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Convolutional Sparse Coding for
Trajectory Reconstruction

Yingying Zhu, Student Member, IEEE, Simon Lucey, Member, IEEE

Abstract—Trajectory basis Non-Rigid Structure from Motion (NRSfM) refers to the process of reconstructing the 3D trajectory of
each point of a non-rigid object from just their 2D projected trajectories. Reconstruction relies on two factors: (i) the condition of
the composed camera & trajectory basis matrix, and (ii) whether the trajectory basis has enough degrees of freedom to model the
3D point trajectory. These two factors are inherently conflicting. Employing a trajectory basis with small capacity has the positive
characteristic of reducing the likelihood of an ill-conditioned system (when composed with the camera) during reconstruction.
However, this has the negative characteristic of increasing the likelihood that the basis will not be able to fully model the object’s
“true” 3D point trajectories. In this paper we draw upon a well known result centering around the Reduced Isometry Property (RIP)
condition for sparse signal reconstruction. RIP allow us to relax the requirement that the full trajectory basis composed with the
camera matrix must be well conditioned. Further, we propose a strategy for learning an over-complete basis using convolutional
sparse coding from naturally occurring point trajectory corpora to increase the likelihood that the RIP condition holds for a broad
class of point trajectories and camera motions. Finally, we propose an `1 inspired objective for trajectory reconstruction that is
able to “adaptively” select the smallest sub-matrix from an over-complete trajectory basis that balances (i) and (ii). We present
more practical 3D reconstruction results compared to current state of the art in trajectory basis NRSfM.

Index Terms—Nonrigid Structure From Motion, Convolutional Sparse Coding, `0 Norm, `1 Norm, Reconstructability.
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1 INTRODUCTION

Non-rigid Structure from Motion (NRSfM) refers to the
task of recovering the time varying 3D coordinates of each
point on a deforming object from just their 2D projections.
One prevalent approach for solving this problem is to
seek the 3D reconstruction with the most compact linear
shape basis that still satisfies the 2D projections [3]. This
strategy works well for short simple sequences containing
a single action/event. However, it has inherent problems
when dealing with real-world complex motion sequences
(e.g. a person walking, jumping, sitting and dancing all in
the same sequence) [1]. In these instances the strategy of
seeking the most compact linear shape is not sufficient to
ensure an accurate reconstruction.

Recently, Akhter et al. [1] proposed a strategy to seek
the 3D reconstruction with the most compact temporal
basis. This approach, which we shall refer to herein as
Trajectory Basis NRSfM, has two advantages over conven-
tional NRSfM. First, it can handle long complex motion
sequences since each point is being modeled independently.
Second, since the trajectory basis is modeling the natural
smoothness of most 3D motions occurring in the real-world
it can be assumed to be object agnostic and known before
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reconstruction.
It has been pointed out, however, [16], [24] that tra-

jectory basis NRSfM suffers from two strongly opposing
requirements: (i) that the camera matrix composed with
the trajectory basis matrix must be well-conditioned, and
(ii) that the trajectory basis must have enough degrees of
freedom to model the “true” 3D trajectory of the point.

Balancing the requirements of (i) and (ii) has turned out
not to be easy. In early work, a discrete cosine transform
(DCT) basis was advocated for trajectory reconstruction
where the capacity of the trajectory basis was controlled by
the choice of the highest order harmonic K. A drawback to
this strategy, however, is the sensitivity of the reconstruction
to the correct selection of K in order to balance (i) and
(ii). Due to this sensitivity, a new K must be selected for
each new 2D projected trajectory sequence that needs to
be reconstructed. Recently, Valmadre & Lucey [24] have
proposed a practical measure of reconstructability (moti-
vated by earlier work by Park & Sheikh [15]) that allows
one to provide an “adaptive” estimate of K given only the
2D projection trajectories. Specifically, this approach gives
an upper bound on the largest K one can select that still
allows for a well conditioned system for solving the 3D
point trajectories. Unfortunately, for the common practical
scenario of a slowly moving camera the K that allows for
a well conditioned system is often too small to model the
“true” 3D trajectory of the points.

1.1 Contributions
In this paper we explore the notion that, under certain
circumstances, a unique solution to 3D point trajectories
can be estimated even if the composed camera and tra-
jectory basis matrix is ill-conditioned. We borrow upon
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(a) Trajectory of the x-axis on one point 
      of running dog 

(b) DCT Basis

(c) Sparse Coding Basis

(e) Convolutional Sparse Coding Filter

(d) Convolutional Sparse Coding Basis
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Fig. 1. The top row (a) depicts a single point x-
coordinate trajectory of a 3D moving canine. The sec-
ond row (b) depicts the set of fixed size DCT basis
vectors that are required to reconstruct the trajectory.
The third row (c) depicts the set of fixed size sparse
coding basis vectors that are required to reconstruct
the trajectory. The fourth row (d) depicts the set of
basis vectors generated from the set of convolutional
sparse filters. The final row (e) depicts the individual
convolutional sparse filters. The sparse coding bases
and convolutional sparse coding filters are learned
independently on the CMU motion capture dataset
including many different subjects of human motion
(Better viewed in color).

the well understood Restricted Isometry Property (RIP) [7]
[10] from sparse signal reconstruction literature. We pro-
pose a set of conditions based on the RIP for estimating
a unique and exact reconstruction of a given 3D point
trajectory. Specifically, if the trajectory basis coefficients
are K−sparse and that all 2K sub-matrices within the
composed camera and trajectory basis matrix are well
conditioned then a unique solution to the trajectory can be

found. We further demonstrate based on well known results
in sparse signal reconstruction [7] [10] that a convex `1
objective can be employed to simultaneously estimate: (i)
how K−sparse a given 3D trajectory is based solely on
the 2D projection trajectory, and (ii) the non-zero trajectory
basis coefficients for 3D reconstruction.

