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On the Power of Manifold Samples in
Exploring Configuration Spaces and
the Dimensionality of Narrow Passages

Oren Salzman, Michael Hemmer, and Dan Halperin

Abstract—We extend our study of Motion Planning via Manifold
Samples (MMS), a general algorithmic framework that combines
geometric methods for the exact and complete analysis of low-di-
mensional configuration spaces with sampling-based approaches
that are appropriate for higher dimensions. The framework
explores the configuration space by taking samples that are
low-dimensional manifolds of the configuration space capturing its
connectivity much better than isolated point samples. The scheme
is particularly suitable for applications in manufacturing, such as
assembly planning, where typically motion planning needs to be
carried out in very tight quarters. The contributions of this paper
are as follows: (i) We present a recursive application of MMS in
a six-dimensional configuration space, enabling the coordination
of two polygonal robots translating and rotating amidst polygonal
obstacles. In the adduced experiments for the more demanding test
cases MMS clearly outperforms Probabilistic Roadmaps (PRM),
with over 40-fold speedup in a six-dimensional coordination-tight
setting. (ii) A probabilistic completeness proof for the case of MMS
with samples that are affine subspaces. (iii) A closer examination
of the test cases reveals that MMS has, in comparison to standard
sampling-based algorithms, a significant advantage in scenarios
containing high-dimensional narrow passages. This provokes a
novel characterization of narrow passages, which attempts to
capture their dimensionality, an attribute that had been (to a large
extent) unattended in previous definitions.

Note to Practitioners—Highly constrained motion-planning sce-
narios, even of low degree of freedom, arise in various applications
such as assembly planning and manufacturing applications. Our
approach, which emphasizes high precision over any known sam-
pling-based technique that we are aware of, allows to cope with
exactly such cases. For instance, we show that our framework can
be applied to tight scenarios that arise in three-handed assembly
planning. The ability to cope with tight scenarios is possible, in
part, due to recent improvements in exact geometric software such
as the publicly available Computational Geometry Algorithms
Library [43] (CGAL).
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I. INTRODUCTION

ONFIGURATION spaces, or C-spaces, are fundamental

tools for studying a large variety of systems. A point in a
d-dimensional C-space describes one state (or configuration) of
a system governed by d parameters. C-spaces appear in diverse
domains such as graphical animation, surgical planning, compu-
tational biology and computer games. For a general overview of
the subject and its applications see, e.g., [11], [29], and [31]. The
most typical and prevalent example are C-spaces describing mo-
bile systems (“robots”) with d degrees of freedom (dofs) moving
in some workspace amongst obstacles. As every point in the
configuration space C corresponds to a fiee or forbidden pose
of the robot, C decomposes into disjoint sets Cgee and Ceorp,
respectively. Thus, the motion-planning problem is commonly
reduced to the problem of finding a path that is fully contained
within Ceree.

A. Background

C-spaces for motion planning haven been intensively studied
for over three decades. Fundamentally, two major approaches
exist.

1) Analytic Solutions: The theoretical foundations, such as
the introduction of C-spaces [33] and the understanding that
constructing a C-space is computationally hard with respect to
the number of dofs [34], were already laid in the late 1970s and
early 1980s in the context of motion planing. Exact analytic so-
lutions to the general motion-planning problem as well as for
various low-dimensional instances have been proposed in [5],
[9], [10], [38] and [2], [3], [19], [33], [37], respectively. For a
survey of related approaches, see [39]. However, only recent ad-
vances in applied aspects of computational geometry made ro-
bust implementations for important building blocks available.
For instance, Minkowski sums, which allow the representation
of the C-space of a translating robot, have robust and exact two-
and three-dimensional implementations [16], [17], [45]. Like-
wise, implementations of planar arrangements! for curves ([43],
C.30) [15], could be used as essential components in [38].

1An arrangement of curves is a subdivision of the plane into zero-dimen-
sional, one-dimensional and two-dimensional cells, called vertices, edges and
faces, respectively, induced by the curves.

1545-5955 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



530 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 12, NO. 2, APRIL 2015

Ao
03

0

O

Y

N
.7

¢l
y
x 7 S€Qg2 segq
49 6,
> %ﬂ 0, #
Ve zg4nd

/
¥

X

/ segz

seg

Fig. 1. MMS in three-dimensional C-spaces of translation and rotation in the plane. The left side illustrates two families of manifolds where the decomposed free
cells are darkly shaded. The right side illustrates their intersection, which induces the graph G. Figure taken from [36].

