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Abstract. In order to achieve smooth autonomous driving in real-life
urban and highway environments, a motion planner must generate tra-
jectories that are locally smooth and responsive (reactive), and at the
same time, far-sighted and intelligent (deliberative). Prior approaches
achieved both planning qualities for full-speed-range operations at a high
computational cost. Moreover, the planning formulations were mostly a
trajectory search problem based on a single weighted cost, which became
hard to tune and highly scenario-constrained due to overfitting. In this
paper, a pipelined (phased) framework with tunable planning modules
is proposed for general on-road motion planning to reduce the computa-
tional overhead and improve the tunability of the planner.
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1 Introduction

The development of autonomous passenger vehicles made substantial progress in
the 2007 DARPA Urban Challenge. Vehicle intelligence was achieved with vari-
ous planning schemes, but a common three-layer planning architecture underlay
the six entries that finished the competition [1]. Route Planning generated a
task-level plan in the form of a sequence of global checkpoints to be reached to
finish a task. Behavior Planning was responsible for making high-level maneu-
ver decisions considering the complex traffic conditions, like lane change, yield
to traffic, etc. Motion planning generated dynamically-feasible trajectories
containing both spatial and temporal information for tracking control.

1.1 Prior work

Elastic band [8] and other algorithms based on numerical optimization have been
widely used in other motion planning problems. For on-road autonomous driving,
however, the road structure provides strong heuristics, hence sampling-based
methods (with a suitable sampling pattern at reasonable density) are sufficient
to produce a feasible solution. Moreover, a sampling-based method also gives us
control over the scale of the search space, which is useful in pre-determining the
run-time.

? This work was supported by General Motors.
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The on-road motion planner of CMU’s Boss [2] spawned short-horizon (≤
30m) trajectories by laterally shifting from the lane centerline and picking the
closest-to-center collision-free trajectory for execution. This scheme could effi-
ciently handle low-speed navigation in the simplified competition environment.
However, its myopic nature could cause difficulties in realistic high-speed nav-
igation on urban/highway roads. Several subsequent on-road planners adapted
the spatial state-lattice concept originally used for unstructured environments to
road structure [10][7] and constructed a spatiotemporal lattice augmented with
time and velocity dimensions. The main idea was to exploit lattice search to
increase the planning horizon and to introduce a deliberative quality into the
formerly purely reactive planning.

In [7], the authors exhaustively generated and evaluated dynamically-feasible
trajectories connecting from the vehicle’s current position to fixed longitudinal
stations along the road over long spatial look-aheads with abundant speed varia-
tions. The planning was formulated as a trajectory ranking and search problem.
The primary drawback was the need to tune multiple incommensurable cost
terms to achieve a certain behavior, which is generically difficult. Meanwhile,
costs tend to overfit the particular scenario for which they are tuned. The plan-
ner alone was therefore not able to perform general on-road driving. It required a
higher-level decision maker to select the right cost set for different situations. An-
other practical disadvantage of this scheme was that, in order to retain reactivity,
the trajectories were exhaustively sampled and evaluated in a high-dimensional
space, which was computationally expensive.

In [3], the authors used a two-step planning approach that generated a
“coarse” trajectory to capture the desired maneuver first, then generated a “fine”
local trajectory to follow. The use of incommensurable costs posed a similar tun-
ing and overfitting problem to that in [7]. In [4], the authors used optimization
methods along with discrete search algorithms to generate a reference that can
deal with different road geometry and static objects. The approach was limited
to handling static objects, and the optimization routine could potentially cause
undesirable reference jittering due to cycle-to-cycle execution. This paper ex-
tends the the two-step planning work [3, 4] to adapt to more complex scenarios
encountered in reality and to improve the formulation for tuning purpose.
1.2 Motivation
Prior work demonstrated reactive (short planning horizon in Boss [2]) and delib-
erative (long-horizon lattice-based exhaustive trajectory sampling [7]) planning
schemes. The challenge is to achieve both planning qualities in a computation-
ally efficient planning framework. Second, prior planning was performed by a
single trajectory search process (i.e., ranking after sampling and evaluation of
candidates). Ranking was based on an overall cost, obtained by the summation
of multiple cost terms manually defined and tuned. Tunability was difficult to
achieve because the tuning multiple incommensurable costs is nontrivial, and
parameter overfitting (toward the scenario used for tuning) became inevitable.