An advantage of the DCT trajectory basis in previous
trajectory basis NRSfM work, is that it is simple to cater for
varying length trajectories since it is based on a pre-defined
mathematical form. Unfortunately, the DCT basis is not
suitable for sparse trajectory reconstruction. To circumvent
this limitation, we advocate the use of convolutional sparse
coding to learn an over-complete trajectory basis from
offline 3D trajectory observations (see Figure 1). This
approach has two advantages. First, it is able to compactly
represent a large space of commonly encountered 3D tra-
jectories. Second, since we are learning convolutional filters
they are easily generalizable to varying length trajectories.
Finally, we demonstrate impressive reconstruction results
compared to previous state of the art.

1.2 Related work

Factorization approaches, first proposed for recovering rigid
3D structure by Tomasi and Kanade in [19], were ex-
tended by Bregler et al. to handle non-rigidity in [3].
The motivation in Bregler et al.’s work was to seek the
3D reconstruction with the most compact (i.e. low rank)
shape basis that satisfies the 2D point projections. Further,
work by Torresani et al. adopted the low-rank constraint
to assist in non-rigid tracking [22], incorporated temporal
constraints by modeling the shape basis coefficients as
a linear dynamical system [20] and modeled the dis-
tribution of non-rigid deformation by a hierarchical prior
[21]. Bartoli et al. [2] used a temporal smoothness prior
to reduce the sensitivity of their solution to the number
of shape bases. Rabaud and Belongie [17] shifted away
from the linear basis interpretation, proposing to learn a
smooth manifold of shape configurations from video. They
incorporated temporal regularization to prevent the camera
and structure from changing excessively between frames.

A number of approaches that develop the use of a shape
basis have been subsequently proposed, including [20],
[21], [27]. A fundamental criticism, however, of all these
approaches is the compactness of shape basis. For example,
the linear shape basis of a “person walking” differs substan-
tially from a “person dancing” or “person jumping”, etc. For
complex motion sequence which includes different actions:
walk, dance, walk, etc, a linear shape basis lacks the ability
to model these complicated nonrigid motions compactly.

To handle complicated nonrigid motions, Akhter et al. [1]
proposed that the trajectory of each point could instead
be restricted to a low-dimensional subspace typically a
Discrete Cosine Transform (DCT). This approach, which
is of central interest in this paper, is often referred to in
literature as trajectory basis NRSfM. The key advantages
of this approach over shape basis methods are: (i) one no
longer requires a compact shape basis (allowing for the
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reconstruction of complex sequences), and (ii) the trajectory
basis is typically object agnostic (allowing for a fixed
trajectory basis) enabling a simpler reconstruction strategy
that does not rely on a SVD style factorization. A drawback
to Akhter et al.’s approach, was that the trajectory basis
needed to have a pre-defined size. More recently, Chen
et. al. proposed a strategy that employed an `1 norm to
automatically select the active DCT basis size [8].

Gotardo and Martinez [13] recently combined shape
and trajectory basis approaches, describing the shape basis
coefficients with a DCT basis over time. In their subsequent
work [12], they extended this approach to include non-
linear shape models using kernels.

Park et al. [16] examined the limitations of trajectory
basis NRSfM in solving for structure given known cameras.
Specifically, Park et al. attempted to characterize theoret-
ically what projected 2D trajectories can and cannot be
successfully reconstructed. They referred to this theoret-
ical measure as “reconstructability”. In subsequent work,
Valmadre and Lucey [24] refined this measure so that it
considers the condition of the resulting system of equations.
Zhu and Lucey [29] proposed to employ a `1 penalty to
minimize the size of active trajectory basis and demon-
strated that the reconstructability restriction decreased by
using `1 penalty empirically.

2 PROBLEM FORMULATION

One point xt ∈ R3 imaged as wt ∈ R2 by a pinhole
camera Pt for all t ∈ {1, . . . , F},[

wt

1

]
' Pt

[
xt
1

]
(1)

Partitioning the projection matrix,

Pt =

[
Rt dt

ct
T bt

]
(2)

The projective equality in Equation 1 yields the under-
determined 2× 3 system of linear equations.

Qtxt = ut, (3)

where Qt = Rt − wtct
T and ut = btwt − dt. Each

Qt matrix has a 1D right nullspace corresponding to the
ray connecting the camera center and the projection on the
image plane. When Pt represents an affine camera,

Pt =

[
Rt dt

0 1

]
⇒ Rtxt = wt − dt. (4)

3 TRAJECTORY RECONSTRUCTION

Given a full subspace Φ = [φ1, . . . ,φF ] where φf ∈
RF , Park et al. [1], [16] constrained individual point
trajectories to lie on a low dimensional subspace ΦS =
[φS(1), . . . ,φS(K)] where S is a subset of K < F indices
that are most energy preserving such that,

X ≈ ΦSBS . (5)

Let X ∈ RF×3 be a matrix of F concatenated 3D positions
of a single continuously sampled point, and BS ∈ RK×3
be the resultant energy preserving compact representation.
For compactness, we shall herein represent Equation 5 in
vectorized form,

x ≈ ΘSβS (6)

where x = vec(X), βS = vec(BS) and ΘS = ΦS⊗ I3
1.