2) Sampling-Based Approaches: Sampling-based ap-
proaches, such as Probabilistic Roadmaps (PRM) [25], Expan-
sive Space Trees (EST) [21] and Rapidly-exploring Random
Trees (RRT) [30], as well as their many variants, aim to capture
the connectivity of Cgee in a graph data structure, via random
sampling of configurations. For a general survey on the ap-
proach see [11] and [31]. As opposed to analytic solutions these
approaches are also applicable to problems with a large number
of dof. Importantly, the PRM and RRT algorithms were shown
to be probabilistically complete [23], [27], [28], that is, they
are guaranteed to find a valid solution, if one exists. However,
the required running time for finding such a solution cannot
be computed for new queries at runtime. This is especially
problematic as these algorithms suffer from high sensitivity to
the so-called “narrow passage” problem, e.g., where the robot
is required to move in environments cluttered with obstacles,
having low clearance.

Though there are also some hybrid approaches [14], [20],
[32], [47] that incorporate both analytic and sampling-based
approaches, it is apparent that the arsenal of currently avail-
able motion-planning algorithms lacks a general scheme ap-
plicable to high-dimensional problems with little or low sen-
sitivity to narrow passages. In [36], we introduced a framework
for Motion Planning via Manifold Samples (MMS), which also
constitutes a hybrid approach. In a three-dimensional C-space,
it was capable of achieving twenty-fold (and more) speedup
factor in running time compared to the PRM algorithm when
used for planning paths within narrow passages. We believe
that the speedup presented in [36] does not present a mere al-
gorithmic advantage for a specific implemented instance but
a fundamental advantage of the framework when solving sce-
narios with narrow passages. The MMS framework is not the
first to consider lower dimensional manifolds of the C-space.
Several algorithms attempt to sample in the C-space, and project
the sample to lower dimensional manifolds (see, e.g., [8] and
[42]); however, these algorithms still sample points. For cases
where some dimensions are presumed to be decoupled, such as

multirobot navigation, one can sample each robot's individual
C-space (see, e.g., [4] and [44]) though these algorithms are typ-
ically not applicable when there is a tight coupling between the
robots [41].

This study continues developing the MMS framework as a
tool to overcome the gap mentioned in existing motion-planning
algorithms. We briefly present the scheme and continue to a
preliminary discussion on applying MMS in high-dimensional
C-spaces, which motivates this paper.

B. Motion Planning via Manifold Samples

The framework is presented as a means to explore the en-
tire C-space, or, in motion-planning terminology as a multi-
query planner, consisting of a preprocessing stage and a query
stage. The preprocessing stage constructs the connectivity graph
G of C, a data structure that captures the connectivity of C using
low-dimensional manifolds as samples. The manifolds are de-
composed into cells in Cgee and Ceopp, in an analytic manner; we
call a cell of the decomposed manifold that lies in Cge. a free
space cell (FSC). The FSCs serve as nodes in G. Two nodes are
connected by an edge if their corresponding FSCs intersect. See
Fig. 1 for an illustration.

Once G has been constructed it can be queried for paths be-
tween two configurations g5, ¢; € Cpec in the following manner:
A manifold that contains g5 in one of its FSCs is generated and
decomposed (similarly for g;). These FSCs and their appropriate
edges are added to G. We compute a path v (of FSCs) in G be-
tween the FSCs that contain ¢, and ¢;. If such a path is found in
G, it can be (rather straightforwardly) transformed into a con-
tinuous path in Cgee by planning a path within each FSC in +.

C. MMS in Higher Dimensions

The successful application of MMS in [36] to a three-dimen-
sional C-space can be misleading when we come to apply it
to higher dimensions. The heart of the scheme is the choice of
manifolds from which we sample. Informally, for the scheme to
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work we must require that the used set of manifolds M fulfills
the following conditions.
C1—The manifolds in M cover the C-space.
C2—A pair of surfaces chosen uniformly and indepen-
dently? at random from M intersect with significant prob-
ability.
C3—Manifolds need to be of very low dimension as MMS
requires an analytic description of the C-space when re-
stricted to a manifold. Otherwise, the machinery for the
construction of this description is not readily available.

