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• Wemodel robotic painting as a scheduling problem using constraint optimization.
• We present software architecture for automatic generation of robot programs.
• Wemeasure the processing time, painting quality and computation time.
• Longer processing time is a tradeoff in paying attention to quality.
• Multiple solutions can decrease processing time and improve painting quality.

a r t i c l e i n f o

Article history:
Received 24 September 2012
Received in revised form
20 August 2013
Accepted 13 September 2013
Available online 8 October 2013

Keywords:
Scheduling
Painting quality
Partitioned goals
Constraint programming

a b s t r a c t

In this paper,we investigate the problemof scheduling a 6DOF robotic arm to carry out a sequence of spray
painting tasks. The duration of any given painting task is process dependent and fixed, but the duration
of an ‘‘intertask’’, corresponding to the process of relocating and reorienting the robot arm from one
painting task to the next one, is influenced by the order of tasks andmust be minimized by the scheduler.
There are multiple solutions for reaching any given painting task and tasks can be performed in either
of two different directions. Further complicating the problem are characteristics of the painting process
application itself. Unlike spot-welding, painting tasks require movement of the entire robot arm. In
addition tominimizing intertask duration, the schedulermust strive tomaximize painting quality and the
problem is formulated as a multi-objective optimization problem. The scheduling model is implemented
as a stand-alone module using constraint programming, and integrated with a larger automatic system.
The results of a number of simulation experimentswith simple parts are reported, both to characterize the
functionality of the scheduler and to illustrate the operation of the entire software system for automatic
generation of robot programs for painting.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Robotic arms are now widely used in industry for perform-
ing different types of manufacturing processes, including welding,
assembly and surface treatment. Yet, programming of industrial
robots is still often done manually. This means that performance
parameters such as programming time of the robot, processing
time of the robot and quality of the product transformed by the
robot can all change, as they depend on the individual skills of the
operator. Manual programming of industrial robots is also very
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expensive: in addition to the worker’s wage, it consumes signif-
icant time (sometimes up to 1 day) of the robot cell or, in some
cases, the entire production line, and the complexity of parts to-
gether with trends toward small batch sizes only add to the pro-
gramming costs. For all of these reasons it is in the interest of the
industry to automate the generation of robot programs.

Automatic generation of the robot program can be decomposed
into three main sub-problems: Task Planning (where the tasks are
described in awell defined coordinate systemand assigned process
dependent parameters), Task Scheduling (where the tasks are se-
quenced according to some objective criteria) andMotion Planning
(where collision-free robot specific trajectories are generated). The
task scheduling model presented in this paper does not depend
on the methods for task planning and motion planning and there-
fore these two topics are not further described. The task scheduling
model is generic. It does not depend on any special characteristics
of the robot and it could be used for any painting machine. It relies
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Fig. 1. An example of a time line for a robot cell.

only on the information passed in the input tasks, which is gener-
ated by the task planner and described later in this article.

The problem considered here is for a single cell with one 6 DOF
spray painting robot (although the solution proposed generalizes
straightforwardly to multiple cells and multiple robots per cell).
The parts entering the cell are hanging on hooks, attached to a
metal hollowed bar, which is also referred to as a skit. The skit
is mounted on an on–off conveyor belt, implying that parts are
available for painting by the robot at a specific release time and
the skit does not move while in the robot cell. The conveyor is
off for a predefined cycle time, cT , which determines the upper
bound on the solution produced by the scheduler. The upper bound
specifies the maximum feasible duration of the schedule. Cycle
time is followed by a so-called changeover interval, chI , during
which one skit leaves the robot cell and another one enters, see
Fig. 1. The time during which a robot is working on a skit is called
the processing time. Even though it does not affect the cycle time
of the conveyor, its duration is important because of its influence
on the total throughput. Shorter processing times give a high level
shop order planner the freedom to assign more parts to a skit.

In this paper, we focus on scheduling the tasks assigned to
a particular skit. The tasks should be understood as value-added
actions, performed by the robot, such as welding or painting. They
are executed by the linear or circular motion of the tool. In the
painting process considered here, tasks are associated with paint
strokes. A paint stroke carries information about the type ofmotion
the paint gun should follow while it is turned on, which depends
on the geometry of the surface to be painted [1]. In this article we
consider only parts with planar surfaces and they are painted by
the linear motions of the paint gun, which are represented by the
black solid lines in Fig. 2. The paint stroke also carries information
about the start and end positions and orientation of the paint
gun, referred to as the goal placements and defined in the global
coordinate frame. This means that the considered paint strokes
are not only horizontal or vertical, but can have any orientation
in the global coordinate frame. Each paint stroke has two potential
start goal placements, given that it is possible to perform the paint
stroke in two opposite directions, see Fig. 2. If point A is chosen
for a start goal placement, then in this case the robot tool moves
from the right to the left side. If point C is chosen for a start goal
placement, then the robot toolmoves from the left to the right side.

Since the goal placement describes both the position and orien-
tation of the paint gun, it is important to note that:

position(A) = position(D), orientation(A) 6= orientation(D),

position(B) = position(C), orientation(B) 6= orientation(C),

and therefore:

goalPlacement(A) 6= goalPlacement(D),

goalPlacement(B) 6= goalPlacement(C).

Apart from its goal placements a paint stroke is also specified by a
set of parameters, such as the distance from the nozzle to the sur-
face that needs to be painted, the working angle, the forward angle
and the speed of the paint gun. The speed and orientation of the
paint gun along the paint stroke should be kept constant in order
to achieve uniform thickness of the paint layer. Thus the duration
of a paint stroke does not depend on the sequence of paint strokes,
the painting direction or the robot they are assigned to. It cannot be
used as a parameter for optimization. Instead, the sum of durations
of the paint strokes assigned to a specific robot can be used by the
scheduler as the lower bound on the processing time of that robot.