In practice one can only observe the 2D projection
trajectory of the 3D point,

Qx = u (7)

where

Q =

 Q1

. . .
QF

 ,u =

 u1

...
uF

 . (8)

As noted by Akhter et al. if 3K ≤ 2F (i.e. more
observations than unknowns) one can attempt to find the
least-squares estimate of βS ,

β̃S = argmin
βS
‖QΘSβS − u‖22 . (9)

Or alternatively,

β̃S = argminβS ||βS ||22 (10)
s.t. u = QΘSβ .

A least-squares estimate of the 3D trajectory x̃ can then be
obtained by applying Equation 6. An important realization,
however, is the requirement that 3K ≤ 2F is a necessary
but not sufficient condition for accurate reconstruction.

3.1 Reconstructability Known Set
As implied in the previous section, one can have multiple
solutions x′ that satisfy the projection equation

u = Qx′ . (11)

One can represent this ambiguity in an alternate manner

x = x′ + Q⊥z (12)

where Q⊥ ∈ RF×3F is a matrix whose columns are an
orthonormal basis for null(Q) such that

QQ⊥ = 0, QT
⊥Q⊥ = I (13)

and z ∈ RF . As proposed by Valmadre and Lucey [24]
a least-squares estimate for z can be found using the
trajectory basis ΘS for any given x′,

z̃(x′) = argmin
z
||x′ + Q⊥z||2MS

2 (14)

where,MS = ΘS⊥ΘT
S⊥ and ΘS⊥ ∈ RF×(F−K) is the

orthonormal basis for null(ΘS). The least-squares estimate
of x, given the trajectory basis ΘS , for any given x′

becomes
x̃(x′) = x′ + Q⊥z(x′) . (15)

1. We refer to I3 as an 3×3 identity matrix, and the operator ⊗ denotes
a Kronecker product.

2. We defined ||X||2M to represent XTMX.
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Considering the case where x′ is the ground truth trajec-
tory x, we obtain an expression for the reconstruction error

||x− x̃(x)||22 = ||(QT
⊥MSQ⊥)

−1QT
⊥MSx||22 . (16)

This facilitates the definition of an upper bound v on
reconstruction error

v(x,Q,Θ,S) = cond(QT
⊥MSQ⊥)︸ ︷︷ ︸

gain γ

||QT
⊥MSx||22

||QT
⊥MSQ⊥||22︸ ︷︷ ︸

contradiction ε

(17)

where
||x− x̃(x)||22 ≤ v(x,Q,ΘS) . (18)

In general terms, one can see from Equation 17 that if one
has knowledge of the set S that can model the ground truth
trajectory one only requires that the matrix QT

⊥MSQ⊥ is
well conditioned in order to obtain an exact reconstruction.
Consequently, without knowledge of the optimal set no
guarantees on the optimality of the solution can be made.

3.2 reconstructability Unknown Harmonic
An important assumption in trajectory basis NRSfM hith-
erto, has been a priori knowledge of what subset S of the
basis Θ is active. It is clear, however, from the previous
section that a sub-optimal selection of this active set S can
have dire consequences with respect to reconstructability.
Choose a set S that is too expressive and one can obtain a
poorly conditioned matrix QT

⊥MSQ⊥ that reduces recon-
structability. Conversely, choose a set that is too constrained
and one affects how well one can represent the ground truth
trajectory.

A popular choice for Θ is an orthonormal harmonic ba-
sis, such as the discrete cosine transform (DCT) basis. For
this type of basis, choosing the set S simplifies to choosing
the integer scalar K referring to the highest harmonic such
that S = {1, . . . ,K}. Valmadre and Lucey [24] proposed a
strategy of exhaustive search where one chose the largest K
that satisfies a gain threshold γ based on Equation 17. The
strategy here is that by choosing the largest possible K
(contradiction) that ensures a well conditioned system
(gain) one can effectively balance the opposing forces of
contradiction and gain in Equation 17. As discussed in the
previous section, no guarantees on the uniqueness of the
solution from this strategy can be made (since we do not
know the optimal set S a priori that can reconstruct the
ground-truth trajectory). Empirical evidence [24] suggests,
however, that this strategy performs well in practice.

3.3 Reconstructability Unknown Set
Inspecting Equation 17 it is clear one is not restricted
to harmonic bases, like DCT, in order to obtain good
reconstructability. In fact it is quite reasonable to entertain
an over-complete basis Φ ∈ RF×M where Θ = I3 ⊗
Φ = [θ1, . . . ,θ3M ] and M > F . A central motivation
here is by removing orthonormality from the problem
it may be possible to entertain more compact sets S
with similar reconstruction properties. We shall herein

denote ΘS = [θS(1), . . . ,θS(K)] as opposed to the earlier
definition ΘS = ΦS ⊗ I3. This was done to ensure greater
flexibility when choosing a set S. Further, K now reflects
the cardinality of this more expressive set S.

In principle, one could apply a similar strategy to the
previous section, where one attempts to exhaustively search
for the largest S that satisfies a gain threshold. There are
two problems with this strategy. First, the sheer cost of
the search. The search space is no longer over a single
value K, but over all possible submatrices of Θ a task
which is NP-hard. Second, one is still not guaranteed an
exact reconstruction unless one knows the optimal set S.

