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Optimizing Field Surveys for

Remote Sensing Data Classification
Claudio Persello, Member, IEEE, Abdeslam Boularias, Michele Dalponte, Terje Gobakken,

Erik Næsset, Bernhard Schölkopf

Abstract—Active learning (AL) typically aims at minimizing
the number of labeled samples to be included in the training
set to reach a certain level of classification accuracy. Standard
methods do not usually take into account the real annotation
procedures and implicitly assume that all samples require the
same effort to be labeled. Here, we consider the case where the
cost associated with the annotation of a given sample depends on
the previously labeled samples. In general, this is the case when
annotating a queried sample is an action that changes the state
of a dynamic system, and the cost is a function of the state of
the system. In order to minimize the total annotation cost, the
active sample selection problem is addressed in the framework
of a Markov Decision Process (MDP), which allows one to plan
the next labeling action on the basis of an expected long-term
cumulative reward. This framework allows us to address the
problem of optimizing the collection of labeled samples by field
surveys for the classification of remote sensing data. The proposed
method is applied to the ground sample collection for tree species
classification using airborne hyperspectral images. Experiments
carried out in the context of a real case study on forest inventory
show the effectiveness of the proposed method.

Index Terms—Active Learning, Markov Decision Process, Sup-
port Vector Machine, Image Classification, Hyperspectral Data,
Field Surveys, Forest Inventories.

I. INTRODUCTION

In supervised classification, the amount and quality of
training samples are crucial for obtaining accurate results.
Furthermore, considering that sample labeling is usually ex-
pensive and time consuming, tools for selecting the most
informative samples can significantly reduce the effort asso-
ciated with the labeling of redundant or unnecessary samples.
AL methods provide a way to iteratively select the samples
that are expected to lead to the highest gain in predictive
performances, once they are labeled and added to the training
set. An expert is guided in the collection of an effective
training set reducing the annotation cost compared to a passive
approach. The aim is typically to minimize the number of
samples to be labeled and added to the training set in order
to reach a certain level of accuracy. AL has been applied
to a variety of real-world problem domains, including text
classification, information extraction, video classification and
retrieval, speech recognition [1] and recently also to remote
sensing (RS) classification problems [2], [3]. However, most
of the AL methods have been developed for general purposes
and do not take into account the real annotation procedures
and costs, which usually depend on the application.

In this study, we consider problems where the annotation
cost for a given sample is a function of previously collected
samples. This type of scenario occurs for instance when
a human expert has to visit different locations to retrieve
the labels of the queried samples, and the cost is thus a
function of the travelled distance from the previous sample
location. In this situation, our goal is to optimize the sample
selection not just with respect to the number of labelings, but
considering the total cost of the annotation procedure. The
considered scenario models the problem of optimizing the
collection of labeled samples through field surveys for RS data
classification. In this context, several classification problems
require the collection of a training set through ground sample
collection. This is typically the case of hyperspectral images
classification, where sample labels cannot usually be obtained
by visual inspection of false color image compositions. In
contrast to photo-interpretation, in situ surveys are typically
very expensive and need to be performed by human experts.
In such applications, the advantage of using an effective AL
strategy that can guide the human expert in an optimized
sequence of site visits is particularly important, given the
significant savings in terms of time and money.

In view of this, we propose a novel Cost-Sensitive Active
Learning (CSAL) method, i.e., an AL strategy that explicitly
takes into account the cost for obtaining sample labels in the
selection process. This strategy is used for guiding the user
in the annotation procedure for selecting the most informative
samples while minimizing the cost. It is worth noting that in
standard AL methods the query function usually selects the
sample that maximizes an immediate utility, i.e., the expected
gain in predictive performances at the very next iteration. As
opposed to this, the considered cost-sensitive setting requires
us to plan the sample labeling procedure by taking into account
several steps ahead. For this reason, we modeled the CSAL
problem in the framework of a Markov Decision Process
(MDP), which allows us to optimize the next labeling action
on the basis of an expected long-term cumulative reward. The
considered problem, that we call here the traveling annotator
problem, is depicted in Figure 1: the human expert has to
decide on the next sample to collect starting from the current
position. Collecting the sample that maximizes the immediate
expected utility would be a myopic strategy. A better decision
can be taken by “looking ahead” and optimizing a long-term
cumulative reward that considers both the prediction utility
and the traveling cost.
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Fig. 1. Graphical representation of the traveling annotator problem. The
human expert has to decide on the next sample to collect starting from the
current position. Samples are depicted as grey balls, whose expected prediction
utility is associated with their size (and grey level). Collecting the sample
that maximizes the immediate expected utility (grey dashed arrow) would
be a myopic and sub-optimal strategy in view of a long-term reward, which
considers both the prediction utility and the traveling cost. A better decision
can be taken by looking ahead (for three steps in this example) and performing
the action that optimizes the long-term cumulative reward (black solid arrow).

As an application of particular interest, we consider here
the use of hyperspectral data for forest inventory purposes.
The introduction of very high geometrical resolution RS
images allows one to improve the spatial resolution of RS-
based forest inventories and much research effort is currently
devoted to Individual Tree Crown (ITC) level inventories [4],
[5]. ITC-inventories provide information about stem volume,
height, species, etc. for trees present in the dominant layer
of the canopy. Regarding the species classification, airborne
hyperspectral sensors, thanks to their very high spectral and
spatial resolution, can be powerful instruments for these kinds
of inventories. Several studies have showed their effective-
ness in distinguishing very similar tree species, in various
environments (e.g., [6]–[8]). However, an expensive part of
a forest inventory at ITC level is represented by the ground
sample collection. Usually, the sample collection is carried out
inside field plots (circular areas of a given radius) distributed
over the area of interest according to a predefined sampling
strategy (e.g., systematic sampling strategy, random sampling
strategy, stratified sampling strategy, etc.) [9]. Inside each
field plot, trees are measured according to a predefined rule.
Usually, trees for which the Diameter at Breast Height (DBH)
is higher than a certain threshold are measured. Obviously, this
procedure is largely time consuming and it represents the main
cost of an inventory. Thus, effective tools that can reduce the
cost of the ground samples collection, without losing accuracy
in the inventory, are needed.