For MMS to work in C-spaces of dimension d, Condition C2
has a prerequisite that the sum of dimensions of a pair of mani-
folds chosen uniformly and independently at random from M is
at least d with significant probability. This means, in particular,
that M will consist of manifolds of dimension? [(d/2)]. With
this prerequisite in mind, there is already much to gain from
using our existing and strong machinery for analyzing two-di-
mensional manifolds [6], [7], [15], while fulfilling the condi-
tions above: We can solve motion-planning problems with four
degrees of freedom, at the strength level that MMS offers, which
is higher than that of standard sampling-based tools.

However, we wish to advance to higher dimensional C-spaces
in which satisfying all the above conditions at once is in general
impossible. We next discuss two possible relaxations of the con-
ditions above that can lead to effective extensions of MMS to
higher dimensions.

Dependent Choice of Manifolds: If we insist on using only
very low-dimensional manifolds even in higher dimensional
C-spaces, then in order to guarantee that pairs of manifolds
intersect, we need to impose some dependence between the
choices of manifolds, i.e., relaxing condition C2. A natural
way to impose intersections between manifolds is to adapt the
framework of tree-based planners like RRT [30]. When we add
a new manifold, we insist that it connects either directly or by
a sequence of manifolds to the set of manifolds collected in the
data structure (tree in the case of RRT) so far.

Approximating Manifolds of High Dimension: As we do not
have the machinery to exactly analyze C-spaces restricted to
manifolds of dimension three or higher, we suggest to substitute
exact decomposition of the manifolds as induced by the C-space
by some approximation. i.e., relaxing condition C3. There are
various ways to carefully approximate C-spaces. In the rest of
the paper, we take the approach of a recursive application of
MMS.

In Section II, we demonstrate this recursive application
for a specific problem in a six-dimensional configuration
space, namely, the coordination of two planar polygonal robots
translating and rotating amidst polygonal obstacles. In the
adduced experiments for the more demanding test cases MMS
clearly outperforms several variants and implementations of
PRM with over 40-fold speedup in an especially tight setting.

2The requirement that the choices are independent stems from the way we
prove completeness of the method. It is not necessarily an essential component
of the method itself.

3The precise statement is somewhat more involved and does not contribute
much to the informal discussion here. Roughly, M should comprise manifolds
of dimension [ (d)/(2}] or higher and possibly manifolds of their co-dimension.
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Fig. 2. Manifold families and their FSCs. FSCs of horizontal slices are poly-
gons, while FSCs of vertical lines are intervals along the line. (a) Horizontal
slices. (b) Vertical lines.

Section III provides the theoretical foundations for using MMS
in a recursive fashion. In Section IV, we examine the significant
advantage of MMS with respect to prevailing sampling-based
approaches in scenarios containing high-dimensional narrow
passages. This provokes a novel characterization of narrow
passages, which attempts to capture their dimensionality. We
conclude with an outlook on further work in Section V.

II. THE CASE OF TWO RIGID POLYGONAL ROBOTS

We discuss the MMS framework applied to the case of coordi-
nating the motion of two polygonal robots R,, and R}, translating
and rotating in the plane amidst polygonal obstacles. Each robot
is described by the position of its reference point 74,1, € R?
and the amount of counterclockwise rotation 8,, 8, with respect
to an initial orientation. All placements of R,, in the workspace
W induce the three-dimensional space C* = R? x S*. Simi-
larly for R;. We describe the full system by the six-dimensional
C-space C = C? x CP.

A. Recursive Application of the MMS Framework

Had we had the means to decompose three-dimensional man-
ifolds the application of MMS would be straightforward: The
set M consists of two families. An element of the first family
of manifolds is defined by fixing R}, at free configurations b &
C? .., while R, moves freely inducing the three-dimensional
subspacest C® x b. The second family is defined symmetrically
by fixing a € R,. As subspace pairs of the form (a x C?,C% x b)
intersect at the point (o, b), manifolds of the two families inter-
sect allowing for connections in the connectivity graph G.