3.3.1 Uniqueness and Sparseness
In this paper we propose an alternate strategy

β̃ = arg minβ ||β||0 (19)
s.t. u = Aβ .

where A = QΘ. ||.||0 denotes the `0 “norm” which
counts the number of non-sparse (i.e. non-zero) elements.
Equation 19 can be interpreted as finding the most compact
set S that satisfies u = Aβ (where the set S is defined as
the indices of β that are non-sparse).

It is well understood in sparse signal reconstruction
literature [7] that if A obeys the Restricted Isometry
Property (RIP) and one knows the cardinality of S (i.e.
the sparsity of β) one can find an exact unique solution
to β.

Definition : For each integer K = 1, 2, . . . , 3M define
the isometry constant σK of the matrix A as the smallest
number such that

(1− σK)‖β‖22 ≤ ‖Aβ‖22 ≤ (1 + σK)‖β‖22 (20)

holds for all K-sparse vectors ||β||0 = K. It has been
proved [7] that if the isometry constant σ2K < 1 the K-
sparse solution of vector β is unique. In laymen terms RIP
implies that if all 2F × 2K sub-matrices of A are well
conditioned then a unique solution for β can be found if
it is K-sparse. A strength of this strategy is that one only
needs to know the cardinality of the set S, as opposed to
the actual set itself in the canonical `2 approach, in order
to obtain an exact reconstruction of the trajectory.

3.3.2 Convex Relaxation
A drawback to Equation 19 is that like Valmadre and
Lucey’s approach the computational cost of the solution is
NP-hard. Fortunately, a convex relaxation on Equation 19
can be obtained with a `1 norm replacement. The employ-
ment of a `1 norm to encourage sparsity in estimation
problems (e.g., LASSO regression, compressed sensing,
etc.) is quite common across many areas of computer
science and can be found efficiently using a variety of
different packages. Readers are encouraged to inspect [6],
[26] on the employment of `1 norms for encouraging
sparseness

β̃ = arg minβ ||β||1 (21)
s.t. u = Aβ .
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It can be shown [7] that if the restricted isometry constant
satisfies

σ2K <
√
2− 1 (22)

the solution of the `1 norm is equal to `0 “norm” solution.

3.3.3 Quality of Reconstruction
At first glance, it seems like the `1 approach shares a
similar drawback to the canonical `2 approach, in that
it is difficult to know anything about the optimal set S
(either the cardinality or the set itself) a priori. Fortunately,
through the use of the `1 strategy we obtain: (i) an
estimate of trajectory coefficients β̃, and (ii) an estimate
of the set S̃ in polynomial time. Given that the equality
constraint u = Aβ is satisfied, then all that is required
to see if β̃ is an exact reconstruction is to check that A
satisfies the RIP for the cardinality of the estimated set.

Unfortunately, checking that A satisfies RIP is itself an
NP-hard task. A common tractable metric for gauging the
RIP of a matrix A is mutual coherence. It is defined,
assuming the columns of A are normalized to unit `2 norm,
in terms of the Gram matrix G = ATA. With G(k, j)
denoting entries of this matrix, the mutual coherence is

µ(A) = max
1≤k,j,M,k 6=j

|G(k, j)| (23)

The matrix A is deemed incoherent if µ(A) is small. In
general the more incoherent the matrix, the more likely it is
likely to satisfy the RIP. Results in [11] show that if there
exists a representation u = Aβ with sparsity K = ||β||0,
and K does not exceed a threshold (1 + µ−1)/2 then this
is the unique sparsest representation. Stricter bounds have
been proposed by Candies et al. [5] the details of which,
however, are outside the scope of this paper.

As discussed in [6] another advantage of the RIP is that
if the true β is not K-sparse, but the estimate β̃ is K-sparse
then the quality of the reconstruction is as good as if one
knew ahead of time the optimal set S of cardinality K for
reconstruction. As a result, one can be assured of a graceful
degradation even if A does not satisfy RIP. One can see
empirical evidence of this in Section 5.

3.3.4 Noise
In practice a given 2D measurements u may be imperfect,
so an assumption of noise must be made when attempting
to use an `1 strategy

β̃ = arg minβ ||β||1 (24)
s.t. ||u−Aβ||22 ≤ ε .

where ε bounds the amount of noise in the data. This prob-
lem is often referred to as LASSO, and like Equation 21 is
convex and can be solved efficiently.

4 LEARNING THE SPARSE
TRAJECTORY BASIS

In this section we present our strategy for learning the
over-complete basis Φ. Specifically, we attempt to learn

a Φ that gives the “sparsest” representation of an ensemble
of trajectories in order to realize the RIP `1 condition
(Equation 22) across as many camera matrices as possible.
Many strategies/approaches have been put forward previ-
ously in literature to solve this problem as its solution
is applicable to broad class of applications in computer
science (e.g., compressed sensing, classification, etc.). A
popular strategy [14] is to solve the following objective

argmin
Φ,β

1

2

N∑
n=1

‖xn −Φβn‖22 +
N∑
n=1

λ‖βn‖1 (25)

s.t. ||φm||2 ≤ 1 m = 1, . . . ,M

where λ is the `1 penalty and xn ∈ RF×1 is a 1D trajectory
sampled from all axes x, y and z. β is a supervector of the
sparse code vectors {βn}Nn=1 and Φ = [φ1, . . . ,φM ] is
the over-complete basis. N is the number of samples in the
training set. An alternation strategy was proposed to min-
imize this objective [14] and exhibited good performance
in our experiments.

