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Abstract

This paper presents a computer vision algorithm that detects, by analyzing lane-
marking detection results, stop-lines and tracks, using an unscented Kalman filter,
the detected stop-line over time. To detect lateral and longitudinal lane-markings,
our method applies a spatial filter emphasizing the intensity contrast between lane-
marking pixels and their neighboring pixels. We then examine the detected lane-
markings to identify perpendicular, geometry layouts between longitudinal and lat-
eral lane-markings for stop-line detection. To provide reliable stop-line recognition,
we developed an unscented Kalman filter to track the detected stop-line over frames.
Through the testings with real-world, busy urban street videos, our method demon-
strated promising results, in terms of the accuracy of the initial detection accuracy and
the reliability of the tracking.
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1 INTRODUCTION

To be deployed in real world driving environments, self-driving cars should be capa-
ble of complying with the traffic rules, i.e., understanding rules in place and execut-
ing its driving maneuvers as dictated. For example, an autonomous vehicle should be
able to recognize a stop-line and stop at the detected stop-line. Such a capability is
a crucial one that self-driving cars must acquire, to drive along with manually-driven
cars. However, a development of such an intelligent driving behavior is challenging
as it requires a seamless and reliable execution of multiple relevant sub-tasks; recogni-
tion of the traffic rule in place (e.g., recognizing a lateral lane-marking as a stop-line),
decision-making of appropriate driving behavior (e.g., slowing down to stop at the
line), motion-planning and vehicle acutation control (e.g., following the computed tra-
jectory with appropriate speed). Each of these tasks needs to be flawlessly executed
to comply with the traffic rule. As a successful completion of these tasks begins a
recognition of stoplines, this paper presents an effort, as a first step toward developing
of such an intelligent driving behavior, of developing a computer vision algorithm that
detects stop-lines and tracks them over time.

A successful recognition of on-road-surface traffic devices such as stop-lines and
other road-markings is important for successful development of advanced-driver as-
sistance systems or self-driving cars because it can be used to localize ego-vehicle
position [2, 17], and build a map of urban driving environment [2, 5, 8]. For instance,
Barth et al manually marked stop-line locations to build a map of stop-lines for lo-
calization [2]. Wu and Ranganathan transfomed stereo camera images into an inverse
perspective image to detect road-markings (e.g., directional arrows, railroad crossings,
etc.) and used the features extracted from the detected road-markings to localize the
position of ego-vehicle [17]. Choi et al. also converted an input perspective image
into an inverse perspective image and applies multiple steps of morphological opera-
tors to detect a pedestrian-crossing [5]. Most works on detecting on-road-surface traffic
devices including ours use an inverse perspective image because the spatial layout be-
tween lane-markings is recovered, e.g., two longitudinal lane-markings are appeared
to be parallel. Our approach is different from existing ones in that 1) we examine the
geometric layouts between the detected, longitudinal and lateral lane-markings, 2) we
develope a Bayes filter to track the detected stop-lines, and 3) our testing scenes are
more complex and challenging than those of two previous works [2, 5]. In particular,
our testing images are more challenging to detect stop-lines in that the lateral and lon-
gitudinal lane-markings for stop-lines and for lane-boundaries are not always visible
because of occlusions by neighboring vehicles and other urban structures, and painting
qualities.

The pipeline of our stop-line recognition algorithm begins with a lane-marking de-
tection. A stop-line is a traffic device painted on roads (mostly and nearly) orthogonally
to the vehicle’s travel direction and intended to dictate the point where cars should stop
[14]. Its width varies, but the color and material are mostly identical to longitudinal
lane-marking. Based on this fact, we extended our longitudinal lane-marking detection
algorithm [11, 12] to identify lateral lane-markings. Many excellent works have been
done in the field of lane-marking detection. We refer to [7, 9] for a comprehensive
literature survey and here we briefly discuss only the work relevant to ours. To de-



tect longitudinal lane-markings, some investigated lane-markings’ appearances (e.g.,
regularity in shapes [13] and homogeneity in color [4]). Others including ours have
utilized the fact that there are intensity contrasts between lane-marking pixels and their
neighboring pixels [1, 3, 10]. Other methods have used extra information, such as
geometric structures of road lanes or road scenes, to improve lane-marking detection
results [16, 18]. Similarly, we utilize the result of vanishing point detection to improve
an initial result of longitudinal, lane-marking detection [12].