However, we do not have the tools to construct three-dimen-
sional manifolds explicitly. Thus, the principal idea is to con-
struct approximations of these manifolds by another application
of MMS. Since for a certain manifold one robot is fixed, we are
left with a three-dimensional C-space in which the fixed robot
is regarded as an obstacle. Essentially, this is done by using the
implementation presented in [36] but with a simpler set of man-
ifolds (see also Fig. 2): (i) horizontal slices—corresponding to
a fixed orientation of the moving robot while it is free to trans-
late and (ii) vertical lines—corresponding to a fixed location of
the reference point of the moving robot, while it is free to rotate.

4In this paper, when discussing subspaces, unless otherwise stated we refer
to affine subspaces or linear manifolds.
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Fig. 3. Experimental scenarios. Source and target configurations are drawn in smoothly-textured green and red, respectively. Obstacles are drawn in striped-

textured blue.

Since we only approximate the three-dimensional subspaces
we have to make sure that they still intersect. In other words,
if Ca, Cgpx are the approximations of C* and C?, respectively,
then (a x C8,.,Ca,, x b) intersect at the point (a,b) only if
a € Cyandb € Cgpx. To ensure this latter condition, we
sample an initial set of angles @, that is used for the first robot
throughout the entire algorithm. When approximating its sub-
space (the second robot is fixed), we take a horizontal slice for
each angle in @,. At the same time, we only fix the robots po-
sition at angles in 8,. We do the same for the second robot and
a set @;. This way it is ensured that even the approximations of
the three-dimensional subspaces intersect.

B. Implementation Details

Horizontal Slices: Let R,, and R; denote the moving and
fixed robot, respectively. ©,, denotes the set of angles that is
sampled for R,,. A horizontal plane for an angle §,,, € ©,, is
defined by the Minkowski sum of — Ry, with all the obstacles
and, in addition, with the fixed robot.> However, for each ap-
proximation of a three-dimensional affine subspace of the robot
R,,, we are using the same set of angles,b namely, ©,,,. Only the
position of the robot 2y changes. Therefore, for all 8,, € O,,
we precompute the Minkowski sum of —Rg  with all the ob-
stacles. In order to obtain a concrete slice we only need to add
the Minkowski sum of —Ry,, with R;. This can be done by a
simple overlay operation (see, e.g., [15, C.6]).

Vertical Lines: Fixing the reference point of E™ to some
location while it is free to rotate induces a vertical line in the
three-dimensional C-space. Each vertex (or edge) of the robot
in combination with each edge (or vertex) of an obstacle (or the
fixed robot) give rise to up to two critical angles on this line.
These critical values mark a potential transition between Cyq,1,
and Cgee. Thus, a vertical line is constructed by computing these
critical angles and the FSCs are maximal free intervals along
this line; for further details see [35].

57R9m denotes R, rotated around the origin by 8,,, and reflected about the
origin.

%We note that in our implementation, we add a random shift to the set of slices
to avoid situations where the initial configuration of one of the robots is aligned
with a narrow passage [as is the case in Fig. 3(c)]. This is done for each robot
independently.

C. Experimental Results

We demonstrate the performance of our planner using three
different scenarios in six-dimensional C-spaces. All scenarios
consist of a workspace, obstacles, two robots, and one query
(source and target configurations). Fig. 3 illustrates the sce-
narios where the obstacles are drawn in blue and the source and
target configurations are drawn in green and red, respectively.
All reported tests were measured on a Lenovo T420 with a
2.8 GHz Intel Core 17-2640M CPU processor and 8 GB of
memory running with a Windows 7 64-bit OS. Preprocessing
times are the average of 12 runs excluding the minimal and
maximal values. The algorithm is implemented in C++ based
on CGAL [43] and the BOOST Graph Library [40], which are
used for the geometric primitives, and the connectivity graph
G, respectively.