4.1 Convolutional Sparse Trajectory
Basis Learning
Sparse coding has two fundamental drawback however,
as: (i) it assumes the ensemble of input trajectory vec-
tors {xn}Nn=1 are of a fixed length, and (ii) the resultant
sparse coding basis may be highly redundant as it learns
shifted versions of the same trajectory.

Convolutional spare coding offers a natural mechanism
to overcome these drawbacks. Zeiler et al. [28] proposed
a sparse coding objective taking convolution directly into
account

argmin
hl,β

1

2

N∑
n=1

||xn −
L∑
l=1

hl ∗ βl,n||22 +

λ

N∑
n=1

L∑
l=1

||βl,n||1

subject to ||hl||22 ≤ 1 for l = 1 . . . L. (26)

Now βl,n takes the role of a sparse feature map which,
when convolved with a filter hl and summed over all l,
should approximate the n-th input signal xn. Unlike tra-
ditional sparse coding the estimated sparse filters {hl}Ll=1

will be of a fixed spatial support and the input signal xn and
the sparse feature maps βn = {βl,n}Ll=1 are of a different
and usually much larger dimensionality. Another fortunate
aspect of the objective in Equation 26 is that it can handle
varying length training examples {xn}Nn=1.

4.1.1 Convolutional Sparse Trajectory Basis
It is trivial to obtain an over-complete basis Φ from a set
of filters {hl}Ll=1. Specifically, one can form the basis

Φβ =

L∑
l=1

hl ∗ βl (27)

where Φ is a concatenation of convolutional Toeplitz
matrices corresponding to each sparse filter and β =
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[βT1 , . . . ,β
T
L]
T . To keep consistence with the notation in

previous sections (Equation 21) M = LF where Φ ∈
RF×M , F is the number of samples in the trajectory and L
is the number of filters learned through convolutional sparse
coding.

In practice constructing the full matrix Φ can be com-
putationally taxing, especially for long signals. In these
instances it is often more computationally tractable to
solve the `1 trajectory reconstruction problem stated in
Equation 21 in the following manner

β̃ = argminβ ||β||1 (28)

s.t. u = Q

L∑
l=1

hl ∗ βl .

This objective can be solved efficiently through the use
of an iterative Augmented Lagrangian Method (ALM) that
allows one to efficiently solve for β in the Fourier domain.
More details on this approach can be found in [4].

5 EXPERIMENTS
For all our trajectory basis learning experiments we em-
ployed the widely used CMU Motion Capture dataset3 as
training dataset. This dataset contains 3D trajectory point
information covering a large variety of human actions.

To evaluate the generalization properties of our learned
bases, we evaluate their reconstruction performance on
3D sequences of a moving canine 4 and the “real-world”
UMPM benchmark which has 2D tracked points of moving
humans in video and calibrated 3D ground truth [25]. The
CMU Motion Capture dataset was resampled from 120 fps
(frames per second) to 30 fps to ensure consistency between
training and testing sequences. A cross-validation procedure
was used to find the best filter size for the convolutional
sparse coding reconstructions.

To encourage generalization, we learned bases in a point
and coordinate independent manner (i.e., a single basis
was learnt across all points and across x−, y− and z−
coordinate systems). We selected a subset of sequences
which includes a large variety of daily human motions
from CMU Motion Capture dataset as our training data.
These sequences which spans diverse motions are chosen
from subject 1, 2, 3, 5, 9, 11, 15, 17, 21 24, 27, 28, 33,
41, 60, 118, 106, 122, 124, 126 in CMU Motion Capture
dataset. The number of learned convolutional sparse coded
filters in our experiment is 750. We found that the learned
convolutional sparse coded filters are able to reconstruct
large variety of nonrigid motions, such as different human
actions, human-object interactions and animals motions.

5.1 Relation to Low-Rank Shape Methods
The central assumption of shape basis NRSfM is that
the nonrigid shape lies in a single low rank shape sub-
space or shape basis [9]. Specifically, we argue that for

3. More details on the CMU Motion Capture can be found at http:
//mocap.cs.cmu.edu.

4. More details on this canine sequence can be found at http://
motioncapturedata.com/2009/05/animal-motion-capture-dog.html

3 5 7 10 15 30 40 50 60

10
−2

10
−1

Basis Size

R
M

S
 E

rr

 

 

DCT Basis+L
2

DCT Basis*
DCT Basis+L

1

Gabor Wavelet Basis*
Gabor Wavelet Basis+L

1

Sparse Coding Basis*
Sparse Coding Basis+L

1

Convolutional Sparse Coding Basis*
Convolutional Sparse Coding Basis+L

1

Fig. 2. Comparison of different trajectory basis in terms of
normalized root mean square (RMS) error (Err) as a function
of the number of active (K(S)) basis vectors. Reconstruction
error was calculated on the actual 3D trajectories (not 2D
projections). The sequence length is 150. Results show that
a sparse coded basis can encode unseen 3D trajectory
observations far more sparsely than conventional trajectory
bases (DCT) (Better viewed in color).

complex motion sequences, such as those found in the
UMPM benchmark dataset, it does not always make sense
to enforce a low-rank assumption on the shape space.
These complex sequences contain multiple actions (e.g.
raise hands, stand, walk, and sit). Since different actions
are dominated by different shapes, different actions tend to
lie in different local shape subspaces. Relying on low-rank
shape space assumption for these types of sequences will
result in poor reconstruction performance.