For most of cases, our lane-marking detection works reasonably well. Thus, given a
set of detected lateral and longitudinal lane-markings, one might think it would be easy
as just picking up one of the detected lateral lane-markings. In practice, however, this
is not the case because (lateral and longitudinal) lane-markings are not always clearly
visible, due to occlusions and low quality of painting. In other words, for the busy
urban street scenes, the lane-marking detector would fail to correctly detect all of the
true lane-markings. As results, some of the detection results may include erroneous
and partial detections. To effectively handle such potentially erroneous detection of
lane-markings, we further examine the spatial layout between the detected lateral and
longitudinal lane-markings. In particular, we seek for the lateral lane-marking that has
the strongest orthogonal layout to longitudinal lane-markings, to detect a stop-line.

B

Figure 1: Examples of lateral and longitudinal lane-marking detection. (a) To pro-
duce an intensity image about lane-markings, a spatial filter is applied to emphasize
the intensity contrasts between lane-marking pixels and their neighboring pixels. (b)
An intensity thresholding and a connected-component grouping algorithm are applied
to the resulting intensity image shown (a), to produce a set of lane-marking blobs. The
detected lane-marking blobs are depicted in different colors. (c) The results of our
lane-marking detection depicts longitudinal lane-markings in green and lateral lane-
markings in cyan. The green-circle at the mid of the image shows the detected van-
ishing point and the yellow line indicates the estimated horizon line. (d) The image
sub-region delineated by an orange dashed rectangle in (c) is, through an inverse per-
spective mapping, transformed into a ground image for a stop-line detection.

On busy street images, occasionally no lateral lane-markings appear on the input
images, due to occlusions by neighboring cars. For such extreme, but not uncommon
cases, our lane-marking detector would completely fail to detect lane-markings because
no relevant image features are available. To effectively tackle such cases, we develop
an unscented Kalman filter (UKF) to track the detected lane-marking over frames. This
assumes that the images with no relevant features will appear only after the image with
relevant features, where our detector is able to detect stop-lines. Once our detector
detects stop-lines, the UKF tracks it over frames to fill the potential gaps of stop-line



detections.

Our contributions include 1) a development of vision-based stop-line detection
based on a lateral and longitudinal lane-marking detection, 2) a development of stop-
line tracking using an unscented Kalman filter, and 3) an empirical evaluation of the
proposed algorithms.

In what follows, we first explains how our lane-marking detector works in Section
2.1. We detail how our detector, through an investigation of the detected, lateral and
longitudinal lane-markings’ geometric layouts, identifies a stop-line in Section 2.2 and
tracks the detected stop-line over frames in Section 2.3. We then discuss the findings
from experiments in Section 3.

2 RELIABLE STOP-LINES DETECTION OVER TIME

To reliably identify a stop-line from a given input image, we first detect lateral and
longitudinal lane-markings [11, 12]. We examine the characteristics of each detected
lane-marking and their geometric relations to identify lateral lane-markings as stop-
line candidates. A detection of stop-lines initiates a Bayes filter to track them over the
frames.

2.1 Longitudinal and Lateral Lane-Marking Detection

We detect lane-markings by applying a spatial filter to an input image. The filter is
designed to identify the intensity contrast between lane-marking pixels and their neigh-
boring pixels [10]. We define a region of interest (ROI) for lane-marking detection and
apply this spatial filter to the ROI, to obtain a new intensity image about lane-markings.
Figure 1 (a) shows a resulting intensity image about lane-markings. To identify a set of
lane-marking blobs, we first do an intensity thresholding to this new intensity image,
to produce a binary image of lane-markings and then apply a connected-component
grouping. Figure 1 (b) shows the identified lane-marking blobs. To simplify the repre-
sentation of each pixel blob, we fit a line segment to the pixel blob. To this end, we com-
pute the eigenvalues and eigenvectors of the pixel coordinates’ dispersion matrix. The
eigenvector, e, associated with the largest eigenvalue is used to represent the orienta-
tion of a line segment and its length, 1 = (¢, p) = (atan2(ei 2,€1,1), T cos g+ sin ¢),
where T = %Eixi, Y= %Eiyi. A pixel blob, lb;, is then represented as a triplet of the
coordinates of its centroid, x; and y;, and its orientation, ¢;. For this line-segment
fitting, we tried three methods: the line-fitting based on eigen-analysis, the probabilis-
tic, and the standard Hough transform. We found the eigen-analysis method to work
best in terms of the number of resulting lines and representation fidelity to the patterns
of low-level features. Figure 1 (c) shows an example of the lane-marking detection
results where green pixel blobs represent longitudinal lane-markings and cyan ones
represent lateral lane-markings. We then project this lane-marking detection results
onto a ground image (or an inverse perspective image). We do this to remove any per-
spective effects, e.g., make parallel longitudinal, lane-marking appear to be parallel (or
nearly parallel). Figure 1 (d) shows an inverse perspective image that is acquired by
transforming the image region delineated by orange dashed line in Figure 1 (c).