The main contributions of this study consist in: 1) modeling
the problem of optimizing the collection of labeled samples
for the classification of RS data as the described traveling
annotator problem, 2) proposing a novel CSAL method with
lookahead to effectively solve the problem, 3) applying the
proposed method to a real study on forest inventory using
airborne hyperspectral images. In particular, we propose two
different query functions with lookahead to address the con-
sidered problem. The remainder of the paper is organized
as follows. The next section reviews basic concepts about
AL and about its use for RS image classification. Section

III introduces Markov Decision Process. Section IV presents
the proposed CSAL method and two query functions with
lookahead. Section V and VI reports the considered data set
and the experimental analysis, respectively. Finally, Section
VII draws the conclusion of the paper.

II. ACTIVE LEARNING

Active learning is an iterative procedure where the user is
repeatedly asked to annotate new samples that are selected
by a query function. In the pool-based setting, the query
function is used to select the samples from a pool U = (xi

)

n
i=1

of n candidate unlabeled samples that are expected to lead
to the highest gain in predictive performances once they
are labeled and added to the training set. The classification
algorithm is retrained using the training set that contains the
new samples and this procedure is repeated until a stopping
criterion is met. Most of existing works have focused on the
selection of one sample to be labeled in each iteration. To
this end, different criteria have been adopted for selecting the
(expected) most informative sample. One of the first strategies
introduced in the literature is based on uncertainty sampling
[10], which aims at selecting the closest sample to the decision
boundary. The same principle has also been used in the context
of support vector machine (SVM) classification [11]–[13].
Other strategies are query by committee [14] and expected
error reduction [15]. A survey of several existing methods is
available in [1].

Other studies have focused on the selection of batches
of samples at each iteration, which allow one to speed up
the learning process. In this latter setting, the overlap of
information among the selected samples has to be considered
in order to evaluate their expected information content. Brinker
introduced an SVM-based batch approach, which selects a
batch of samples that minimizes the margin while maximizing
their diversity [16]. The diversity is assessed considering
the kernel cosine-angular distance between points. Another
approach to consider the diversity in the query function is
the use of clustering [17], [18]. In [17], an AL heuristic is
presented, which explores the clustering structure of samples
and identifies uncertain samples avoiding redundancy. In [19],
the authors chose the batch of instances that maximizes the
Fisher information of the classification model, which leads to
a tradeoff between uncertainty and diversity. In [20], batch
active learning is formulated as an optimization problem that
maximizes the discriminative classification performance while
taking into consideration the unlabeled examples. Azimi et. al
[21] used Monte-Carlo simulation to estimate the distribution
of unlabeled examples selected by a sequential policy and
query the samples that best matched such a distribution.

In recent years, active learning has attracted the interest of
the remote sensing community, and it has mainly been applied
to the classification of multispectral and hyperspectral images
[2], [3], [22]. In [2], an AL technique is presented, which
selects the unlabeled sample that maximizes the information
gain between the posterior probability distribution estimated
from the current training set and the training set obtained
by including that sample into it. The information gain is
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measured by the Kullback-Leibler (KL) divergence. In [23],
two AL techniques for multi-class RS classification problems
are proposed. The first technique is margin sampling by closest
support vector, which selects the most uncertain unlabeled
samples that do not share the closest support vector. In
the second technique, samples are selected according to the
maximum disagreement between a committee of classifiers,
which is obtained by bagging: different training sets are drawn
with replacement from the original training data and used
for training different supervised classifiers. In [24], a super-
vised Bayesian approach to hyperspectral image segmentation
with active learning is presented. The adopted AL method
is based on a multinomial logistic regression model, which
is used to learn the class posterior probability distributions.
In [3], different batch-mode AL techniques for the multi-
class classification of RS images with SVM are investigated.
The investigated techniques exploit different query functions,
which are based on both the uncertainty and diversity criteria.
One of the investigated techniques is called Multiclass-Level
Uncertainty - Angle Based Diversity (MCLU-ABD), which
effectively extend the method present in [16] to deal with
multi-class classification problems. Moreover, a query function
that is based on a kernel-clustering technique for assessing the
diversity of samples and a strategy for selecting the most in-
formative representative sample from each cluster is proposed.
Such a technique is called Multiclass-Level Uncertainty with
Enhanced Clustering Based Diversity (MCLU-ECBD). Di et
al. [25] investigate AL methods based on the idea of query
by committee, where the committee of classifiers is derived
by using multiple views, i.e., different disjoint subsets of
features. The paper investigates different approaches for view
generation from hyperspectral images, including clustering,
random selection and uniform slicing methods. Recent studies
adopt AL to address domain adaptation problems [26]–[28],
i.e., for adapting the supervised classifier trained on a given RS
image to classify another similar image acquired on a different
geographical area. The method presented in [28] iteratively
selects the most informative samples of the target image to be
included in the training set, while the source-image samples
are re-weighted or possibly removed from the training set on
the basis of their disagreement with the target-image classifi-
cation problem. In this way, the consistent information of the
source image can be effectively exploited for the classification
of the target image and for guiding the selection of new
samples to be labeled, whereas the inconsistent information
is automatically detected and removed.

Very few studies addressed the active learning problem
in a cost-sensitive setting for optimizing the ground sample
collection. Moreover, the use of AL in the context of forest
inventory applications was not yet investigated. In [29], the
CSAL problem was modeled as a traveling salesman problem
with profits, where the profit for visiting a given sample is
its uncertainty score. Nevertheless, the proposed heuristics are
suboptimal and the overlap of information between subsequent
samples is not taken into account. In [30], a batch-mode
active learning method that considers uncertainty, diversity,
and cost in the definition of the query function is proposed.
The proposed heuristic is however suboptimal, given that the

selection in the first step is based only on the uncertainty.
Moreover, the optimal parameter values of the method are
difficult to be set in advance in the real application.