This insight has been well argued in previous works
on trajectory basis NRSfM [1]. Trajectory basis NRSfM
methods reconstruct the trajectory of each nonrigid point
in a shape independent way. The performance of trajectory
basis methods is independent from the shape, although
dependent on camera motion. The focus in this paper is
on how to make trajectory basis NRSfM methods less
sensitive to this camera motion while enjoying the useful
shape independence assumption afforded by the approach.
As a result we deemed a direct empirical comparison with
shape basis NRSfM algorithms unnecessary as it distracts
from the central focus of the paper.

5.2 Synthetic Experiment
We used 3 canine sequences which shows a dog running,
jumping and turning around from the free Motion Capture
dataset for our synthetic experiments. The canine sequences
contain 36 points. We synthesized 2D points by projecting
the original 3D motion sequence using a moving synthetic
orthographic camera. The synthetic camera circled the non-
rigid 3D object and was at all times pointing at the object’s
center.

5.2.1 Compressibility Comparison
In this experiment we wanted to evaluate how well various
trajectory bases were able to compress 3D motion trajec-

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://motioncapturedata.com/2009/05/animal-motion-capture-dog.html
http://motioncapturedata.com/2009/05/animal-motion-capture-dog.html
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Fig. 3. Reconstruction (normalized RMS error) versus
different camera angle speeds for the canine sequences. 2D
projections were generated using a synthetic orthographic
camera with the y-axis pointed to the center of the object
with the angle of rotation speed being varied (Better viewed
in color).

tories. Figure 2 depicts a comparison of the normalized
root mean square (RMS) error (Err) 5 of 3D motion
reconstruction on different trajectory bases as a function of
the active basis size (i.e. the cardinality of S). The sequence
length used in this experiment is 150. We first applied an `2
objective for the DCT basis, and the number of harmonics
dictating the basis size (denoted as DCT Basis+L2). Then,
for DCT, the learned sparse and convolutional sparse coding
bases, an `1 LASSO objective was employed. The cardi-
nality of S (i.e. the basis size) was controlled by adjusting
the `1 penalty. DCT + L1 is representative of the method
proposed in [8]. It has been demonstrated that sparse coding
applied to localized areas of natural signals (e.g natural
images) generate Gabor “like” bases [18]. For completeness
we have also included reconstruction results using a Gabor
wavelet basis.

We also compared the results trajectory reconstruction
bases with prior knowledge of the oracle set S. The oracle
set was obtained by finding the optimal set S for each
test trajectory for each set of bases. We do exhaustively
search on the whole trajectory bases to find the optimal
set S as the oracle set to reconstruct each test trajectory.
All reconstructions in Figure 2 that are appended by the
notation “*” are estimated using the four different bases
set and the canonical `2 in Equation 9 given a fixed oracle
set S.

Results demonstrate that the sparse learned bases, in par-
ticular the convolutional sparse coded basis could encode
trajectories far more compactly than the canonical DCT
basis or Gabor wavelet basis.

5.2.2 Reconstruction Comparison
In this section we look at the problem of reconstructing
3D trajectories from 2D projections given a known camera
matrix. In Figure 3 we present the normalized RMS error
of 3D motion reconstruction against circular camera speed
for the canine sequences. We generated a synthetic ortho-
graphic camera with the y-axis pointed to the center of
the object with the angle of rotation speed being varied
(which effects reconstructability). Reconstruction results
were obtained using the DCT, Gabor wavelets, sparse coded
and convolutional sparse coded bases.

We compared results trajectory reconstruction bases with
and without prior knowledge of the oracle set S. The oracle
set was obtained by finding the optimal set S for each
test trajectory for each basis (as previously discussed in
Section 5.2.1 and Figure 2). All reconstructions in Figure 3
that are appended by the notation “*” are estimated using
the canonical `2 objective in Equation 9 with a fixed known
oracle set S.

These results are compared to reconstruction results with
no prior information of the oracle set S. Instead, we use
an `1 style LASSO objective across all four bases to simul-
taneously estimate the set S̃ and the coefficient vector β̃.
As a point of reference we include the performance for
the DCT basis with a fixed set S that has been tuned to
work well across all trajectories. The results shows that
for the fast moving cameras, all methods obtain reasonable
reconstruction performance. However, as the camera slows
and reconstructability becomes poor there is a marked
difference between strategies. As proposed earlier, having
knowledge of the oracle set S gives superior performance
compared to the `1 LASSO objective across all camera
speeds.

Impressively, the sparse coding bases outperform the
canonical DCT bases with and without prior knowledge of
the oracle set. As expected the convolutional sparse coding
basis gives superior performance to all other bases with and
without knowledge of the oracle set. As expected sparse
coding and convolutional sparse coding bases outperformed
the DCT and Gabor wavelet bases. It is interesting to note
that the Gabor wavelet basis outperformed the DCT basis
across all camera speeds.

5.2.3 Reconstructability
Figure 4 presents the condition of the matrix of QT

⊥MSQ⊥
as a function of camera speed across the DCT, sparse
and convolutional sparse bases. The oracle set S for each
trajectory and basis was used. As a point of reference we
included the condition of a DCT basis for a fixed set S that
had been tuned to work well across all trajectories.