We chose to compare our planner to the implementation of
PRM provided by OMPL [12]. In addition, we also compare
with Obstacle-Based PRM (OB-PRM) [1] and Uniformly dis-
tributed Obstacle-Based PRM (U-OB-PRM) [48] (also imple-
mented in OMPL), which were shown to perform better than
PRM in many scenarios where narrow passages exist. We man-
ually optimized the parameters of each planner over a concrete
set. The parameters used by MMS are: ng—the number of sam-
pled angles; ny—the number of vertical lines; nj—the number
of times some robot is fixed to a certain configuration while the
three-dimensional C-space of the other is computed. The param-
eters used for the PRM algorithms are: k—the number of neigh-
bors to which each milestone should be connected; res—colli-
sion-checking resolution. U-OB-PRM needs additional param-
eters, the length [ of the line-segments sampled in space and
the resolution of samples along this line. Following the results
of [48] and after validating these parameters, we used the same
collision checking-resolution for the resolution and a line-seg-
ment of length equal to ten times the collision-checking reso-
lution. We found empirically that in order to obtain the best re-
sults from U-OB-PRM, we should add uniform samples to the
biased ones. Thus, the variant we used samples half of the time
uniformly in space, while half of the time uses the scheme sug-
gested in [48]. Table I summarized the parameters used by each
algorithm, the average running time and the standard deviation
(denoted by ¢ and stdev, respectively).
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TABLE 1
COMPARISON OF MMS WITH PRM VARIANTS
Scenario MMS PRM OB-PRM U-OB-PRM
ng ng ny t[sec] | stdev k res t[sec] | stdev k res t[sec] | stdev k res t[sec] | stdev

Random polygons 5 512 2 8 1.6 10 | 0.02 14.5 8.3 10 | 0.01 28.4 12 8 0.01 10.5 9.9
Viking Helmet 20 16 10 6.2 1.2 10 | 0.005 86.8 34 10 | 0.005 92.8 14 8 0.0125 40 28

Pacman 5 4 180 | 17.6 3.5 12 | 0.015 15 9.5 10 | 0.01 18.7 6.8 10 | 0.0125 20 33
~
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Fig. 4. Tightness Results. Error bars represent one standard variation.

The Random polygons scenario’ is an easy scenario where
little coordination is required. All planners require roughly the
same amount of time to solve this case. We see that even though
our planner uses complex primitives, when using the right pa-
rameters, it can handle simple cases with no overhead when
compared to the PRM algorithms.

The Viking-helmet scenario consists of two narrow passages
that each robot needs to pass through. Moreover, coordination
is required for the two robots to exchange places in the lower
chamber. We see that the running times of the MMS implemen-
tation are favorable when compared to the PRM implementa-
tions. Note that although each robot is required to move along a
narrow passage, the motion along this passage does not require
coordination between the robots.

The Pacman scenario, in which the two robots need to
exchange places, requires coordination of the robots: they are
required to move into a position where the C-shaped robot,
or Pacman, “swallows” the square robot; the Pacman is then
required to rotate around the robot. Finally, the two robots
should move apart (see Fig. 5). We ran this scenario several
times, progressively increasing the square robot size. This
caused a “tightening” of the passages containing the desired
path. Fig. 4 demonstrates the preprocessing time as a function
of the tightness of the problem for both planners. A tightness
of zero denotes the base scenario [Fig. 3(c)], while a tightness
of one denotes the tightest solvable case. Our algorithm is less
sensitive to the tightness of the problem when compared to the
PRM algorithm. In the tightest experiment solved by all PRM
variants, MMS runs ten times faster. We ran the experiment on
tighter scenarios but all PRM algorithms crashed after 5000 s
due to lack of memory resources. We believe that the behavior
of the algorithms with respect to the tightness of the passage
reveals a fundamental difference between the two algorithms
and discuss this in Section IV.

7A scenario provided as part of the OMPL distribution.

(b)

Fig. 5. Example of a path in the Pacman Scenario. (a) The square robot moves
into a position where the Pacman can engulf it. (b) The Pacman engulfs the
square robot.

III. PROBABILISTIC COMPLETENESS OF MMS

An algorithm is probabilistically complete if the probability
that it will produce a solution (when one exists) approaches one
as more time is spent. It has been shown that PRM, using point
samples, is probabilistically complete (see, e.g., [11, C.7)]. At
first glance, it may seem that if the scheme is complete for point
samples then it is evidently complete when these samples are
substituted with manifold samples: manifolds of dimension one
or higher guarantee better coverage of the configuration space.
However, there is a crucial difference between PRM and MMS
when it comes to connectivity. The completeness proof for PRM
relies, among others, on the fact that if the straight line segment
in the configuration space connecting two nearby samples lies
in the free space, then the nodes corresponding to these two
configurations are connected by an edge in the roadmap graph.
The connectivity in MMS is attained through intersections of
manifolds, which may require a chain of subpaths on several
distinct manifolds to connect two nearby free configurations.
This is what makes the completeness proof for MMS nontrivial
and is expressed in Lemma III.3.