To the best of our knowledge, state-of-the-art methods focus
on selecting the sample(s) that maximize(s) an immediate
reward, i.e., an estimate of the accuracy gain at the very
next iteration. But considering that active learning is actually
a sequential decision-making problem, it appears natural to
consider the reward of a decision after a finite number of steps
in view of a long-term optimization. In the standard setting,
where the labeling cost is not taken into account or does
not depend on previously labeled samples, the advantage of
looking ahead, beyond the next iteration, may not be evident.
Nevertheless, its advantage becomes particularly important in
the considered traveling annotator problem, where a reward
function can be defined on the basis of both the annotation
cost and the expected prediction utility of the selected sample.

III. MARKOV DECISION PROCESS

Markov Decision Processes (MDPs) [31] are a powerful tool
that provides a natural mathematical formalization of sequen-
tial decision-making problems. MDPs are used in a variety of
areas, including robotics, automated control, manufacturing,
games, and economics. A survey of applications of MDPs can
be found in [32]. In this paper, we formalize the problem
of sample selection in active learning as a Markov decision
process. We start by briefly recalling MDPs in the remainder
of this section.

Formally, a bounded-horizon MDP is defined by a tuple
(S,A, T, R,H, �), where S is a set of states and A is a
set of actions. T is a transition function that returns a next
state s0 when action a is executed in state s. In general, T
is a stochastic function and T (s, a, s0) denotes the probability
of going to state s0 after applying action a in state s, i.e.,
T (s, a, s0) = P (st+1 = s0|st = s, at = a). T can also be
deterministic, in which case s0 = T (s, a) denotes the next state
after choosing action a in state s. R is a reward function where
R(s, a) is the numerical reward given for choosing action a
in state s. H 2 N+ is a planning horizon, i.e., the number
of future time-steps considered in choosing an action, and
� 2 [0, 1] is a discount factor used to weigh less rewards
received further in the future. A policy ⇡ is a function that
returns an action a = ⇡(s) for each state s. The expected
value of policy ⇡ in state s is the expected sum of rewards
that will be received when starting from s and following policy
⇡ for H time-steps. The value function is denoted by V ⇡

H and
defined as

V ⇡
H(s) =

H�1X

t=0

�tEst [R(st, at)|s0 = s, at = ⇡(st)]. (1)

An optimal policy ⇡⇤ is one satisfying ⇡⇤ 2
argmax⇡ V

⇡
H(s), 8s 2 S . The expected value of executing

action a in state s and then following policy ⇡ for the next
H steps is called a Q-value, and defined as

Q⇡
H(s, a) = R(s, a) + �

X

s02S
T (s, a, s0)V ⇡

H�1(s
0
). (2)
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Therefore, ⇡⇤
(s) = argmaxa2A Q⇡⇤

H (s, a). An optimal policy
⇡⇤ can be found by using dynamic programming techniques,
such as policy iteration or value iteration [32]. The compu-
tational complexity of these methods is exponential in the
number of states [33], which is not suited for applications
with large state spaces. However, given a fixed initial state
s0, an optimal policy for a bounded horizon can be found in
polynomial time using a lookahead tree search.

IV. COST-SENSITIVE ACTIVE LEARNING
WITH LOOKAHEAD

The goal of the proposed CSAL method is to optimize the
sample collection process in order to maximize the long-term
classification accuracy while minimizing the total annotation
cost. The annotation cost takes into account the expected
traveling cost (e.g., time) to reach the location of the next
sample and a cost for obtaining its label. This defines a
multi-objective optimization problem. In order to address this
problem, we propose two possible strategies to define the
cost-sensitive query function. The first strategy consists in
maximizing a long-term reward that is defined as a tradeoff
between the expected prediction utility of the samples and the
associated annotation cost. The tradeoff between the two terms
is regulated by pre-defined parameters. This strategy results
in modeling the query function as a bounded-horizon MDP.
The second strategy addresses the problem by maximizing a
long-term reward, which is defined as the expected prediction
utility of the samples, while constraining the total annotation
cost to be smaller than a pre-defined budget B. This second
strategy results in modeling the query function as an MDP
where the number of future steps is not bounded by a fixed
horizon H , but the looking-ahead procedure is stopped when
the accumulated cost exceeds the available budget B. We refer
to the two query functions as: 1) query with bounded horizon,
and 2) query with constrained budget. Both strategies share
the same formalization based on MPD, which is described in
the next subsection.

A. Query functions as Markov Decision Process
We model the proposed query functions on the basis of an

MDP (S,A, T, R), where the state st 2 S is the sequence
of labeled samples x0y0x1y1 . . . xtyt that contains the last
collected sample x0y0 when the query was called and those
that are planned to be selected and labeled in the future up
to time-step t. The samples x0 . . . xt 2 X are vectors that
contain both the features used for the classification task and for
computing the annotation cost of the sample, e.g., the spectral
signatures and the geographical positions of the samples,
which are necessary to compute the traveling cost. Both sets
of features can be extracted from geo-referenced RS data. The
label y0 2 Y is the last actually annotated label, whereas
y1 . . . yt 2 Y can just be predicted during the planning
procedure by a transition function, which can be considered
a prior probability on the distribution of the labels. An action
a 2 A corresponds to enquiring the label of a sample x,
therefore A = U . Any action is associated with: 1) a prediction
utility u(st, xt+1) that evaluates the expected gain in predictive

performance of the classifier after labeling the selected sample
xt+1 in state st and including it in the training set, and 2) an
annotation cost ⇥(st, xt+1) that evaluates the actual cost for
obtaining the label of sample xt+1 in state st. The transition
function T (st, xt+1, st+1) is the probability of labeling sample
xt+1 with yt+1 given the sequence of labeled examples st, i.e.,
T (st, xt+1, st+1) = P (yt+1|x0y0 . . . xtyt, xt+1). The action
of annotating the sample xt+1 in state st is associated with
a reward R(st, xt+1). Different definitions of the reward
function will be considered in the next subsections for the
two proposed queries.