It is possible that not all paint strokes generated by the task
planner can actually be performed by the robot, and those that
cannot are deleted in the subsequent process of motion planning.
A paint stroke cannot be executed if it is located outside the robot
workspace or if the robot cannot reach a paint stroke because
of singularities. Other reasons for deleting a paint stroke are to
avoid collisions of the robot with the painting cell, the conveyor
line or the parts that are hanging on the skit. The parts associated
with any paint strokes that do get deleted for infeasibility reasons
are missing some paint. Whether such parts are accepted or
not depends on the customer’s requirements and the number of
deleted paint strokes. In cases where the parts are not accepted,
they are either removed from production as waste or retrieved in a
so called touch-up process, where the operator manually corrects
for the deficiencies in the painted surface. Tasks, that are not
deleted by the motion planner and thus can be performed by the
robot, must be sequenced to produce a schedule.

The scheduling process is complicated by the fact that there are
different ways to perform every task and the choice of solution
for a given task will impact the overall skit processing time. Two
alternative solutions are due to the pair of potential start goal
placements for each paint stroke. Further complexity follows from
the fact that a start goal placement can be reached by several joint
configurations of the robot arm. A start goal placement, associated
with the particular joint configuration, is referred to as a start
goal throughout the paper. For a 6 DOF robot there can be up
to 16 different solutions for reaching a certain goal placement,
depending on the position of the goal placement in the robot
workspace and the way the robot is built [2]. However the number
of solutions for the painting application is reduced due to the fact
that the orientation of the paint gun must be kept constant along
the paint stroke at the same time as the robot trajectories need to
be collision free. The actual number of solutions varies for different
painting problems andmethods used by the motion planner. Fig. 3

Fig. 2. An example of a paint stroke (task) with its two potential start goal placements (A and C) and two potential end goal placements (B and D).
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Fig. 3. Goal configurations of the robot.

shows three different joint configurations, all of which place the
tool with the same position and orientation.

Both the choice of solution for every paint stroke and the se-
quence of paint strokes have an influence on the choice of inter-
task and its duration. An intertask is the joint motion of the robot
between two tasks with a changing speed, where the tool is mov-
ing non-linearly in Cartesian space and not performing a painting
task but instead is repositioning for the next one. Using terminol-
ogy from the scheduling literature, an intertask can be understood
as a setup time or a transition time. In the painting process the term
intertask represents the time that is necessary for a robot to cover
the distance from the end goal placement of one paint stroke to
the start goal placement of the succeeding paint stroke. An inter-
task is used here as a parameter for schedule optimization, because
by varying its duration it is possible to change the total processing
time of the robot.

Formany industrial problems, however, minimizing processing
time and completing jobs quickly is not the only objective. For
most manufacturers for example it is additionally important to
achieve a certain level of product quality. In this respect, it is
possible to analyze the properties of the existing equipment and
processes for any relationship between scheduling decisions that

might be taken and product quality. With respect to the painting
process, scheduling of so-called overlapping paint strokes directly
influences painting quality, which ismeasured here by the number
of defects, such as sagging and the paint dust, shown in Fig. 4.
Two paint strokes are overlapping when the coating material of
one stroke is applied over or beyond the coating of the other one
to achieve a homogeneous layer of paint, as shown in Fig. 5. This
implies that two linear overlapping paint strokes are positioned on
the same planar surface and they are parallel.

For paint strokes that are positioned on an inclined surface, the
wet paint coat will flow down under its own weight with cohesive
forces opposing this flow. The flow depends on the drying proper-
ties of paint and can be the source of defects, if the overlapping coat
is applied either too fast or too late. The flow can be controlled in-
directly by changing the intertask durations between overlapping
paint strokes and therefore it is influenced by the chosen solutions
for overlapping paint strokes and their schedule. This relationship
makes it important to consider the aspect of quality in scheduling,
because the solution giving the shortest processing time and best
utilization of resources is worthless, if the product does not meet
quality specifications.

2. Relation to previous work

The idea to automate the generation of programs for spray-
painting robots first appeared in 1990s. The problem was decom-
posed into three main subproblems: paint planning, scheduling
and motion planning. However, many challenges quickly became
apparent in creating suitable models of painting processes and
robot motions, whether they were an attempt to describe the
physics of the system or they were based on operator’s knowledge
and experience. Considerable research has focused on the design
of task planners. Results have been presented in articles [3–7]
and incorporated in the FlexPaint project [8], summarized in [9,
10,1]. The common goal of all designed task planners was to
achieve a homogeneous layer of paint deposition, though in [7] the
objective was also to minimize the associated process cycle time
and paint waist. The task planner introduced in [4], was tested in
actual painting experiments and the robot controllerwas thenused
for motion planning the painting path. The software for motion

Fig. 4. Common painting defects [11,12].

Fig. 5. Cross section of the painted surface with overlapping paint strokes.
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Table 1

Summary of the reviewed articles.

Articles Content
Application Task Solutions per task Robot movement Issue of quality No tasks in exp.

[13] Arc-welding Line 2 Linear
p

7, 8, 9, 10, 20, 30, 40
[14] Robotics Point 1 Linear 10
[15] Spot-welding Point 1, 5 Linear 10, 31, 50
This article Painting Line 2, 4, 6 Non-linear

p
4, 6, 8, 10, 12

Fig. 6. Relation between physical system and the model.

planning as an integrated solution to an off-line programming tool
was first described in [5] and the FlexPaint project. Though only the
FlexPaint motion planner provided the method to obtain collision-
free and executable robot motion for the actual robot kinematics.

No articles can be found on the development of a scheduler
for spray painting robots. However schedulers have been designed
for other robotic applications, such as arc-welding and spot weld-
ing [13–15]. We review this work below and relate these efforts to
ours.

The scheduler described in [13] is designed for an arc-welding
robot and therefore the tasks are not points, but similarly to ours
they are lines, which have two potential start goal placements.
However, multiple solutions due to different robot joint configu-
rations are not considered. The objective is to minimize the time
required to complete a given set of welding operations, given the
assumption that along the intertasks the robot is moving in a lin-
ear mode with constant speed. The problem is modeled using an
integer programming formulation and presented as a variant of a
travelling salesmanproblem (TSP)with an additional constraint re-
lated to the sequence dependent welding quality: there has to be
minimum cooling time between weld lines within a heat-affected
zone. However the authors make the simplification that the heat-
affected zone of a weld line is cooled uniformly and for this reason
the quality constraint does not depend on the welding direction.
In this work, we extend the quality model and relate it to the start
time and end time of the tasks.