This result gives some valuable insights into why the
convolutional sparse coding basis performs so well across
a wide variety of camera speeds. The condition of the ma-
trix QT

⊥MSQ⊥ remains much lower than the other bases

5. We define RMS Err =
√

1
PF

∑F
t=1

∑P
p=1 ||x̂t,p − xt,p||22/||xt,p||22,

where xt,p and xt,p are the ground truth and estimated 3D points at
frame t and point p. We normalize by the energy in the ground-truth
signal to ensure a fair comparison across motion sequences.
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Fig. 4. The condition of matrix QT
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camera angle speeds (Better viewed in color).
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Fig. 5. Reconstruction (normalized RMS error) versus
different length trajectories by sparse coding basis and con-
volutional sparse coding basis at camera speed 0.25 π/sec.
The size of convolutional filter is 30 frames (Better viewed
in color).

(until around 0.25π/sec). This result correlates strongly
with the reconstruction results seen in Figure 3.

It is interesting to note that the condition of the ma-
trix QT

⊥MSQ⊥ is strongly correlated with the condi-
tion of the matrix AT

SAS (i.e. if QT
⊥MSQ⊥ is singular

it implies AT
SAS is null). Further, having AT

SAS well
conditioned is a necessary (but not sufficient) condition
for the RIP to hold. That is, if all possible 2F × 2K
submatrices of A are well conditioned then AS̃ must be
well conditioned since |S̃| = K.

5.2.4 Sequence Length
A drawback to using a sparse coding basis in trajectory
NRSfM reconstruction is the need to learn a different basis
for each possible sequence length. Putting aside the issue of
storing all these different bases, Figure 5 demonstrates for a
camera speed of 0.25π/sec the reconstruction performance
of sparse versus convolutional sparse coding bases as a
function of sequence length. In these experiments we are
not using the oracle sets, instead an `1 LASSO strategy is
employed to estimate the set S̃ and the trajectory coeffi-
cients β̃. Interestingly, when the sequence length is small
both bases obtain similar performance. However, as the
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Fig. 6. Basis ratio (i.e. K/3F ) versus sequence size (F ) for
the sparse coding and convolutional sparse coding bases.
The size of convolutional filters is 30 frames (Better viewed
in color).

sequence length gets longer the convolutional sparse coding
basis exhibits much better generalization performance.

An insight into why this superior generalization perfor-
mance is obtained can be seen in Figure 6. The y− axis
plots the basis ratio K/3F versus camera speed. We define
the basis ratio as the cardinality K of the estimated set S̃
versus the length 3F of the the trajectory. One can see for
convolutional sparse coding this ratio remains relatively flat,
however, for sparse coding it becomes higher as a function
of the length of the sequence.

5.2.5 Noise and Missing Data Test
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Fig. 7. The reconstruction (normalized RMS error) versus
the ratio of missing data (Better viewed in color).

It is naive to think that the 2D projection vector u = Qx
of the 3D trajectory x is unaffected by noise and missing
data. Our method’s tolerance to missing data was evaluated
by masking some of the 2D projections in a synthetic
experiment. To ensure a realistic situation, occlusions were
generated in blocks of adjacent frames, rather than uni-
formly distributed throughout the sequence. To synthesize
the blocks of missing data, we use fixed size windows to
select the part of continuous missing data. In our experi-
ments we set 10 as our window size. The ratio of missing
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Fig. 8. Reconstruction (normalized RMS error) versus the
noise magnitude (Better viewed in color).

data is controlled by the number of blocks.6 The results are
presented in Figure 7 for a camera speed at 20π/sec (high
reconstructability). Performance of the convolutional sparse
coded basis degrades gracefully with a larger fraction of
occlusions. Low reconstruction error is obtained even with
almost 30% missing data.

Tolerance to additive noise was also explored. We syn-
thetically added Gaussian noise data to the 2D projection
measurements at a camera speed of 20π/sec. Results are
presented in Figure 8. Even though all methods degrade as
a function of noise magnitude, our proposed convolutional
sparse coding strategy preserves its margin of superior
performance across all noise levels.

5.2.6 Visualization of the
Reconstructed Trajectories
In Figure 9 we show a visualization of several trajectories
taken from a running canine estimated from 2D point
projections at a challenging camera speed of 0.25π/sec. In
(a) we depict the reconstruction using the DCT basis with
`1 penalty, (b) the sparse coding basis with `1 penalty, and
(c) the convolutional sparse coding basis with `1 penalty.
One can see our proposed method in (c) gives a superior
reconstruction in comparison to (a) and (b).

Figure 10 shows the visualization of the reconstructed
structure with the ground truth structure at randomly se-
lected frames for the: (a) DCT basis with `1 penalty, (b)
sparse coding basis with `1 penalty, and (c) convolutional
sparse coding basis with `1 penalty. As expected our
proposed convolutional sparse coding basis outperforms all
the other strategies.

5.3 Real World Data Experiment
To fully evaluate our approach we employed a human
motion dataset of “real-world” camera motion. The

6. The missing data is synthesized as û = Gu = GQx, where G ∈
R2F×2F is a diagonal matrix for selecting points missed in frames. If
the 2D point is missing at frame f , the element G(f, f) which refers to
x-axis coordinate is set to 0 and G(2f, 2f) which refers to the y-axis
coordinate is set to 0, otherwise, G(f, f) = 1 and G(2f, 2f) = 1.