The aforementioned general model, theoretically casts the
query problem into a stochastic MDP. However, the probability
of future labels P (yt+1|x0y0 . . . xtyt, xt+1) represented by the
transition function T can hardly be estimated and used in the
design of the query function. For this reason, we consider here
an agnostic approach, where a uniform distribution is used
for the transition function. We also do not use the predicted
labels in the reward function. This results in an equivalent
representation of the MDP, where the transition function is a
deterministic function and the state st 2 S is the sequence
of only unlabeled samples x0x1 . . . xt. The prediction utility
u(st, xt+1) and the annotation cost ⇥(st, xt+1) are functions
of both the selected sample xt+1 and the current sequence of
samples st = x0x1 . . . xt. In order to estimate the prediction
utility u(st, xt+1), the overlap of information between xt+1

and the samples in the sequence x1 . . . xt is taken into account
by considering a tradeoff between uncertainty and diversity.
Different strategies usually adopted for batch-mode active
learning can be employed for this purpose in the proposed
architecture.

B. Query with Bounded Horizon
In the query with bounded horizon, the reward is defined

on the basis of both the expected prediction utility u(st, xt+1)

and the annotation cost ⇥(st, xt+1). Using a linear model, the
reward function is defined as:

R(st, xt+1) = ↵u(st, xt+1)� �⇥(st, xt+1), (3)

where ↵ and � are user-defined parameters that tune the trade-
off between prediction utility and annotation cost.

The proposed query function requires the exploration of a
decision tree in order to select the action that leads to the
maximum expected long-term cumulative reward. Figure 2
shows an example of such a tree. The tree exploration starts
with the last annotated sample, which is always denoted by
x0 and used in calculating the reward function. The value of
labeling each sample xi 2 U is calculated by summing the
reward R(x0, x

i
), given in Equation 3, and the subsequent

discounted rewards for H � 1 steps, which are found by
exploring the sub-tree starting from state x0x

i. Finally, the
query function selects the sample x̂ 2 U that maximizes the
cumulative reward, i.e.,

x̂ = argmaxxi2U
⇥
R(x0, x

i
) + �V ⇤

H�1(x0x
i
)

⇤
, (4)

where V ⇤
H�1(x0x

i
) is the value of the maximum cumulative

reward that can be obtained starting from state x0x
i and
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summing the discounted rewards for the subsequent H � 1

steps.

x0

x0x
1

x0x
1x2 x0x

1xn

x0x
2

x0x
2x1 x0x

2xn

x0x
n

x0x
nx1 x0x

nxn�1. . .. . .. . .

. . .

Fig. 2. Decision tree for sample selection with the proposed query function
with bounded horizon.

Algorithm 1 illustrates the recursive planning procedure
used for computing the query function with bounded horizon.

Algorithm 1 Query(st,U , H) with bounded Horizon
Input: State st = x0x1x2 . . . xt

Pool U = (xi
)

n
i=1 of n unlabeled samples

Horizon H

foreach x 2 U do
R(st, xt+1) = ↵u(st, xt+1)� �⇥(st, xt+1)

st+1 = x0x1x2 . . . xtx
if H > 1 then

V ⇤
H�1(st+1)=Query(st+1,U � {x}, H � 1)

else
V ⇤
H�1(st+1) = 0

end
Q⇤

H(st, x) = R(st, x) + �V ⇤
H�1(st+1)

end
xt+1 = argmaxx2Û Q⇤

H(st, x),
V ⇤
H(st) = Q⇤

H(st, xt+1)

Output: A sample xt+1 with value V ⇤
H(st)

C. Query with Constrained Budget

In the second proposed strategy, the reward is defined as
only the expected prediction utility of the selected sample
u(st, xt+1). In this case, we do not use a bounded-horizon
MDP with a fixed number of future time-steps to explore.
Instead, we stop the planning when the accumulated cost
exceeds the available budget B. In this way, we maximize the
long-term classification accuracy with respect to the available
budget. This strategy is more appropriate in real applications,
where fixing a priori a good tradeoff between the prediction
utility and the annotation cost can be difficult. Also in this
case, the query requires the exploration of a decision tree. The
value of labeling each sample x 2 U in state st = x0x1 . . . xt

is calculated by summing the reward R(st, x) and the subse-
quent rewards that are found by the exploration of the sub-
tree until the cumulative cost exceeds the available budget.
The depth of each sub-tree depends on B but is not the
same for all sub-trees (as in the previous case). Finally, the

Algorithm 2 Query(st,U , B) with constrained Budget
Input: State st = x0x1x2 . . . xt

Pool U = (xi
)

n
i=1 of n unlabeled samples

Budget B

foreach x 2 U do
R(st, x) = u(st, x)
st+1 = x0x1x2 . . . xtx
if B �⇥(st, x) � 0 then

V ⇤
(st+1) =Query(st+1,U � {x}, B �⇥(st, x))

else
V ⇤

(st+1) = 0

end
Q⇤

(st, x) = R(st, x) + V ⇤
(st+1)

end
xt+1 = argmaxx2U Q⇤

(st, x)
V ⇤

(st) = Q⇤
(st, xt+1)

Output: A sample xt+1 with value V ⇤
(st)

Algorithm 3 CSAL with Lookahead
1: Train the classifier using the initial training set D
2: Initialize the state s to the last collected sample
3: repeat
4: x =Query(s,U , H) or x =Query(s,U , B)

5: The user labels the selected sample x with y
6: D  D [ {(x, y)}, U  U � {x}, s x
7: Re-train the supervised classifier with D
8: until a stopping criterion is satisfied

query function selects the sample x̂ = argmaxx2UQ(s0, x).
Algorithm 2 illustrates the recursive planning procedure used
by the query with constrained budget.