The scheduler described in [14] is designed to minimize the
cycle time of the robot, taking into consideration the multiple
solutions possible for each of the point tasks. The robot had to
visit each task once, but unlike our problem, the order of visits was
not critical for the overall quality performance of the product. The
proposed search method was based on genetic algorithms (GA).
Its performance was tested in simulation for a 3-DOF and 6-DOF
robot that had to reach 10 point tasks in the three-dimensional
space. A maximum number of iterations of the algorithm was set
in advance, and because of this, the results obtained can only be
a measure of improvement in the robot’s processing time. The
approach cannot guarantee the global optimum.

In [15] a solutionwas proposed for planning a tour of the robotic
arm between point tasks. It included both the scheduler and the
motion planner, integrated closely into one system. The idea was
to generate a group-spanning tree (GSTree), the vertices of which
represented the multiple solutions for each task. The edges, con-
necting any pair of tasks, were weighed by the cost, corresponding
to the distance between two tasks. Because planning of collision-
free paths for a 6-DOF robot was computationally heavy, the dis-
tances were initialized by their approximations, measured by the
straight line segment joining two tasks and therefore not using the
joint configurations of the robot arm, as we have in this work. The
pro-order walk through the GSTree was performed with the ob-
jective of minimizing the overall cost of the tour, without consid-
ering the issue of product quality. The chosen edges were motion
planned using the algorithm for collision avoidance and their cost
was updated with the exact values. Afterward the selected path
through the GSTree was checked to see if it was still optimal. In
case it was not, the pre-orderedwalk was performed again and the
whole procedurewith the chosen edges updatedwas repeated. The
algorithmwas successfully tested in simulation using 10, 31 and 50
goal groups. One experiment was conducted for non-partitioned
groups (one solution for each point task) and another experiment
was made for partitioned groups, which contained five different
configurations for every task.

The content of the reviewed articles is summarized in Table 1,
where the robot movement refers to the movement of the robot
tool in Cartesian space.

3. Problem formulation

We describe the physical entities of the problem, i.e., paint
strokes, different painting directions and different solutions to
each paint stroke, in terms of the indices of their respective start
goals. This modeling principle is explained using the example in
Fig. 6, where two bars are hanging on the hooks, attached to
the skit. To simplify the explanation we assume for this example
that the task planner generates only four paint strokes, which in
this case does not result in the complete paint coverage of the
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Fig. 7. An example of the start goals scheduling problem.

surfaces. Similarly to Fig. 2 the paint strokes are marked by the
black solid lines and indexed by i = 1, 2, 3, 4. The paint stroke
can be performed in two directions, j = 1, 2, corresponding to
twopotential start goal placements and symbolized in the figure by
the sub-domain zij (e.g. z11, z21, z32, z42). The definition of direction
is constrained only for overlapping paint strokes, such that
overlapping paint strokes with the same value of j have the same
direction in the robot coordinate frame, see Fig. 10. In this article
we limit the number of distinct solutions d for reaching a given
start goal placement to three (i.e., d = 3), which is a maximum
number of solutions produced by the existing motion planner [1].
The start goals for a given paint stroke are therefore denoted by zijd
(e.g. z111, z112, z113). They are symbolized in the figure by the gray
circles. For clearness of the figure the start goals, belonging to the
same sub-domain, are not drawn on the top of each other.

Instead of using paint strokes, the scheduling problem is
described here in terms of start goals. The choice of start goals
for each painting activity enables the scheduler to focus strictly
on how to reach the paint strokes and not on the way they are
executed. The task of the scheduler is then to find the tour of the
robotic arm, which traverses each paint stroke domain, zi, once,
see Fig. 7. This can be seen as an extension of a classical TSP. Due
to security reasons, the tour has to start and end in the predefined
home position of the robot. The home position extends the domain
Gr with a dummy goal group z0 2 Gr , which consists of the start
goals z0jd. For this particular problem the chosen start goal is z011.

One objective of the scheduler is to minimize the cost of the
tour. Though contrary to the TSP, the cost does not represent the
length. It represents the duration of the robotmovements between
the start goals. Due to the non-linear tool movements along the
intertasks this duration is not always proportional to the actual
distance in Cartesian space between the start goals. The cost is
the sum of time required to perform each paint stroke and time
to cover the intertask duration to each successive start goal.

The search space of the scheduler is discrete, since the number
of start goals the robot has to visit is finite. Disregarding the goal
group z0, which represents the home position, the size of search
space, RS , is described as a function of the number of tasks/paint
strokes, Nt , and the number of start goals inside each goal group,
Ns = j · d. It is calculated using the following equation:

RS (Nt,Ns) = Nt! · (Ns)Nt .

In the standard industrial setup with one spray painting robot in
the robot cell the number of tasks, Nt , typically varies between
100 and 200. From the above equation it can be seen that for Nt 2
[100; 200] andNs = 6, the size of search space, RS 2 [6.1E + 235;
3.3E + 530]. Fig. 8 shows how the size of search space, RS , is ef-
fected by extending the scheduling problem with two additional
paint strokes and two additional solutions; RS (X + 2, 2), RS (X, 4)

Fig. 8. Relative effect of extending the scheduling problem with two additional
paint strokes and two additional solutions.

and RS (X � 2, 6). It is seen that for relatively small scheduling
problems, Nt  6, adding two additional paint strokes results in
a bigger search space than when adding two additional solutions.
It is opposite for scheduling problems where Nt � 26.