We propose a planning framework (Fig. 1) for general autonomous on-road
navigation. It transforms the single trajectory search problem into a pipelined
(phased) planning process that adapts to a broad range of navigation situations:
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Phase 1: Traffic-Free 
Reference Planning

Phase 2: Traffic-Based 
Reference Planning

Phase 3: Local 
Trajectory Planning

Fig. 1: Cascaded Planning Framework

Phase 1: Traffic-Free Reference Planning generates a traffic-free refer-
ence trajectory for each drivable lane assuming that the vehicle will follow the
reference without any traffic interference. Only the geometry of the map is taken
into account at this phase of planning.

Phase 2: Traffic4-Based Reference Planning makes use of three ma-
neuver planners to generate a traffic-based reference by performing reference
variation to respond to static and moving objects through lateral swerve, longi-
tudinal speed variation or lane change.

Phase 3: Local Trajectory Planning generates a parametric trajectory
for tracking control to carry out the planned reference. A model is used to
evaluate vehicle response for dynamic feasibility and collision safety.

This framework exploits the independence between the stationary environ-
ment factors (traffic-free: e.g., road geometry) and the changing environment
factors (traffic-based: e.g., obstacles) in shaping the overall plan. Decoupled plan-
ning phases are devised. At each planning phase, planning is further decomposed
into smaller tunable planning problems. Parameters with clear physical interpre-
tations are preferred over arbitrarily designed cost terms. Incommensurable cost
parameters, if used, are carefully designed such that the effect of tuning and the
planning output are well understood. The remainder of this paper is organized
as follows: Sections 2, 3 and 4 describe the details of traffic-free, traffic-based
and local planning respectively. Section 5 demonstrates a few testing scenarios
to highlight the planning capabilities of our approach. Section 6 discusses the
contributions and limitations of our work and future work.

2 Traffic-Free Reference Planning

Traffic-Free Reference Planning

Reference Path 
Curvature Reduction

Reference Speed 
Curve Negotiation

Fig. 2: Traffic-Free Reference Planning Sequence

Based on the map, which contains road waypoints and speed limit infor-
mation, a continuous path curve and speed profile are generated to provide a
smooth reference whenever the route plan is updated. To achieve this, two plan-
ning modules are executed sequentially, as illustrated by Fig. 2.

2.1 Reference Path Curvature Reduction

The map waypoints are first interpolated to generate lane reference centerlines
Lcl. The goal is to reduce the maximum curvature of Lcl for both comfort and

4 In our terminology, traffic may refer to static obstacles and moving objects like
pedestrians, bicyclists or surrounding vehicles.
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Fig. 3: Reference Curvature Reduction Formulation. The black dashed curve
and the red dashed curve represent the lane reference centerline and curvature-
reduced path, respectively. The blue and red circles are the sampled control
points and the optimized control points, respectively.

control purposes. As illustrated by Fig. 3, a modified Douglas-Peuker algorithm
is first used to adaptively sample the control points {pi} on Lcl to be denser
in curvy regions, such that the projected distance dpi from pi to the line con-
necting pi−i and pi+i is below a certain threshold dmax, and the longitudinal
distance spi→pi+1

between the two points pi and pi+1 is always within the range

[smin, smax]. The control points {pi} are “nudged” laterally to obtain optimized
control points {p∗i }, which are then interpolated to generate a curvature-reduced
lane reference path Ltf :

{p∗i } = argmin
{pi}

∑
all i

Ccr(pi) (1)

where

Ccr(pi) = ‖
pi − pi−1
|pi − pi−1|

−
pi+1 − pi
|pi+1 − pi|

‖

The cost term Ccr measures the cumulative heading changes of the control
points. The boundary for lateral nudges [Bright, Bleft] explicitly tunes the extent
of optimization, which is applied to the control points whose curvature is above
a certain threshold as represented by the grey region in Fig. 3.