D. Cost-Sensitive Active Learning with Lookahead

The workflow of the proposed CSAL is described in al-
gorithm 3 for both the proposed query functions. At every
iteration of the AL loop, the human expert is requested to
travel to the location of the queried sample (e.g., tree) and
provide its label. The sample x is then removed from the set
of unlabeled samples U and added to the training set D. At
the next iteration, the classifier is re-trained using the updated
training set and the query function is called again. In this way,
the CSAL method effectively guides the human expert in the
field survey. Note that the looking-ahead procedure is used
for selecting only the next sample (not for planning the whole
future path in advance) and it is repeated at each iteration of
the AL loop.

V. DATA SET DESCRIPTION

We applied the proposed CSAL methods to the optimization
of the ground sample collection for tree species classification
in the context of a real case study. In this section we describe
the data set that we used for our experiments. The same area
and data set were previously used in [8].
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A. Study area
The study area is located in the municipality of Aurskog-

Høland, southeastern Norway, 120-390 m above sea level
(Figure 3). Approximately three quarters of the total land area
(890 km2) is characterized by managed, productive forests
dominated by Pinus sylvestris L. (Scots pine; 50%), Picea
abies (L.) Karst (Norway spruce; 35%), and deciduous tree
species (15%), such as Betula spp. L. (birch) and Populus
tremula L. (aspen).

B. Remote sensing data
Hyperspectral images were acquired simultaneously with

two different sensors: the HySpex VNIR-1600 and HySpex
SWIR 320i sensor. The VNIR (visible and near infrared) sen-
sor acquired data for 160 bands between 400 and 990 nm, with
a spatial resolution of 0.4 m. The SWIR (short-wavelength
infrared) sensor acquired data for 147 bands between 930 and
1700 nm, with a spatial resolution of 1.5 m. The sensors
were mounted on a Piper Chieftain PA-31-350 fixed-wing
aircraft flying at an altitude of 1500 m above ground level
at a speed of 70 m/s. The two hyperspectral sensors are both
line (pushbroom) scanners. Three hyperspectral images were
acquired with each sensor.

C. Field data
Tree-species labels were collected through ground surveys

on the basis of 23 circular sample plots. Among them 11 were
located in spruce dominated forest and the remaining 12 in
pine dominated forest. The size of each plot was 1000 m2,
except for one located in young forest, where the plot size
was reduced to 500 m2 due to a very high stem density. Tree
species, DBH, and tree coordinates were recorded for all trees
with DBH � 5 cm. For the purpose of this study, only the
annotated tree species and coordinates are used. Tree positions
were determined by measuring the azimuth and distance of
the trees from the plot center with a total station (Topcon
SokkiaSET5F). Plot center coordinates were determined using
differential Global Navigation Satellite Systems with two
Topcon Legacy E+ receivers as base and rover receivers,
respectively. A total of 2407 trees were measured inside the
23 plots. The field surveys took approximately one day per
plot involving the work of two experts.

D. Data preprocessing
The hyperspectral images were orthorectified using a digital

terrain model, atmospherically corrected [34] and normalized
[35] in order to reduce the spectral differences among the
images. The SWIR images were resampled at 0.4 m in order
to have the same spatial resolution of the VNIR ones.

Starting from the tree positions measured on the ground,
individual tree crowns (ITCs) were manually identified and
delineated on the hyperspectral data (see Figure 4). A total
of 1001 out of the 2407 field measured trees were identified
in the hyperspectral images. It is worth noting that during
the field measurements also trees located in the undercanopy
were measured, and thus these trees were not visible in the

TABLE I
NUMBER OF LABELED ITCS

Class Training set Test set
Pine 201 198

Spruce 258 243
Birch 42 31

Other species 14 14

hyperspectral data. The ITCs were grouped into the following
classes according to tree species: 1) Pine, 2) Spruce, 3) Birch,
and 4) Other species. The samples were divided into a training
set and a test set (see Table I). The two sets were defined in
order to have a similar composition in terms of tree species and
spatial distribution within the images. The values of the pixels
inside each ITC segment were averaged in order to obtain a
single spectral signature for each ITC. All the available bands
were used in the classification process.

630000 640000 650000 660000

66
10

00
0

66
20

00
0

66
30

00
0

66
40

00
0

66
50

00
0

66
60

00
0

Easting (m)

N
or

th
in

g 
(m

)

● ●● ●

● ●● ● ● ● ● ●● ●

● ● ● ● ● ● ● ● ●

0 10 Km

Aurskog−Høland

● Sample plots

N

Fig. 3. Map of the study area showing the location of the 23 sample plots
and hyperspectral data coverage. Inset map shows the location of the study
area (red rectangle) in the map of northwestern Europe.

VI. EXPERIMENTAL ANALYSIS

In this section we present the experimental analysis that we
carried out with the proposed CSAL method using both the
proposed strategies: 1) query with bounded horizon, and 2)
query with constrained budget.

A. Experimental Setting

The annotation cost ⇥(st, x) was defined as the sum of two
terms: 1) the traveling cost T for reaching the location of the
tree x (starting from the location of the last annotated tree xt),
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Fig. 4. False color representation of HySpex VNIR 1600 data acquired over
a plot. The manually delineated ITCs appear in yellow.

and 2) the labeling cost L for assigning the correct label to it:

⇥(st, x) = T (xt, x) + L(x). (5)

The traveling cost T considers the traveling time required by
the human expert to reach the location of x, depending on the
distance from xt and the speed of the considered transportation
mode. Two transportation modes are considered: by car or foot.
A precise evaluation of the traveling cost may also take into
account fuel expenses as well as any other costs. The labeling
cost L defines the cost of acquiring the right label for x once
the human expert is already on the site. This cost does not
depend on previously collected samples and here we assume
that it is the same for all the samples, i.e., L(x) = L. In the
most general framework, the different costs may be expressed
in monetary terms. For simplicity, in our experiments we
expressed them in terms of elapsed time. We considered a
labeling time L of 10 minutes and the traveling time T was
calculated according to the distance between samples and the
speed of the transportation mode. The human expert walks
from a tree to the next one if they are both in the same plot,
whereas he travels by car for moving to another plot.