In addition to tour cost minimization, the scheduler must also
cope with the painting quality issue. In this work it is required
that the scheduler prevents both sags (which are due to too short
of a delay between the overlapping paint strokes) and paint dust
(which is due to too long of a delay between the overlapping paint
strokes). The time between overlapping paint strokes is impor-
tant because it imposes the drying time of paint, dT , and there-
fore also the flow of paint. The knowledge of this critical time
window, within which sags and paint dust will not appear, can be
used respectively as the lower bound, LB, and upper bound, UB,when
scheduling overlapping paint strokes. The values of lower and up-
per bounds depend on the type of painting problem, characterized
inter alia by the type of paint used, the orientation and type of sur-
face painted, the type of paint strokes and the required thickness
of the paint. The values of the lower and upper bounds have to be
found experimentally prior to scheduling. This approach to mod-
eling painting quality is based on the experience of the painting
operators and some physical experiments on the painting robot,
presented in [16].

When considering the issue of time separation for avoiding sags
and paint dust, it is also essential to point out the role of paint
stroke direction and include it in the model, which is an extension
of the work presented in [13]. Performing a task involves a contin-
uous movement of the paint gun, which has certain duration. For
that reason the paint does not dry uniformly along a paint stroke.
The color and physical properties of paint change in time, until the
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Fig. 9. A coloring scale for the drying paint.

paint is dry. Let us illustrate these changes by the coloring scale, as
shown in Fig. 9.

The scale can then be used for demonstrating the relation be-
tween the choice of a paint stroke direction, the drying time of
paint and appearance of defects, shown in Fig. 10. For clearness of
the drawing the paint strokes are not drawn on the top of each
other. Fig. 10(a) illustrates the start goal sequence, zi1d ! zi02d0 ,
which designates that the paint strokes are executed in opposite
directions. Here themost critical area for sagging is where the dry-
ing time is shortest, encircled by the solid line. The most criti-
cal area for paint dust, encircled by the dashed line, is where the
drying time is longest. In Fig. 10(b) the sequence of start goals is
zi1d ! zi01d0 and both paint strokes have the same direction. In this
case, defects can occur on both ends of paint strokes.

As the paint strokes get longer and the painting speed gets
slower, or as the paint strokes get shorter and the painting speed
gets faster, the paint stroke directions become more essential for
ensuring painting quality. Therefore they also have to be included
in the scheduling model.

4. Constraint optimization model

Constraint optimization is used here as a way of modeling and
solving the scheduling problem. It is attractive because it allows
a strong separation to be maintained between the specification of
themodel and the software implementing the solver. This provides
the possibility to use different solvers for the developedmodel and
makes our solution more generic.

The main goal in constructing the model is to represent the
painting problemusing a structure and semantics that can easily be
adapted to commercially available software programs implement-
ing the solver for constraint optimization. Themodel is neither de-
pendent on the solver’s underlying search algorithms nor on the
instance data. It simply specifies a given objective function and a
set of constraints that must be satisfied.

In order to express two distinct constraints (see Constraint 4
below) on the same variable we extend the domain Gr with an
additional dummy goal group, z(Nt+1)jd = z0jd, representing the
home position.

A solution to the problem entails selection of a start goal place-
ment for each paint task and two home positions together with an
assignment of start and end times to each paint task and each home
position. The binary decision variable, xijd, is introduced to express
whether or not a start goal, zijd, is chosen for scheduling.

xijd =
⇢
1 if zijd is assigned to the robot,
0 otherwise.

The start time and end time of task zi are denoted by ST i and ET i,
respectively.

The choice of start goals and the set of assigned start and end
times must respect the following set of constraints.

4.1. Process constraint

• The robotic arm can traverse each paint stroke domain, zi, only
once and therefore:
8i = [0, . . . ,Nt + 1],

2X

j=1

3X

d=1

xijd = 1. (1)

4.2. Resource constraints

• A robot is a unary resource. This resource constraint dictates
that the tasks of a robot do not overlap in time.
8zijd, zi0j0d0 2 Gr , where xijd = 1 ^ xi0j0d0 = 1 ^ i 6= i0,

(STi � ETi0) _ (STi0 � ETi) . (2)

• The robot has limited capacity and period availability.
A robot is available to process tasks from the set Gr in

the time interval [scheduleOrigin; scheduleHorizon]. The tightness
of scheduling horizon depends on the cycle time, cT , and the
changeover interval, chI , which are specified by the higher level
planning and scheduling system. Therefore:

(ST0 � scheduleOrigin) ^ (ETNt+1  scheduleHorizon) , (3)

where scheduleHorizon = scheduleOrigin + cT .
• The home position, z0ij, begins the tour of the robot arm and

z(Nt+1)jd = z0jd ends the tour.
8zijd 2 Gr , where xijd = 1,

(ST0 < STi) ^ (STNt+1 > STi) . (4)

4.3. Process quality constraint

• According to the explanation in Section 3, these constraints
are applied to pairs of start goals, zijd, zi0j0d0 2 Gr , that are assigned
to the robot and belong to the paint strokes which are physically
positioned in proximity to each other to be overlapping paint
strokes. The drying time, dT , of the overlapping area should satisfy
the time window requirement, dT 2 [LB;UB]. For overlapping
paint strokes zijd, zi0j0d0 2 Gr such that xijd = 1 and xi0j0d0 = 1, we
designate overlapping(xijdxi0j0d0) = 1 if this is the case and assume
that this information is communicated to the task scheduler by the
task planner.