2.2 Stop-Line Detection

A stop-line is a lane-marking painted perpendicularly to the driving direction of a road.
The orientations of some stop-lines are slanted, but for most cases, the orientation of a
stop-line is nearly orthogonal to that of longitudinal lane-marking — the one delineates
the boundary of a road-lane. The previous section described how our algorithm detects
lateral and longitudinal lane-markings. This section details how our algorithm further
analyzes the detected lane-markings to detect stop-lines.

Our lane-marking detector works reasonably well for most of urban driving scenes
[12]. However, for given busy urban streets, it would fail to correctly detect all of
the true lane-markings. This is primarily because lane-markings are not clearly vis-
ible, due to occlusions and obsolete paintings. This makes the problem of stop-line
detection more challenging. To effectively handle this challenge, we define, using the
longitudinal, lane-marking detection results, a region-of-interest (ROI) and analyze the
geometric relation between the detected, lateral and longitudinal lane-marking. In par-
ticular, we define a region of interest to filter out some of the detected lane-marking
blobs irrelevant to stop-line detection and reduce the area of the image region to search
for stop-lines. Clearly the optimal ROI would be the boundary of the road-lane that our
vehicle happens to be driving on. However, at busy urban streets, it is challenging to
even clearly detect longitudinal lane-markings about left and right boundary of a road-
lane. Thus we roughly define a rectangular ROI based on the results of our longitudinal
lane-marking detection results and a prior knowledge about a road-lane width in pixel.
An cyan, dashed-line rectangle at Figure 2 shows an example of the ROI about the
current road-lane. When the longitudinal lane-marking detection returns a solid, white
lane-markings, this would produce a laterally-narrower rectangular ROI.

For the detected lateral, lane-markings within the ROI, our algorithm groups them
in terms of longitudinal or y-axis distance between lane-markings. This is because
some of the detected, lateral lane-markings belonging to a true lateral lane-marking
appear to be separate, due to occlusion by other neighboring vehicles.

For each of the lateral, lane-marking groups, we compile a list of points that each
point is either end-point of a lateral, lane-marking. And then we fit a line segment to the
list of points, as we did it for representing a lane-marking blob, and represent a lateral,
lane-marking, Im,,, as a vector of the coordinates of its two end-points (pj=1,2 =
{{L‘m, y}"}), its orientation, t,,, and its length, p,,. A score function, f(lm.,,) is used

J
to compute the likelihood of a lateral, lane-marking group for being a stop-line.

flmy,) = ah(lmy,) + (1 — a)g(im,y,) D

where h examines how likely the appearance of a given lateral, lane-marking group,
Im,, is to be a stop-line and g investigates how strong the lane-marking group, Im,,
is supportive by longitudinal, lane-markings. In particular, h(lm.,,) computes how
perpendicular the lateral, lane-marking’s orientation is with respect to the road’s driv-
ing direction by computing sin(v,,), where sin(¢,,) € [0,7]. To be supportive, a
longitudinal lane-marking {b; should be located between two end-points of the lateral,
lane-marking group, Im,,. To check this, our algorithm performs a z-coordinate over-
lap test. Suppose that 7" and 3 from a lateral lane-marking group, where z7* < x5,

and 7} and 7, from a longitudinal lane-marking, where x5 < . We can deter-



Figure 2: An example of stop-line detection result. The inlet image at the top right
enlarges the image subregion by the yellow rectangle.

mine that there is no overlap between these two x ranges if " > 2!, and 23 < z5.
Once a detected longitudinal lane-marking is regarded to be supportive for a lateral,
lane-marking group, the function, g(lm,,,) examines 1) how perpendicular they are, 2)
how long the longitudinal lane-marking is, and 3) how far they are each other. Our
algorithm chooses then the lateral, lane-marking group that maximizes the likelihood
function, f(Im,,). Figure 3 shows some examples of the stop-line detection where the
detected stop-lines are painted in red.