2.2 Reference Speed Curve Negotiation

Based on the curvature-reduced reference path Ltf , a speed profile is gener-
ated as the speed plan. Imposing a few dynamic constraints with an iterative
algorithm explained in [4] proves to be very effective in achieving smooth curve
negotiations. The routine “chips away” the excessive dynamics starting from the
speed limit. For each iteration, the preferred peak lateral acceleration alat is
applied first to bound the maximum value along Ltf :

v ≤ inf{
√
alat
κ
, vmax} (2)

where κ is the curvature of the traffic-free referene path.
Notice that

√
alat
κ approaches/reaches singularity on low-curvature/straight

segments as κ → 0. Though capped by the speed limit vmax obtained from the
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Fig. 4: Traffic-Free Reference Planning. (a) depicts a lane segment, its centerline
and the curvature-reduced reference path. (b) compares the curvature plots of the
centerline and the curvature-reduced reference path. (c) illustrates the preferred
and capping speed profiles to compensate for lane curvature.

map, the speed profile is still unachievable since the singularity makes acceler-
ations extremely high entering/exiting a turn (grey rectangular regions in Fig.
4c). Preferred longitudinal acceleration alon and deceleration dlon are therefore
applied:

dlon ≤ v̇ ≤ alon (3)

Still, acceleration jerks may be observed (blue triangular regions in Fig. 4c). A
maximum longitudinal jerk jlon constraint is therefore applied:

|v̈| ≤ jlon (4)

The generated speed profile is denoted as ξ∗prefer. The same algorithm can
obtain a capping speed profile ξ∗capping (purple curve in Fig. 4c), that is on the
verge of breaking vehicle dynamics constraints (e.g., tire grip) with a different
set of parameters ālat, ālon, d̄lon and j̄lon. These parameters have strong physical
meanings in characterizing speed variation, hence are intuitive to tune.

3 Traffic-Based Reference Planning

Traffic-Based Reference Planning

Lane-Change 
Maneuver Planner

Lateral (Swerve) 
Maneuver Planner

Longitudinal (Speed) 
Maneuver Planner

Fig. 5: Traffic-Based Reference Planning Sequence

Three planning modules are designed to sequentially vary the traffic-free
reference to perform lane-change, lateral and longitudinal in-lane maneuvers to
respond to commonly observed real-world objects, as shown in Fig. 5.
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3.1 Lane Change Maneuver Planner

To avoid a lane blockage or overtake a slow-moving target, this maneuver planner
generates a lane-change reference by connecting two traffic-free references of two
parallel lanes (exit and entry lanes) with a concatenation reference whose start
and end positions are specified by a high-level behavior decision module, such
as the one described in [9]. If safety measurements are not met, an abort-lane-
change maneuver will be generated by creating a reference from the current
vehicle position to the departure lane for reentry.

3.2 Lateral (Swerve) Maneuver Planner

The objects whose predicted motion is static can usually be avoided with lat-
eral swerve. The reference path Ltf is varied spatially to create a collision-free
reference.

Fig. 6: Lateral Maneuver Planning. The thick black curves mark the lane bound-
ary with an orange nearby obstacle. The dashed red curves represent the traffic-
free reference path from the prior planning phase, around which the grey vertices
are sampled and grouped with dashed ractangles. One red vertex in each group
is obtained as the optimal vertex-to-visit. By interpolating all optimal vertices-
to-visit, the solid red curve is generated as the swerve maneuver reference.