As the paint does not dry uniformly along the paint strokes,
we formulate different sets of constraints for the two cases when

Fig. 10. Drying time of overlapping paint strokes.
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Fig. 11. Functions f1 and f2 mapping the drying time to the penalty.

the paint strokes have the same directions (j = j0) and opposite
directions, j 6= j0.
If: xijd = 1^ xi0j0d0 = 1^ overlapping(xijdxi0j0d0) = 1^ i 6= i0 ^ j 6= j0
(corresponding to Fig. 9a), then 8zijd, zi0j0d0 2 Gr ^ zijd ! zi0j0d0 ,

dT : STi0 � ETi � LB to prevent sagging, (a)
dT : ETi0 � STi  UB to prevent paint dust. (b)

If: xijd = 1^ xi0j0d0 = 1^ overlapping(xijdxi0j0d0) = 1^ i 6= i0 ^ j = j0
(corresponding to Fig. 9b), then 8zijd, zi0j0d0 2 Gr ^ zijd ! zi0j0d0 ,

dT : STi0 � STi � LB to prevent sagging, (c)
dT : STi0 � STi  UB to prevent paint dust, (d)
dT : ETi0 � ETi � LB to prevent sagging, (e)
dT : ETi0 � ETi  UB to prevent paint dust. (f)

It can happen that for some problems the durations of tasks and
intertasks are so long that it is impossible to satisfy either con-
straint (b) or constraints (d) and (f). Motivated by the particular
application, where the best possible solution is better than no solu-
tion, we apply here constraint relaxation. For this purpose we con-
sider the painting quality constraint as soft and formulate penalty
variables, penaltyLB and penaltyUB, for inclusion in the objective
function. These penalty variables quantify the performance of the
scheduler in terms of painting quality bymeasuring themagnitude
of the violation of the timewindow requirement. The larger the vi-
olation, the higher the penalty value. The specific relationship be-
tween these two entities is specified by the functions, f1 and f2,
mapping the time delay, dT , to the penaltyLB, when the violation
results in sagging, or to the penaltyUB, when the violation results
in paint dust. The principle is shown in Fig. 11.

The mapping functions, f1 and f2, are weighted equally, because
in this case there is no preference between the surface with sags
and the surface with paint dust. The mapping functions are used
here as the soft constraints, related to painting quality. They are
formulated in the following way:
8zijd, zi0j0d0 2 Gr ^ zijd ! zi0j0d0 ,
if (xijd = 1 ^ xi0j0d0 = 1 ^ overlapping(xijdxi0j0d0) = 1 ^ i 6= i0)

if

�
j 6= j0

�

penaltyLBii0 = max [LB � (STi0 � ETi) , 0] ;
penaltyUBii0 = max [(ETi0 � STi) � UB, 0] ;

if

�
j = j0

�

penaltyLBii0 = max[LB � (STi0 � ETi), LB � (ETi0 � ETi), 0];
penaltyUBii0 = max[(STi0 � STi) � UB, (ETi0 � ETi) � UB, 0].

(5)

When penaltyLBii0 = 0, the drying time, dT , between two over-
lapping paint strokes, i and i0, is within the range marked by

the dashed arrow in Fig. 11, where no sagging appears. When
penaltyUBii0 = 0, the drying time, dT , between two overlapping
paint strokes, i and i0, is within the range marked by the double
arrow in Fig. 11, where no paint dust appears.

4.4. A multiple objective function

As indicated earlier, one objective is to minimize the tour of the
robot arm through all the goal groups, zi 2 Gr . This is equivalent
to finding the earliest end time of the last assigned start goal.
Another objective is to minimize violations of the time window
requirement for the overlapping paint strokes. This is achieved by
assigning start goals to the robot thatminimize the sumof all upper
and lower bound penalties. The objective function is formulated as
follows:

8i, i0 2 Gr ^ i 6= i0,
8j 2 {1, 2} ,

8d 2 {1, 2, 3} ,

minimize

2

4w1 · c2
c1

· max
�
ETi · xijd

�

+ w2·
Nt+1X

i=0

Nt+1X

i0=0

(penaltyLBii0 + penaltyUBii0)

#

, (6)

where:

• w1, w2 weight different objectives according to their impor-
tance. They are nonnegative and sum up to one [17]. The values
of the weights rely on the subjective judgment of the decision-
maker.

• c1, c2 represent the order of magnitude for objective 1 and
objective 2, respectively. Their values need to be determined
through the experiments. The expression c2

c1
is used for scaling

so that both objectives are of the same order of magnitude.

In this work the objective function is simplified to the case
where c1 = c2 = 1.

5. Implementation

The constraint optimization model just described is imple-
mented as a stand-alone module, called ‘Schedule tasks’, which al-
lows its reuse in other applications. Here it is implemented as
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Fig. 12. Implemented architecture.

a part of a broader software system for automatic generation of
robot programs for the painting process. The overall functional di-
agram of the designed system architecture is described based on
the function modeling methodology IDEF0, as shown in Fig. 12,
where the functions are executed sequentially from the left to the
right.

Motion planning of the collision-free robot trajectories is rel-
atively time consuming. Therefore the durations of all possible
intertasks, considering the multiplicity of the solutions for each
scheduling task, are roughly estimated in the ‘Schedule tasks’ func-
tion without considering changing speed of each joint, accelera-
tion/deceleration of the joints and model of collision avoidance.
The estimation approach uses the values of the rotational distance
and the maximum rotational speed, vmax[i], for each joint i of the
robot arm:
8i 2 [1, . . . , 6]

itDuration = max
1.5 · |q2 [i] � q1 [i]|

vmax [i]
,

where the vectors (q1[1], q1[2], . . . , q1[6]) and (q2[1], q2[2], . . . ,
q2[6]) are the configurations of the end goal placement of one
task and the start goal placement of another task, respectively. The
value 1.5 is determined by juxtaposing two equations: the equa-
tion for the maximum rotational speed and the polynomial func-
tion describing the change of rotational speed [16]. This estimation
approach does notmodel the intertask durations aswell as themo-
tion planner does and therefore there is a chance that the data used
by the scheduler is less precise. Motion planning of the collision-
free robot trajectories is performed only for the intertasks chosen
by the scheduler.

The overall performance of the painting system depends on the
implementation of the whole system for automatic generation of
robot programs for painting process, shown in Fig. 12, including
the number of paint strokes deleted by the motion planner and
the estimation approach for the durations of intertasks, which
are part of input data to the scheduling model. However in this
article we refer to the issue of optimality only with respect to the
performance of the scheduler and not the entire system.