2.3 Stop-Line Tracking

To reliably and consistently identify a stop-line, we track, using a Bayes filter, the
detected stop-line. Due to the current setup of our vision system (e.g., resolution, CCD
size, lens, mounting height, etc.), our stop-line detector begins to work when a stop-
line appears about 30 meters in the front of ego-vehicle. For most time, within such
a short distance, the relative motion between ego-vehicle and the stop-line is linear
because ego-vehicle drives on the same lane until it passes the stop-line. Occasionally,
however, the motion could be nonlinear when ego-vehicle changes lane. Based on this
observation, we implement a nonlinear Kalman filter, unscented Kalman filter (UKF)



Figure 3: Examples of stop-line detection results. The red pixel blobs represent the
detected stop-lines, the green (cyan) ones represent the detected longitudinal (lateral),
lane-markings. The red, lateral lane-markings are detected stop-lines.

[15].

We define the state of a detected stop-line as, x = [y, x| . We define the state
such a way because of two observations: 1) a true stop-line moves toward the bottom
of an ground image, as ego-vehicle drives toward a stop-line and 2) although the x-
coordinate of a stop-line changes, it is not critical to track the x-coordinate. Figure 4
shows the coordinate of a ground plane where our UKF tracks the detected stop-line
over frames.

}T

Given the previously estimated state, Xy, the location of a stop-line at the next time
step is predicted by the following prediction model:
— | yx+vAt
Xpr1 = [ 0, } @)

where x; ., , is the state predicted by the above motion model, v is the speed of ego-
vehicle and At is a discretized time unit. The value of v is in fact interpreted into the
number of pixels that approximates, on the ground plane, the speed of ego-vehicle in
miles per hour.

A motion model is used to predict the location of a detected stop-line at the next
time step. At the predicted state, x,_ ;, our filter also predicts an expected measure-
ment, Z.

N - + tan f(x; —
2= hxg,,) = | U600 o) 3)

where x; is the jth detected, lateral lane-marking’s z-coordinate and xg is the prede-
fined location of the x-coordinate of a stop-line being tracked.
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Figure 4: A ground plane where our stop-line tracker works. A stop-line being tracked
is represented by a triplet of the coordinates of its centroid and its orientation. A solid
line with two circles represents a projection of a lane-marking that is detected from an
input perspective image. Notice that the origin is at the top left.

To optimally estimate the state, these predictions should be corrected by the image
features obtained from the image frame where the predictions are made. To do so, we
use the detected, lateral lane-markings. In particular, each of the detected, lateral lane-
marking is used as a measurement for our UKF, z; = [y;, Gj]T. Note that the lateral
lane-marking used as a measurement is one of the lateral lane-markings in the lateral
lane-marking group used for the stop-line detection.

At a state update step, the state, X1, (and its covariance matrix Py) is estimated
by examining the difference between the expected measurement, Z and the actual mea-
surement, z, X, = X, + Ky(z; — 2;), Pp = P, — K P.KT). Where K is the
Kalman gain that determines how much the innovation (zy — Z) is used to compute
the estimate, xy,.

3 EXPERIMENTS

To evaluate the effectiveness of the proposed algorithms, we tested them against 485
urban street images. These images were acquired while driving on 15 intersections (i.e.,



15 instances of stop-lines) at busy urban streets where the roads were crowded with
cars and pedestrians. The vision sensor installed on our vehicle is PointGrey’s Flea3
Gigabit camera, which can acquire an image frame of 2448 x 2048 maximum resolution
at 8Hz. The CCD size of the camera is 2/3 inches and our lens is 8 milimeter, resulting
in horizontal (vertical) field of view 57.6° (44.8°). For a faster, real-time processing,
we rescaled the original resolution into half and used a predefined ROL, z1 = 0, 9 =
Lyiath—1, y1 = 1300 and yo = 1800 for the inverse-perspective transformation. These
y-values are in the original resolution. If the image is scaled to a half of the original,
these y-values are scaled as well.

We implemented the proposed algorithms in C++ with OpenCV libraries. Our im-
plementation of stop-line detection and tracking ran about 5 Hz on a 2.7GHZ quad
core. For the UKF, we used the Bayes++ package' to implement our boundary tracker
and initialized the state and its error (or covariance) matrix, xXg = [0, 90]T = [300, O]T
and Py = diag ([10%,0.01%]), where the values of  is in pixels, 6 is in radian. In ad-
dition, the noises of the process model, Q = diag ([102, 0.012]) and the measurement
model, R = [5?,0.01%].