As shown in Fig. 6, an array of vertices consisting of multiple layers {Li}
is generated based on Ltf . Instead of using a fixed sampling resolution as done
in much prior work, the longitudinal sampling distance ∆S ∈ [∆Smin, ∆Smax]
between two neighboring layers is determined by the same modified Douglas-
Peucker algorithm used in 2.1, and lateral uniformly sampled vertices on each
layer are spaced by ∆L. Edge ei connects a vertex vi in layer Li to a vertex vi+1

in layer Li+1. The lateral shift of edge ei and the lateral offset of vertex vi+1

from the traffic-free reference path are multiples of ∆L. The optimal sequence
of vertices {v∗

i } is defined to be optimal such that:

{v∗
i } = argmin

{vi∈Li}

N−1∑
i=0

Caction + Coffset + Cobject (5)
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where N is the index of the farthest layer, and

Caction = ωaction · e
|l(ei)|
∆L

Coffset =
|l(vi+1)− ltf (vi+1)|

∆L

Cobject =

{
0 safe
∞ unsafe

Caction induces an exponential penalty on excessive swerve. Coffset penalizes
the deviation from the preferred reference path Ltf as a force of attraction.
Cobject takes the form of an infinite-or-zero cost for obstacle collision, which
eliminates the extra complexity of crafting an arbitrary drop-off cost shape.

Dynamic programming is used to solve the search problem by calculating the
optimal cost-to-go value in a backward recursive fashion. At times, no policy ex-
ists for all vertices at one layer, which is caused by the inability to swerve around
obstacle(s). In this situation, the process is reset and replanning is initiated from
this blocked layer, such that the farthest layer in consideration becomes the one
just prior to the blockage. The selected optimal vertex sequence is then inter-
polated to reconstruct a smooth curve that passes through all the vertices (red
curve in Fig. 6). Its shape may deviate from the traffic-free reference path, so
the preferred/capping speed profiles need to be recalculated.

Fig. 7: Illustration of Cost Negotiation. The red route implies an abrupt swerve
when the weight ωaction is too low, while the black route implies not getting back
to the reference center after the swerve resulting from a high ωaction. Moreover,
the exponential from of cost Caction favors the sequence with uniform actions,
where the green route outshines the black dashed route. Proof is given by the
fact that the minimum value of ex + eN−x is obtained when x = N/2.

The goal is to generate a smooth sequence of actions (blue route in Fig.
7) that avoids obstacles and gets back to the traffic-free reference path. The
weighting ωaction between Caction and Coffset should be tuned neither too low,
nor too high (constant bias after avoidance, black route in Fig. 7). We refer
to this conflict phenomenon as cost negotiation. Manual tuning can quickly be-
come unmanageable if the number of weighting parameters increases. Sampling
resolutions ∆S and ∆L are then adjusted to fine-tune the shape of the swerve.
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3.3 Longitudinal (Speed) Maneuver Planner

In on-road navigation, longitudinal speed variation is the most common response
in many situations. The proposed maneuver planner generates a traffic-based
speed profile that converges to the preferred reference speed profile ξ∗prefer, while
reacting to other interfering moving objects.
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Fig. 8: Longitudinal Maneuver Planning. The purple, red, blue and grey solid
curves represent capping, preferred, constant and static characteristic speed pro-
files. The black node marks the current longitudinally projected speed of the
vehicle. Four clusters of candidate speed profiles in red, green, blue and orange
dashed curves converge to the four characteristic speed profiles with varying
accelerations.

As illustrated in Fig. 8, four characteristic speed profiles, the “preferred”
ξ∗prefer , the “constant” ξ∗const, the “static” ξ∗static and the “capping” ξ∗cap are
used to generate four clusters of sampling profiles Ξprefer, Ξconst, Ξstatic, Ξcap.
In each cluster, a few candidate profiles are generated to converge to the corre-
sponding characteristic speed profile from the current longitudinal speed vproj of
the ego vehicle with a set of acceleration constants ranging from Amin to Amax

at a sampling resolution ∆A. The aggressive cluster Ξcap will not be further eval-
uated if a feasible profile is found in the union Ξprefer ∪ Ξconst ∪ Ξstatic. This
order reflects the preference for a conservative response. The optimal profile is
defined to satisfy:

ξ∗ = argmin
ξ∈Ξ

Caction + Cobject (6)

where

Caction = e|a(ξ)−a
sugg|

Cobject =

{
0 safe
∞ unsafe

a(ξ) is the acceleration value of profile ξ;

asugg =


asuggacc vproj below ξ∗prefer
N/A vproj on ξ∗prefer
asuggdec vproj above ξ∗prefer

(7)

Cobject takes the form of an infinite-or-zero cost to prevent unsafe (possibly
collision) navigation close to objects. We can project the object onto the lane
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and calculate Cobject based on its longitudinal gap to the ego vehicle:

Cobject(ξ) =

N∑
i=0

cobj(l(ti)) (8)

where l(t) is the longitudinal distance gap between the ego vehicle and the
predicted position of the moving objects at sampled time instant ti, tN represents
the farthest lookahead horizon.

cobj(l) =

{
∞ 0 < l ≤ Lsafe
0 otherwise

(9)

Since Cobject is in a zero-or-infinite configuration, cost negotiation is avoided.
The output of the planning can be clearly stated as “finding the viable speed
profile that is closest to the suggested reference tracking acceleration”. Tuning
can be done with asuggacc and asuggdec for adjusting the suggested effort of tracking,
and Lsafe for modifying the longitudinal safety distance.

4 Local Trajectory Planning
In this planning phase, we generate a dynamically feasible local trajectory to
track the traffic-based reference from the current vehicle state (position, ori-
entation, steering angle, speed, acceleration, etc.). A parametric trajectory χ
makes use of the quintic polynomial path primitive [5][6] and the cubic polyno-
mial speed primitive [4] that provide analytical continuity for the smoothness of
tracking control.

Multiple trajectories {χi} are sampled in a focused pattern leading back to
the traffic-based reference plan. As illustrated in Fig. 9, the trajectories start
from the current vehicle state Sinit and end at several lookahead states {Slhi }
on the reference, whose longitudinal distance ranges from Smin to Smax at the
resolution of ∆S. With a model of subsequent controller and vehicle dynamics,
the generated trajectories are forward-simulated to evaluate their validity. The
predicted vehicle traces are used to guarantee the collision-free operation. The
important dynamics metrics, including peak lateral acceleration apeaklat , peak lon-

gitudinal acceleration apeaklon , and peak longitudinal deceleration dpeaklon , are used
to eliminate the trajectories whose dynamics exceed the maximum endurable
value. The chosen trajectory χ∗ is the one with minimum converge time to the
planned reference.

In emergency cases when no sampled trajectory is feasible, there are two
possibilities: first, traffic-based reference planning may have failed to generate
a valid plan5; second, it is impossible to get back to the traffic-based reference
safely from the current vehicle state (e.g., the position of the ego vehicle deviates
greatly from the reference path). In either case, an emergency planner is needed
to plan an evasive trajectory, but this topic is out of the scope of this paper.

5 If traffic-based reference planning fails, it simply passes through the traffic-free ref-
erence, which results in collision.
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Fig. 9: Local Trajectory Planning. The red solid curve represents the traffic-
based reference path, the black nodes on which are the sampled lookahead states.
The local trajectories generated connecting from current vehicle state to these
sampled states are represented by dashed black curves if they are invalid and by
purple curves if they are valid.

5 Results

5.1 Computation

In traffic-free reference planning, nonlinear optimization and an iterative nu-
merical algorithm are used. The nonlinear optimization uses the Nelder-Mead
algorithm. The best-so-far result which is at least as good as the original center-
line reference, is used if convergence is not achieved within the bounded runtime
Ttf . The iterative method used for speed profile generation typically converges
within a few iterations, given its pure constraining nature. A fixed number Ntf
of iterations are performed.