Within the chosen architecture, task planning is performed
using the Inropa Basic 3 commercial program. Its control strategies
enable painting parts with complex surfaces, such as cumbers
and cavities. The tasks and intertasks are planned for collision-
free robot movements by the Amrose Robotics software [1], which
also provides functionality for generating robot commands. The
graphical interface of these two software programs is shown
in Figs. 14 and 15. The task scheduler is implemented in ILog
OPL Studio v.3.6. By default ILog OPL exploits a depth-first search

to explore the search tree and this is the algorithm applied in
this paper. Since this is a complete search strategy, the returned
solution is guaranteed to be the optimal solution, as defined by our
objective function.

It was discovered, that ILog OPL can only handle travel min-
imization problems where the input data satisfies the triangular
inequality. This is not the case in robotic painting. The robotic mo-
tions related to intertask repositioning are performed by point-to-
point movements. In the point-to-point mode the paint gun does
not have a fixed speed. Therefore covering a short distance can
possibly take longer time than covering a longer distance, which
violates triangular inequality requirement. To overcome this ob-
stacle the input data to the scheduler was preprocessed, using the
Floyd–Warshall algorithm [18] to find the shortest path between
any pair of start goals.

6. Design of simulation experiments

In this section, we report the experiments we have performed
using the implementation of our constraint optimization model
within the system shown in Fig. 12. All results given below have
been obtained on a 2.66 GHz Intel Xeon computer with 6 GB of
memory runningWindows 7 Professional. All times are in seconds,
with a resolution 0.1.

The overall system to be analyzed is summarized in Fig. 13 and
described based on the IDEF0 terminology.

The three input variables are: the number of goal groups (paint
strokes and 2 home positions), Ng = Nt + 2, the number of start
goals inside each goal group (number of distinct solutions for each
paint stroke), Ns = j · d, and the painting problem. The painting
problem is related to the parallel paint strokes and planar surfaces,
which are vertical and hence constitute the worst case scenario
concerning painting quality. The mechanism signal, Nc , is repre-
senting the type of the constraint optimization model used. The
notation should be understood in the following way: Nc = 3, de-
scribes the model implementing 3 constraints, marked as (1)–(3)
in the previous section. In case the scheduler is running the sim-
plified models described by Nc = 2, Nc = 3, Nc = 4, the following
objective function is used:

minimizebmax(ETi · xijd)c. (7)

In the case of the full model, Nc = 5, the objective function de-
scribed previously (Eq. (6)) is assumed. The scheduler’s setting
signals: weights, w1 and w2, and the time window requirement,
[LB;UB], are both related to the process quality constraint and
therefore they are only relevant for the constraint optimization
model: Nc = 5. The other setting signal is the tightness of the
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Fig. 13. System simulated in the experiments.

schedule, [scheduleOrigin; scheduleHorizon].
For Nc < 3 scheduleHorizon = 1.

We measure the performance of the scheduler along three
dimensions: the computation time of the solver, tc , the estimated
processing time of the robot (or equivalently the makespan of the
robot’s schedule), tp, and the total value of the penalty, penalty,
which is indicative of the number and extent of painting defects.
The performance variables are the outputs from the scheduler and
can be described by the following equations:

tc = f (Ng,Ns,Nc) ,

tp = f (Ng,Ns,Nc) ,

penalty = f (Ng,Ns,Nc) .

Though forNc = 5, tp and penalty are also functions of theweights,
w1 and w2. For reading simplicity the above equations do not
include the fact that the output variables are also functions of the
painting problem.

We perform two series of simulation experiments. For both of
them we assume that for all overlapping paint strokes the time
window requirement has the same values, [20; 43], which are
determined for the given painting problem experimentally [16]
and prior to scheduling. We use the tightness of the scheduling
horizon, [0; 1750], which is derived from the cycle time, cT ⇡
30 min. The goal of the first series of experiments is to understand
the relationships between input variables, mechanism signal and
output variables. The input variables,Ng andNs, mechanism signal,
Nc , and their levels are shown in Table 2.

We perform simulation experiments according to the plan for
full factorial design over the independent variables, Ng , Ns, Nc ,
with mixed level fractions [19]. We conduct one run for each
combination of levels. For Nc = 5 we assume that the weights are
constant: w1 = 0.9 and w2 = 0.1.

Table 2

Levels of input variables.

Variables Level
Level 1 Level 2 Level 3 Level 4 Level 5

Ng 4 6 8 10 12
Ns 2 4 6 – –
Nc 2 3 4 5 –

The scheduling problems are generated by the system pre-
sented in Fig. 12. The input to this system is the CAD data associ-
ated with the parts to be painted, which is based on real industrial
cases of painting sheets of different sizes. The sheets are chosen,
because they have planar surfaces and more complex geometries
rapidly generate Ng > 12. By choosing sheets the process qual-
ity constraint, related to overlapping paint strokes, can be eval-
uated. In Fig. 14 there is an example of the experimental setup
with seven identical sheets, which is to test the performance of
the scheduler for Ng = 12 (representing 10 paint strokes and
2 home positions). The size of the sheet used in this experiment
requires two layers of paint, each consisting of two paint strokes
overlapping 50%, giving in total 4 paint strokes. In order to generate
the problem with Ng = 12 the sheets are positioned in the same
plane and some paint strokes can stretch through few workpieces.
The graphical interface of the Inropa Basic 3, shown in Fig. 14, is
limited and enables only visualization of paint strokes, without
highlighting overlapping ones. In Fig. 14 the numbers next to the
paint strokes are indicating their order in sequence returned by the
scheduler. The graphical interface of the Amrose Robotics software
enables simulation of the movement of the robot and an indica-
tion when the paint gum is turned on, but not the deposition of
paint on the surface and painting quality. Fig. 15 shows the screen
shots from the simulation with the robot arm configuration for
the selected start goals in the sequence of execution from Fig. 14.
The full simulation can be accessed at Video S1 (available online at
http://dx.doi.org/10.1016/j.robot.2013.09.005).

The goal of the second series of experiments is to understand
the relationships between the internal settings of the scheduler,
w1 and w2, and the output variables. Therefore the experiments
are performed for Nc = 5. The values of the weights are varied
as shown in Table 4. We conduct one run for each combination of
values of weights. The tested case is for Ng = 6 and Ns = 2.

