalization. Our stabilized
dual Kalman filter performs well in both simulation and in
estimating arm movement trajectories off-line.

Here we focused on the instability of the neural tuning
parameters while assuming fixed variance. Testing how much
improvement may be gained by also tracking the variance
remains the subject of future work. We also assumed that the
number of neurons we tracked remained fixed. In practice,
neurons may drop out or come in to the recording over time.
This complicates the implementation of parameter tracking,
because the dimensionality of the tuning matrix will change
over time [8]. One way to simply capture this behavior
would be to always track a stable “maximum” number of
neurons. Those that correspond to blank signals would return
tuning coefficients of zero. If the residual variance assigned
to those units is constrained to be non-zero, they should
not affect the decoding solution. As neurons come in to the
recording, the algorithm would start to measure their tuning.
Implementation of this extension remains a subject of future
work.
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