It is worth noting that the considered annotation cost
⇥(st, x) represents a prediction of the expected real cost for
labeling sample x. Several unexpected factors related to the
accessibility of certain areas may affect the real annotation
cost. Nevertheless, reasonable estimation of the annotation cost
can be obtained by considering the distance between samples,
the mean traveling speed and some prior information about
the considered geographical area. One can also consider the
altitude of the samples for obtaining a better estimate of the
traveling cost by considering a digital elevation model (DEM)

of the area. Since the area considered in our experiments
is relatively flat, the altitude information was not taken into
account.

The classification was performed using an SVM with a one-
against-all (OAA) multi-class architecture. Feature vectors
associated with ITCs contain the VNIR and SWIR spectral
channels as well as the position coordinates. All the exper-
iments were performed in ten trials with initial training sets
made up of 54 labeled samples (ITCs) randomly selected from
three adjacent plots. 456 and 439 samples taken from the other
20 plots were used as pool U and test set, respectively. The
model selection of the SVM was carried out on the basis of the
accuracy obtained on a validation set made up of 52 samples
taken from the same plots of the initial training sets.

The prediction utility was calculated considering a tradeoff
between uncertainty and diversity. The uncertainty criterion
was evaluated considering a confidence measure defined for
the multi-class case as:

c(x) = f1(x)� f2(x) (6)

where f1(x) and f2(x) are the first and second highest output
score of the binary SVMs in the OAA architecture. Querying
the sample that minimizes c(x) results in the selection of the
closest sample to the boundary between the two most probable
classes. The diversity was computed considering the kernel
cosine-angular similarity between points [16]:

k⇤(x, xi) =
k(x, xi)p

k(x, x)k(xi, xi)
, (7)

where k(·, ·) is a positive semidefinite kernel function. In our
experiments we adopted an RBF kernel function for both the
diversity assessment and the SVM classification.

B. Query with Bounded Horizon: Results
In the experiments with the bounded-horizon query, the

immediate prediction utility was computed as:

u(st, x) = �
 
(1� ⇢)c(x) + ⇢

tX

i=1

k⇤(x, xi)

!
, (8)

where ⇢ 2 [0, 1] tunes the tradeoff between uncertainty and
diversity, and st = x0 . . . xt. The reward function was finally
calculated as:

R(st, xt+1) = (1� �)u(st, xt+1)� �⇥(st, xt+1) (9)

with � 2 [0, 1]. The values of c(x),
Pt

i=1 k
⇤
(x, xi) and

⇥(st, xt+1) for all samples in the pool were normalized
between zero and one to make them comparable.

It is worth noting that a full exploration of the general de-
cision tree as described in algorithm 1 can be computationally
prohibitive (for a large pool and horizon), and moreover, we
should consider that the query function is run in real-time,
i.e., while the human expert is on the field. For this reason,
one should use a very fast heuristic to explore the decision
tree. Here, we considered a heuristic for pruning samples from
the decision tree in order to speed up the query function. The
heuristic is based on restricting the search to the set of samples
with the m highest immediate rewards.
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We compared the results of the proposed CSAL method
using the query with bounded horizon (CSAL Horizon Looka-
head) with the following baseline methods: 1) random selec-
tion (Random), 2) selection by minimum confidence (Uncer-
tainty), 3) selection of the closest geographical sample (Min-
imum Distance), 4) myopic CSAL (Myopic CSAL Horizon).
One sample is selected for labeling at each iteration. The
myopic CSAL selects the next sample according to just the
immediate reward, as defined in (9), without looking ahead.
This is equivalent to the proposed query with bounded horizon
imposing H = 1. Note that baselines 2 and 3 are special cases
of the myopic CSAL by setting � = 1 and � = 0, respectively.
Selection of the closest geographical sample represents a sim-
ulation of traditional (passive) sampling procedures, which are
not making use the learner’s feedback. For the CSAL methods
(with and without lookahead), the value of the parameter �,
tuning the tradeoff between prediction utility and annotation
cost, was set to 0.2. For the proposed CSAL with lookahead,
we set the planning horizon H = 3, the discount factor
� = 0.9, the parameter tuning the tradeoff between uncertainty
and diversity ⇢ = 0.8, and the parameter for heuristic pruning
of the tree search m = 100.

Figure 5 shows the obtained curves of the overall accuracy
(OA), averaged over the ten trials starting from the initial
training sets, versus the number of labeled samples added to
the original training set. Not surprisingly, the standard active
learning method based on uncertainty (i.e., not considering the
annotation cost) resulted in the best performances in this case.
However, it is more important to consider Figure 6, which
reports the average OA with respect to the time spent by the
human annotator to travel and collect sample labels in the field.
The learning curves are reported up to 80 hours of field work in
order to highlight the difference between the proposed method
and the other baselines. These results show that the proposed
method substantially improves the classification accuracy of
the considered baselines with respect to the annotation cost.
The myopic CSAL improves the other baselines; CSAL with
lookahead further improves the classification accuracy with
respect to the myopic method. The advantage is particularly
evident in the first 30 hours of the simulations. It is worth not-
ing that the proposed CSAL method leads to the top accuracy
of 92.6% in 50 simulated hours, whereas a traditional approach
like minimum distance requires approximately 80 hours to
get the same accuracy. Since the minimum distance approach
reasonably represents how the real field campaigns are carried
out with a standard sampling approach, the difference between
the learning curve obtained with that approach and of the
proposed CSAL method gives a quantitative evaluation of the
potential improvement that the proposed method can offer
in real applications. Uncertainty-based method and random
selection take much longer to converge to the top accuracy
(150 and 340 hours, respectively). Figure 7 reports the graphs
of the time spend by the human expert to travel and collect
samples versus the number of collected samples. As one can
observe from these graphs, using the uncertainty-based method
and random selection, the human expert takes in average much
longer to reach the location of the next sample, leading to very
high traveling costs.
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Fig. 5. Average overall accuracy versus the number of labeled samples added
to the initial training set.
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Fig. 6. Average overall accuracy versus the time spent by the human annotator
to travel and collect sample labels in the field.