7. Results

The results of the first series of experiments are shown in
Table 3. Maximum running time of the scheduler, tc, was set to
40 h. If the scheduler did not terminate within this time, the

Fig. 14. Example of experimental setup for Ng = 12: output from Task Planner simulated in Inropa Basic 3 and the paint strokes’ numbers in sequence generated by the
scheduler.

http://dx.doi.org/10.1016/j.robot.2013.09.005
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Fig. 15. Example of experimental setup for Ng = 12: the robot arm configuration for the selected start goals in the sequence of execution simulated in the Amrose Robotics
software.

Table 3

Results of experiments, where pe: penalty.

Ng Ns Nc = 2 Nc = 3 Nc = 4 Nc = 5
Tc Tp pe tc tp pe tc Tp Pe Tc tp pe

4 2 0.01 63 16 0.01 63 16 0.02 63 16 0.02 63 16
4 4 0.69 60 19 0.04 60 19 0.36 60 19 0.39 60 19
4 6 2.15 59 20 0.08 59 20 – – – – – –
6 2 0.29 73 85 0.02 74 79 0.38 74 79 0.88 74 71
6 4 1302.67 69 83 1.03 69 83 – – – – – –
6 6 – – – 18.42 68 82 – – – – – –
8 2 83.23 182 329 5.82 182 329 170.16 191 234 519.37 196 103
8 4 15334.49 180 321 826.32 180 321 – – – – – –
8 6 – – – 13945.2 180 321 – – – – – –

10 2 219.48 93 149 4.19 94 147 139.74 94 130 1069.56 99 68
10 4 – – – 3707.16 90 172 – – – – – –
10 6 – – – – – – – – – – – –
12 2 – – – 2545.81 178 140 143934.53 185 103 – – –
12 4 – – – – – – – – – – – –
12 6 – – – – – – – – – – – –

experiment was stopped andmarked as ‘–’ in Table 3. The selected
results are presented graphically in Figs. 16–18.

The results of the second series of experiments are shown in
Table 4 and in Fig. 19.
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Fig. 16. Results of the experiments concerning computation time of the solver, tc .

8. Discussion and analysis of the results

Description of the results with regards to the computation time of the
scheduler, tc :

Fig. 16(a): For a full model, Nc = 5, the computation time of the
scheduler, tc, is not affected by the specific values of the lower and
upper bound parameters, LB and UB, since they are specified prior

to scheduling. The computation time is rather affected by the fact
of introducing an additional constraint to the scheduler and solv-
ing the multiple objective function. For a full model, NC = 5 with
minimum number of solutions, Ns = 2, the scheduler can solve
the problem for number of goal groups Ng  10 (up to 8 paint
strokes), within relatively short computation time, tc  100 [s].
Extending the problem to include more paint strokes expands the
search space significantly, Fig. 8. The performance of the scheduler
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Fig. 17. Results of the experiments concerning the approximated processing time of the robot, tp .

Fig. 18. Results of the experiments concerning the total value of penalty, penalty.

Table 4

Results of experiments with different values of weights.

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

w1 0.1 0.3 0.5 0.7 0.9
w2 0.9 0.7 0.5 0.3 0.1
tc 408.02 34.42 13.58 7.06 0.88
tp 96 96 92 81 74
pe 17 17 21 37 71

Fig. 19. Results of the experiments on effects of varied values of weights on the
approximated processing time of the robot, tp , and on the total value of penalty,
penalty.

needs to be improved, in order to solve the industrial problems,
which are at least of the size Ng  50, within tc  360 s.

The results of experiments with different sized scheduling
problems, show that the constraint related to the scheduling
horizon, Nc = 3, decreases the computation time of the scheduler
compared to Nc = 2, because it prunes many alternative solutions
and this way speeds up the search.

tc = f (Ng,Ns, 2) > tc = f (Ng,Ns, 3) .

Fig. 16(a): Constraint concerning scheduling of the home position,
Nc = 4, increases the computation time of the solver compared to
NC = 3:

tc = f (Ng, 2, 3) < tc = f (Ng, 2, 4) .

Given the same painting problem the model Nc = 5 results in the
longest computation time of the scheduler, tc , because it is using
the multiple objective function with two penalty variables.
Description of results with regards to the processing time of the robot,
tp:
The constraint concerning limited capacity and period availability
of the scheduler does not have influence on the processing time of
the robot, tp:

tp = f (Ng,Ns, 2) = f (Ng,Ns, 3) .

For some painting problems the constraint concerning scheduling
of the home position can increase processing time of the robot, tp,
e.g.:

tp = f (8, 2, 3) < tp = f (8, 2, 4) ,

tp = f (10, 2, 3) < tp = f (10, 2, 4) .

Both models, Nc = 2 and Nc = 3, are constraint optimization
models and it is expected that they generate the same solution. In



E. Kolakowska et al. / Robotics and Autonomous Systems 62 (2014) 267–280 279

the model Nc = 4 it is forced that the home position is scheduled
at the beginning and at the end of the sequence. In case when for
Nc = 2 and Nc = 3 home positions are scheduled at the most op-
portune point in the sequence, the solution for Nc = 4 is different
and possible requires a longer processing time, tp.

For painting problems where Ng > 4 the process quality
constraint increases the processing time of the robot, tp:

tp = f (Ng,Ns, 4) < tp = f (Ng,Ns, 5) .

This is because for Nc = 5 with the multiple objective function
the scheduler is notminimizing the processing time, tp, but instead
it is minimizing a tradeoff between the processing time and the
penalty.

Fig. 17: Increasing the number of solutions, Ns, does not have a
significant influence on the reduction of the processing time of the
robot, tp, e.g.:

tp = f (4, 2,Nc) ⇡ f (4, 4,Nc) ⇡ f (4, 6,Nc) ,

tp = f (8, 2,Nc) ⇡ f (8, 4,Nc) .