 

 

Ground Truth Trajectory
Reconstructed Trajectory

(a)
 

 

Ground Truth Trajectory
Reconstructed Trajectory

(b)
 

 

Ground Truth Trajectory
Reconstructed Trajectory

(c)

Fig. 9. The reconstructed trajectories versus the ground
truth trajectories at camera speed 0.25π/sec for the: (a) DCT,
(b) sparse coding, and (c) convolutional sparse coding bases
using the `1 (Equation 24) objective. As expected the convo-
lutional sparse coding basis obtained superior performance
(Better viewed in color).

Utrecht Multi-Person Motion (UMPM) benchmark [25]
contains 2D video with 37 tracked points covering an
articulated body. The dataset also has an accompanying
3D ground-truth stemming from motion sensors. The
UMPM dataset is markedly different to CMU Motion
Capture in that contains a different number of points,
people, actions and interactions. All sequences from the
UMPM benchmark dataset are between 50 seconds to
60 seconds (100 fps, 5000 frames to 6000 frames)and
those sequences contain complicated and substantially
nonrigid motion such as multiple human actions, human-
object interactions and human-human interactions.
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For our reconstructions we used only the 2D point
tracks within video portion of UMPM. We used 12
sequences (“p1 chair 2”, “p1 table 2”, “p1 grab 2”,
“p2 orthosyn 1”, “p2 staticsyn 1”, “p2 free 2”,
“p2 orthosyn 12”, “p4 ball 11”, “p4 free 11”,
“p4 table 11”, “p4 table 12”, “p4 staticsyn 13”) in
UMPM Benchmark dataset. All selected testing sequences
are resampled from original 100 fps to 30 fps to ensure
consistency between training and testing dataset. Those
sequences contains missing data due to occlusions occurred
at different body parts and frames. The ratio of missing
data among all point trajectories of the testing sequences
is between 2.5% to 10%. We estimated the camera motion
by applying the Tomasi & Kanade factorization to the
rigid torso as in [23].

One can see the normalized RMS reconstruction error
using the DCT, sparse coding, and convolutional sparse
coding bases with the `1 penalty for several real world se-
quences from the UMPM dataset in Figure 11. The relative
motion between camera and people are slow and smooth
for all these sequences. Our learned convolutional sparse
coding basis achieved superior performance compared with
the DCT and sparse coding bases.

5.3.1 Visualization of Real-World Sequences
Figure 12 shows a visualization of the reconstructed struc-
ture in comparison with ground truth structure at randomly
selected frames for the: (a) DCT, (b) sparse coding, and (c)
convolutional sparse coding bases. All methods used the `1
penalty for the reconstruction. Frames were taken from
the “p1 table 2” sequence in the UMPM dataset [25]. As
expected our proposed convolutional sparse coding method
outperforms all the other strategies.

6 DISCUSSION AND CONCLUSIONS

Canonical `2 bounds on trajectory basis NRSfM recon-
structability tell us that if a camera matrix composed
with the trajectory basis is not well conditioned then it is
impossible to obtain an exact reconstruction. In this paper,
we investigate two insights associated with this bound.
First, the requirement that one needs to know the optimal
subset S of the trajectory basis a priori to be assured of
an exact reconstruction. Second, that a more compact set S
will allow for better reconstructions under a broader set of
camera motions.

Inspired by recent work in sparse signal reconstruction
we ask the question: under what conditions can one obtain
an optimal trajectory reconstruction when one does not
know the optimal set. We characterize theoretically that
if the camera matrix composed with the trajectory basis
satisfies the RIP (for a specified cardinality of the set S)
then the exact trajectory can be reconstructed without prior
knowledge of the actual set.

We propose an `1 strategy for trajectory reconstruction
that can obtain in polynomial time: (i) the subset S of
the trajectory basis that is active based solely on the 2D
projection, and (ii) the non-zero trajectory basis coefficients

for 3D reconstruction. Our proposed `1 strategy can, under
certain conditions, ascertain through mutual coherence (and
no knowledge of the optimal set S or its cardinality)
whether this is an exact reconstruction.

Finally, we explore the use of over-complete bases in
trajectory NRSfM reconstruction. A central motivation here
is by removing the shackles of orthonormality (e.g. DCT
basis) from the problem we can explore bases that allow
for more compact set S. We demonstrate impressive recon-
struction results using a learned convolutional sparse coding
basis compared with DCT basis. An advantage of this
learning filters, rather than basis, is their generalizability
to any length signal (which is traditionally a drawback for
learned bases).
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Fig. 10. The visualization of the reconstructed structure at camera speed 0.25π/sec. Visualizations of (a) the DCT, (b)
sparse coding, and (c) convolutional sparse coding basis all employing the `1 objective (Equation 24) (Better viewed in
color).
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Fig. 11. Reconstruction error of DCT, sparse coding and convolutional bases with `1 penalty on selected sequences from
the UMPM dataset [25] ( Better viewed in color).
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o Ground Truth x Reconstruction
(b) DCT Basis+L1

(c) Sparse Coding Basis+L1

(d) Convolutional Sparse Coding Basis+L1

(a) 2D Real World Video

(c)

Fig. 12. Visualization of the reconstructed structure on a real world sequence (“p1 table 2”) from the UMPM dataset [25].
Reconstructions of the (a) DCT basis, (b) sparse coding, and (c) convolutional sparse coding bases. The `1 objective
(Equation 24) was used for all reconstructions (Better viewed in color).