C. Query with Constrained Budget: Results

In the experiments with the constrained-budget query, the
immediate prediction utility was computed as:

u(st, x) = max

 
0, 1� c(x)� ⇢

tX

i=1

k⇤(x, xi)

!
, (10)

where ⇢ 2 [0, 1] tunes the trade-off between uncertainty and
diversity and st = x0 . . . xt. The reward was defined as
the prediction utility, i.e., R(st, xt+1) = u(st, xt+1). This
particular definition of the prediction utility was considered in
order to have only positive reward values and for stopping the
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Fig. 7. Time spend by the human expert in the annotation process versus the
number of collected samples.

recursive tree exploration when R(st, xt+1) = 0. This results
in an additional stopping criterion for the lookahead planning
that speeds up the computation of algorithm 2.

We compared the results of the proposed CSAL method
using the query with constrained budget (CSAL Budget
Lookahead) with the following baseline methods: 1) random
selection (Random), 2) selection by maximum uncertainty
(Uncertainty), 3) selection of the closest geographical sam-
ple (Minimum Distance), 4) myopic CSAL (Myopic CSAL
Budget). One sample is selected for labeling at each iteration.
The myopic CSAL method selects the most uncertain sample
among the ones whose immediate cost does not exceed the
budget B. We set B = 30 minutes for both the myopic and
the nonmyopic CSAL method. We set the tuning parameter
⇢ = 0.3.

Figure 8 shows the obtained average OA versus the number
of labeled samples added to the original training set. Figure 9
reports the average OA as a function of the time spent by
the human annotator to collect sample labels in the field.
The obtained learning curves confirm the effectiveness of
the proposed method, which results in significantly higher
classification accuracies with respect to the traveling cost
compared with the considered baselines. We observe that
also in this case the proposed CSAL method leads to an
OA of 92% in 50 hours of field work, whereas a traditional
approach like minimum distance requires approximately 80
hours to reach the same accuracy. Figure 10 shows the
averaged producer’s accuracies (PA) of the classes obtained
with the proposed CSAL method with lookahead versus the
time spent by the human annotator for the sample collection.
Table II reports the averaged accuracies of the classes obtained
at different times with the proposed method CSAL with
lookahead and the myopic strategy. Accuracies are reported
in terms of producer’s accuracies for the single classes [36]

and OA (mean values and standard deviations are reported).
Results show that the proposed method lead in general to
better accuracies with a lower standard deviation on the ten
trials. The practical usefulness of the proposed method in
the context of tree species classification is remarkable. As
underlined in the introduction, a reduction of the time for the
field measurements can noticeably reduce the inventory costs.
From Table II it is clear that if only a detailed classification
of Pine and Spruce species is needed, 30 hours of field work
are enough for obtaining accurate classification results, i.e.,
producer’s accuracies higher than 90%. These two species
represent in Norway more than 80% of the total forest volume
[37], and 99% of the total harvested volume [38] and thus a
proper distinction of them is very important. The classification
of classes “Birch” and “Other species” is problematic because
very few samples are available for those classes and the
classifier cannot therefore accurately discriminate them from
the other classes (species different from Pine, Spruce, and
Birch are very rare in boreal forests).
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Fig. 8. Average overall accuracy versus the number of labeled samples added
to the initial training set.

D. Operational Considerations

The choice between the two proposed query functions may
depend on the available prior information that can be used for
setting the free parameters of the methods. In case of using
the query with bounded horizon, the � parameter can be set
by taking into account prior information about the expected
average traveling cost (time) E{T } and the fixed labeling cost
L . If L >> E{T }, the effect of using the cost ⇥ in the query
function becomes negligible. If L << E{T }, we expect that
the optimal � should be closer to one. On the basis of this
observation, a possible heuristic to choose � is the following:

ˆ� =

E{T }
E{T }+ L . (11)
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TABLE II
AVERAGE PRODUCER’S ACCURACIES, AND OVERALL ACCURACIES OBTAINED AT DIFFERENT TIMES WITH THE PROPOSED METHOD CSAL BUDGET WITH

LOOKAHEAD (CSLA) AND THE MYOPIC CASE (CSMY), AVERAGED OVER THE TEN TRIALS (MEAN VALUES AND STANDARD DEVIATIONS ARE
REPORTED).

Class 20 hours 40 hours 60 hours
CSLA CSMY CSLA CSMY CSLA CSMY

Pine 81.1% ±8.6 78.1% ±7.1 95.0% ±1.0 90.7% ±1.5 96.5% ±0.9 95.9% ±0.5

Spruce 92.0% ±2.2 92.0% ±2.7 94.5% ±1.6 94.1% ±0.9 95.0% ±1.3 93.8% ±1.4

Birch 40.0% ±15.7 58.5% ±7.6 62.3% ±8.8 51.9% ±5.5 66.2% ±4.7 59.6% ±5.2

Other Species 12.5% ±16.7 2.5% ±5.3 11.3% ±4.0 12.5% ±0.0 12.5% ±0 17.5% ±6.5

OA 83.0% ±3.1 82.6% ±2.9 91.3% ±1.0 88.7% ±1.2 92.4%±0.6 91.2% ±0.9
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Fig. 9. Average overall accuracy versus the time spent by the human annotator
to travel and collect sample labels in the field.

Figure 11 reports the learning curves obtained using the query
with bounded horizon setting different values for the parameter
�. These graphs show that the results are not particularly
sensitive to the parameter value. However, in several real
applications, the query with constrained budget might be more
appropriate. In such a case, the tradeoff between immediate
utility and annotation cost should not be fixed in advance. The
value of the budget B can be set not critically by considering
mainly the minimum annotation cost (time) and computational
issues. Figure 11 reports the learning curves obtained by the
query with constrained budget using different values for B.
Better accuracies are obtained with small values of B, because
the estimation of the expected prediction utility becomes
obviously less reliable after several time-steps planned in the
future. Typical values are in the order of few (e.g., two or
three) times the minimum annotation time. The same consid-
eration applies to the choice of H in the query with bounded
horizon (typical values are two or three in that case). Typical
values of the parameter ⇢ are between 0.3 and 0.7. However,
also the choice of this parameter does not significanlty affect
the performance of the proposed method. This behavior is
confirmed by the graphs reported in Figure 13, which reports
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Fig. 10. Average producer’s accuracies of the classes obtained with the
proposed query with constrained budget versus the time spent by the human
annotator to travel and collect sample labels in the field.

the learning curves of the proposed CSAL method with budget
contraint for different values of such parameter.