This is an indication that for the considered scheduling problems
the cost of traveling between the start goals belonging to different
paint strokes has a relatively bigger influence on the result of
objective functions (Eq. (6)) and (Eq. (7)), compared to the choice of
the joint configurations for each start goal and for this reason does
not influence the processing time significantly. In order to validate
this hypothesis a new series of experiments should be performed,
in which the linear distances between the start goals are relatively
small.
Description of resultswith regards to painting quality, penalty: Fig. 18,
Nc = 5: For the considered scheduling problems, modeling paint-
ing quality and including it in the objective function as described in
Eq. (6) always results with less painting defects (regardless of the
values tested for w1 and w2):

penalty = f (Ng,Ns, 5) < penalty = (Ng,Ns,Nc) ,

where Nc = 1, 2, 3, 4.

Description of results with regards to different values of weights, w1
and w2: Fig. 19: By changing the values of weights in the multi-
ple objective function, Eq. (6), we change the importance of the
processing time, tp, with respect to the painting quality, penalty.
Longer processing time is a tradeoff when paying attention to qual-
ity. Though the slopes of curves depend on the painting problem.

It is not possible to recommend the values of the weights, w1
and w2, because they depend not only on user preferences, but
also on the painting problem. The simulation experiments with
different values of weights need to be performed every time the
painting problem is changed.

In case the companies are interested in a specified painting
quality, e.g. 99% of painting must be within specifications, the
solution could be to modify the painting quality constraints (a)–(f)
and use them as hard constraints in the scheduling model, instead
of penalty in the multiple objective function. One should then
define if the deviation from the specifications should be considered
for every paint stroke or as a total sum of deviations from all the
paint strokes.

9. Conclusions

In this paper, we modeled a new type of scheduling problem,
which appears in robotic painting and welding applications with
automatic generation of robot programs. In this problem the tasks
have multiple solutions, the robot’s intertask movements are not
linear and they are performed with varying speed. It was analyzed
that scheduling of overlapping paint strokes can have an influence
on painting quality, represented by painting defects such as paint

dust and sagging, and measured by the value of penalty. Painting
quality was therefore incorporated into the objective function of
the scheduler, alongwith the processing time of the robot. Extend-
ing the work presented in [13] we also modeled the complication
that the painting quality of overlapping strokes is influenced by the
fact that the paint does not dry uniformly along the paint stroke.
This property was represented by two different sets of constraints:
one applying to the situation when two overlapping paint strokes
have the same direction and the other one applying to the situa-
tion when the overlapping paint strokes have the opposite direc-
tion. The overall scheduling problemwasmodeled using constraint
optimization.

We evaluated our constraint optimization scheduler by con-
ducting simulation experiments.

The goal of the first series of experiments was to get a better
understanding of the relationships between the input and output
variables of the constraint optimization model, as seen in Fig. 13.
One of the interesting conclusions is that adding consideration of
an additional solution to each paint stroke neither significantly
decreases the processing time of the robot, tp, nor does it improve
the painting quality by decreasing penalty. This conclusion cannot
be generalized though, as it depends on the painting problem,
physical properties of the robot and the geometry of painting cell.
Use of the full constraintmodel that is formulated is shown to be an
effective tool in incorporating the aspect of painting quality to the
scheduling problem and improving painting quality. The drawback
of using this model is that the multiple objective function together
with two penalty variables, penaltyLB and penaltyUB, increases the
computation time of the scheduler, tc . The results from the second
series of experiments show that a longer processing time of the
robot, tp, is the tradeoff in paying attention to painting quality and
that the weights in the multiple objective function can be used to
balance the relative importance of processing time, tp, and painting
quality, penalty.

The presented simulation results were performed on the prob-
lem of painting planar, vertical surfaces, however the designed
constraint optimization model can also be used on more complex
surfaces, such as cavities and ribs, which still require the linear
paint strokes with the methods used by the existing task plan-
ner [1]. It is also relatively easy to extend the constraint opti-
mization model to cope with different orientations of the painted
surfaces, which impose different flows of the paint. Different val-
ues of the time window requirement, dT 2 [LB;UB], for use by
the proposed process quality constraintwill have to be determined
experimentally, however depending on the orientation of paint
strokes. To address cases where the paint does not dry uniformly
along the linear or non-linear paint strokes, a more sophisticated
model of the painting process would be required and the process
quality constraint should be reformulated.

There are several directions in which this work could be ex-
tended in the future. One focus could be on extending the size of
the search space that the scheduler can efficiently accommodate,
which is a necessity if the proposed solution should find the in-
dustrial application. Although the focus of this work has been to
investigate the use of a black-box constraint solver, our experi-
ments utilized only the basic, depth-first search procedure that
is provided as ILog OPL’s default solver. This procedure ensures
that an optimal solution to the formulated constraint model will
(eventually) be found if given enough computation time, but as our
experiments have shown, it is very inefficient in this solving con-
text. The incorporation of more sophisticated scheduling heuris-
tics and search algorithms has enabled effective scaling in many
other constraint-based scheduling applications, and application of
similar techniques to the paint problem should be explored. It may
also be possible to achieve scalability by imposing further struc-
ture on the overall search space, for example by partitioning tasks
into sub-groups of overlapping paint strokes that must be sched-
uled consecutively.
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A second future focus could be to investigate extension of the
scheduling problem covered in this article to amultirobot environ-
ment, where the same task can be assigned to more than one re-
source. This requires a few extensions in the system for automatic
generation of robot program, Fig. 12. Motion planning should be
done for all the tasks on all the robots, in order to determine which
resources are capable to perform the tasks. This will certainly im-
ply some situations,where one task canbeperformedbymore than
one robot and therefore task assignment should be implemented
after motion planning. In case that the assignment of overlapping
tasks between different resources is allowed, some modifications
to the process quality constraint in the scheduling model will also
be necessary.Moreover the applications formultiple robots per cell
with overlapping workspaces require that the motion planner is
generating collision-free robot trajectories.

Finally, it would be interesting to investigate how good the
rough estimates of the intertask durations that the scheduler is
using for optimization are, and what impact these approximations
have on the efficiency of the overall robot program generation
process.
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