In traffic-based reference planning, the different maneuver planners gener-
ate different search spaces. For the lateral maneuver planner, longitudinal and
lateral horizons SH and LH are determined by the speed limit and lane width,
respectively. Dimension resolutions, ∆Smin, ∆Smax and ∆L, are chosen with
a tradeoff between expressiveness and computation. In our implementation,
(SH , ∆Smin, ∆Smax, LH , ∆L) = (200.0, 5.0, 10.0, 4.0, 0.2), so the upper-bound

number of path edges generated and evaluated is SH

∆Smin ·(
LH

∆L )2 = 16, 000. For the
longitudinal maneuver planner, there is a range limit of the acceleration constant
for all four clusters from maximum allowed longitudinal acceleration Amax to
the deceleration Amin with a constant acceleration sample resolution ∆A. In our
implementation, (Amax, Amin, ∆A,N cluster) = (2.0,−4.0, 0.1, 4). A pessimistic

estimate of the maximum number of evaluated profiles is N cluster · A
max−Amin

∆A =
240, since not all profiles will converge to the characteristic profile of their clus-
ter. Comparing to [10] [7], whose number of evaluated parametric trajectories is
respectively 170,000 and 400,000 in similar use cases, the computation require-
ments of both maneuver planners presented here are minuscule.

In local trajectory planning, we sampled trajectories that connect the current
vehicle state to a range of lookahead states on the reference whose longitudinal
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distance ranges from Smin to Smax with a station increment ∆S. In our im-
plementation, (Smin, Smax, ∆S) = (5.0, 60.0, 1.0), so the number of trajectories

to be evaluated is Smax−Smin
∆S = 55, which is computationally very cheap to

generate and evaluate.

5.2 Experiment

The proposed planning framework has been evaluated both in urban and highway
environments. In the urban scenario, the planner demonstrates the execution of
a sequence of maneuvers in both simulation and reality, including overtaking by
lane change, static obstacle avoidance and pedestrian yielding, as shown in Fig.
10. The on-vehicle experiment is performed in a closed parking lot near General
Motors Technical Center at Warren, MI.
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Fig. 10: On-vehicle planning result in an urban scenario. The red curve is the
planned path to execute, while the red plot in the lower figure is the planned
speed to execute. The planning involves overtaking an bicyclist, lateral swerve
obstacle avoidance and yielding to pedestrian in sequence.



12

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

Time (s)

Sp
ee

d 
(m

/s
)

Static Object

Pedestrian

Planned speed

Ego vehicle

Fig. 11: Simulation planning result in highway scenario 1. The red curve is the
planned path to execute, while the red plot in the lower figure is the planned
speed to execute. The planning involves swerving around a static obstacle and
yielding to a pedestrian.
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Fig. 12: Simulation planning result in highway scenario 2. The red curve is the
planned path to execute, while the red plot in the lower figure is the planned
speed to execute. The planning involves leading vehicle distance keeping and
overtaking by consecutive lane changes.

In the highway scenario 1 shown in Fig. 11, the planner slows down and
swerves around the static obstacle and yields to a slow-moving pedestrian. In
the highway scenario 2, the planner demonstrates the capability to perform dis-
tance keeping to a leading vehicle, and overtaking by executing two lane changes
consecutively.



13

6 Discussion

In this paper, a three-phase cascaded motion planning system is developed for
general urban/highway on-road navigation. Both deliberative and reactive plan-
ning quality are maintained in this framework. Meanwhile, we focus on the en-
hancement of planning tunability by reducing the high-dimensional planning
problem into multiple lower-dimensional ones with clear planning goals. We make
use of various constraining parameters with clear physical meanings. Meanwhile,
in subproblems where weighting of incommensurable costs is “negotiable”, our
approach tunes for clear patterns in several planning steps in succinct formu-
lations. Further can be achieved by adjusting the sampling pattern of search
space.

Future work includes testing on a broader range of scenarios in reality. The
learning of multiple tuning parameters from human demonstrations is also worth
investigation to plan human-like results based on individual preferences. Another
important question is whether depending on higher-level lane-change directives
is sufficient to deal with real-world traffic, especially when a lane-change has
to be performed in heavy traffic, where precise vehicle response of the vehicle’s
motion should be considered when initiating (or aborting) the lane change.
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