Regarding the selection of the initial training set, several
possible sampling procedures can be adopted, which depends
on the application field. In the specific case of forest invento-
ries, the field data collection is usually carried out inside field
plots. The initial training samples can therefore be collected
by annotating tree labels from few (e.g., 2 or 3) sample plots.
This is the procedure adopted in our experimental analysis.
The proposed interactive CSAL method is independent from
the sampling strategy adopted for selecting the initial plots.
The authors in [39] introduces an unsupervised method for
plot or tree selection that can be adopted as the initial step
of the proposed interactive CSAL method. It is worth noting
that the size of the initial training set is usually substantially
smaller than the size of the training set at convergence. In
our experiments, the initial training set is made up of 52
samples, while the convergence is reached with approximately
200 training samples. Moreover, the initial training set is
collected from three adjacent plots, for a cost of 9.2 hours
of field work (calculated according to the collection with a
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Fig. 11. Average overall accuracy versus the annotation time obtained
by the query with bounded horizon using different values for the tradeoff
parameter �.
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Fig. 12. Average overall accuracy versus the annotation time obtained by the
query with constrained budget using different values of budget B.

minimum distance approach). The size and the quality of the
initial training set is not particularly critical for the subse-
quent selection process. We carried out additional experiments,
considering initial trainings sets collected in only 2 adjacent
plots (41 labeled samples) corresponding to 7 hours of field
work (calculated as in the previous case). Figure 14 shows the
learning curves obtained by the CSAL with constrained budget
and the baselines, starting from these smaller initial training
sets. From this results, we can observe that the size of the
initial training set does not affect the convergence capability
of the proposed CSAL method. This result is in agreement
with other studies about AL reported in the literature (e.g.,
[3], [25], [26]).

Table III reports the mean query and annotation times for
the considered selection strategies, respectively. The query
time considers the mean computational time for retraining the
SVM with the last labeled sample and for selecting the next
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Fig. 13. Average overall accuracy versus the annotation time obtained by the
query with constrained budget using different values of rho.
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Fig. 14. Average overall accuracy versus the time spent by the human
annotator to travel and collect sample labels in the field. Initial training sets
are collected on 2 adjacent plots (41 initial training samples) corresponding
to 7 hours of field work.

one. The experiments have been carried out using a laptop
computer with a 2.2 GHz CPU and 8 GB of RAM. The
annotation time refers to the mean time taken by the human
expert to reach the location of the selected sample and to label
it. The computational time required by query with bounded
horizon is obviously higher than the one of the myopic method
and the other competing strategies, but it is still negligible
with respect to the annotation time. The implementation of
the query with constrained badged resulted in a very fast
computation. Both the proposed methods are therefore suitable
(in terms of computational requirements) for the considered
application.
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TABLE III
MEAN QUERY AND ANNOTATION TIMES FOR THE CONSIDERED SELECTION
STRATEGIES. QUERY TIMES CONSIDER THE MEAN COMPUTATIONAL TIME
FOR RETRAINING THE SVM WITH THE LAST LABELED SAMPLE AND FOR

SELECTING THE NEXT ONE. THE ANNOTATION TIMES REFER TO THE
MEAN TIME TAKEN BY THE HUMAN EXPERT TO REACH THE LOCATION OF

THE SELECTED SAMPLE AND TO LABEL IT.

Selection Strategy Query Annotation
Random 0.073 s 50.2 min

Uncertainty 0.120 s 48.9 min
Minimum Distance 0.085 s 10.5 min

Myopic CSAL Horizon 0.123 s 16.9 min
Myopic CSAL Budget 0.090 s 13.2 min

CSAL Horizon Lookahead 1.248 s 17.0 min
CSAL Budget Lookahead 0.092 s 16.5 min

VII. CONCLUSION

In this paper, we proposed a novel cost-sensitive active
learning method that allows one to plan the sequential annota-
tion process in order to maximize the long-term classification
accuracy while minimizing the total annotation cost. To this
end, the active learning problem was modeled in the frame-
work of a Markov Decision Process. Two possible strategies
to address the optimization problem have been proposed,
giving rise to the definition of two different query functions:
1) query with bounded horizon, and 2) query with limited
budget. The proposed method was applied to the problem of
optimizing the ground sample collection by a human expert
for the classification of forest tree species using hyperspectral
images. The experimental results show the effectiveness of the
proposed query functions with lookahead and their significa-
tive improvements over myopic strategies and other baseline
methods. We observed that the proposed queries converge to
a high classification accuracy with a significant lower cost
compared to state-of-the-art methods.

It is worth noting that the implementation of the proposed
method in the considered scenario of forest inventories re-
quires a change in the standard protocols used for ground
surveys. New and more effective protocols can be defined by
leveraging the information of geo-referenced hyperspectral im-
ages to extract tree features and coordinates. The information
of the tree coordinates extracted from RS data is generally
not considered in standard protocols, but can be effectively
considered by the CSAL method. Field surveys can then be
guided by the proposed strategy to interactively classify the
species of the trees identified in the hyperspectral image with
the aid of a portable computer or a tablet. This may reduce
significantly the costs of the inventory.

In general, the proposed method can be applied to any
learning problem where the cost associated with the annotation
of a given sample depends on the previously labeled samples.
This is the case when annotating a queried sample is an action
that changes the state of a dynamic system, and the cost
is a function of the state of the system. We are currently
investigating the use of the proposed method for different
applications.
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