Figure 5: Examples of stop-line tracking. The blue lines represent the detected (lateral
and longitudinal) lane-markings. The magenta lines are stop-line detection results, the
red lines are predictions of UKF, and the green lines are the result of UKF tracking.

\ Precision Recall

Detection Only 0.89 0.92
Detection-Tracking 0.94 0.95

Table 1: An error-metric comparison between the detection and the tracking of stop-
lines.

Table 1 shows experimental results that compare the performance between the de-
tection and the the tracking. For the “Detection-Only,” the stop-line detection method

'http://bayesclasses.sourceforge.net/Bayes++.html



Figure 6: Examples of testing images both detection and tracking of stop-lines failed.

described in Section 2.2 was used to detect stop-lines from individual input frames
and its performance was evaluated by examining whether its outputs correpond to the
true stop-lines. Whereas for the “Detection-Tracking” method, the “Detection-Only”
method was used to detect stop-lines from input image frames, if any, and then the
tracking method described in Section 2.3 was used to track the detected stop-lines.
Because that it is difficult to define the number of true negatives, we measure the per-
formance of the “Detection-Only” and “Detection-Tracking” using precision and recall
where the precision is the ratio of the correct outputs over the total number of outputs
and the recall is the ratio of the correct outputs over the total number of true stop-lines.
Note that 430 out of 485 test images contains the true stop-lines.

The “Detection-Only” method produced 445 outputs against 485 testing images
where 396 of them were correct and 49 were incorrect, and 34 true stop-lines were

not detected, resulting in the precision, 0.89 (= #‘ﬁg) and the recall, 0.92 (=
%). The performance of the “Detection-Tracking” method was the precision,

0.94 (= g5arss) and the recall, 0.95 (= 5x755). As expected, the “Detection-
Tracking” method outperformed the “Detection-Only” method. But the same time,
the “Detection-Only” method worked relatively well, even at the challenging urban
street images. The most mistakes the “Detection-Only” method made are from the
middle of the image sequences. In particular, the “Detection-Only” methods failed to
correctly detect a stop-line when no relevant image features are present at that image
frame. However, the tracking method was able to correctly predict the location of the
stop-line based on earlier detection results and based on the prediction model. The
performance gain by the tracking method explained the fact, whenever the detector
initiated the tracker to track the detected stop-lines, the tracker. worked well.

Although the performance of “Detection-Tracking” is promising, there are some
images that both the detection and the tracking of stop-line failed. Figure 6 shows
some of erroneous detections where a part of the true stop-lines was not detected; a
part of neighboring cars was detected; the part of cross-walk was detected.

4 CONCLUSIONS AND FUTURE WORK

This paper presented a new computer vision method that detects, through an analysis
of the detected lateral and longitudinal lane-markings, stop-lines and tracks, using an
unscented Kalman filter, the detected stop-lines over frames. To detect stop-lines, the
proposed algorithm detects, utilizing intensity contrasts between lane-marking pixels
and their neighboring ones, lateral and longitudinal lane-markings and then examines



orthogonal relation between the detected lane-markings. A stop-line detection algo-
rithm might fail to consistently detect the stop-line that its appearance vary over con-
secutive image frames. To effectively tackle with such a problem, we developed an
unscented Kalman filter to track the initially detected stop-line. Through the testings
with images about busy, urban streets, our algorithm demonstrated promising results.

In practice, it is very difficult to develop a perception algorithm that its performance
is reliable enough to be used for a close-loop system, (i.e., begin to slow down a vehicle
when a stop-line is detected.) Therefore a perception algorithm needs some guidance or
help from other systems. For example, Fairfield and Urmson built a map of traffic lights
to remove potential false-positive detection of traffic light bulbs while minimizing any
misses of traffic lights [6]. Without such a map, it would be very hard for them to
use their traffic light detector to control their self-driving cars. Their map helps the
detector by providing the information about where and when to look for the traffic
light bulbs. As a future work, we would like to build a map of stop-lines to enhance
the performance of our stop-line detection and tracking algorithm. To be useful, the
tracked stop-line should be associated with a real world coordinates for controlling
ego-vehicle, e.g.) slowing down its speed as it approaches to the tracked stop-line.
To this end, we would like to investigate a usage of homography and an alignment of
active sensor measurements with images for computing the information about metric
measurement.
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