We present a probabilistic-completeness proof for the MMS
framework for the case where the C-space C is the d-dimen-
sional Euclidean space R¢, while MMS is taking samples from
two perpendicular affine subspaces, the sum of dimensions of
which is d. Assuming that the C-space is Euclidean does not
impose a real restriction as long as the actual C-space can be
embedded in a Euclidean space (see, e.g., ([11, Secs. 3.5 and
7.1.2], ([31, Ch. 4-5] or [26]).

Let A and B denote affine subspaces of € and let k
and d — k be their dimensions, respectively. As C is
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Fig. 6. Two-dimensional sketch: balls and manifolds are presented as circles
and lines, respectively. (a) Intersection of two p/+/2-intersecting manifolds. (b)
Construction of a path as defined in Lemma II1.3.

decomposed into two perpendicular subspaces, a point
p = (ar,...,ak,b1,...,b4_1) € C may be represented as
the pair of points (a,b) from subspaces A and B. Under this
assumption, the set of manifolds A1 consists of two fami-
lies of k and (d — k)-dimensional manifolds M# and MZ.
Family M# consists of all manifolds that are defined by
fixing a point ay € A, while the remaining d — k parameters
are variable; MP is defined symmetrically. Two manifolds
m(a) € M* and m(b) € MP always intersect in exactly
one point, i.e., m(a) N m(b) = (a,b) € C. Let B¢(p) = {q
€ C|dist(p,q) < r} define a ball in C of radius r centered at
p € C, where dist denotes the Euclidean metric on C. Likewise,
BE(b) and B;*(a) denote (d — k) and k-dimensional balls in
B and A, respectively.

Definition II1.1 (p-Intersecting): For p > 0, we call a man-
ifold m(a) € M# p-intersecting for a point p € C if m(a) N
BS(p) # 0, ie., ifa € Bi(pa), where p4 is the projection of
p onto A. Similarly for manifolds in B.

A feasible path « is a continuous mapping from the interval
[0,1] into Cgree. The image of a path is defined as Im(y) =
{¥(a) | @ € [0,1]}. We show that for any collision-free path
Yp,q Of clearance p > 0 between two configurations p and ¢
the MMS constructs a path from p to g such that: (i) the path
lies on the FSCs of the sampled manifolds and (ii) every point
on the path is at distance at most p from v, 4, With a positive
probability. Moreover, the probability of failing to find such a
path by the MMS algorithm decreases exponentially with the
number of samples.

Lemma II1.2: Forp € C and p > 0 let m(a) € M# and
m(b) € MPE be two manifolds that are p/+/2-intersecting for
p. Their intersection point p’ = (a,b) = m{a) N m(b) is in
Bg(p).

For an illustration of Lemma III.2, see Fig. 6(a). The proof
(given in [35]) follows immediately from elementary proper-
ties of R%. Lemma I11.3 is the centerpiece of the completeness
proof as it establishes connections between two manifolds. In-
formally, it shows that for any two points p and ¢, a manifold
m(b) € MP that is close to both points enables a connection
between two manifolds m(a,), m(a,) € M* that are close to
p and gq, respectively.

Lemma I1.3: Let p,g € C be two points such that
dist(p,q) < p and let m(ay),m{a;) € M be two
p/+/2-intersecting manifolds for p and g, respectively. Let

m(b) € MP be a manifold that is simultaneously p/+/2-in-
tersecting for p and ¢ and let p' = (a,,pg) € Bg’ (p) and
q' = (aq,qB) € BS(q) be the projection of p and ¢ on m(a,)
and m{a,), respectively.

There exists a path +y, , between p' and ¢ such that
1 (1y1.00)  (BE@)UBS (2)) 0 (m(ay) Um(b) Umn(ag)), e
there is a path lying on the manifolds within the union of the
balls.

Proof: Let p” = m(ap) N m(b) = (ap,b) and
q" = m(ay) N m(b) = (ay,b) denote the intersection point
of m(ap) and m(a,) with m(b), respectively. Moreover,
lot " = (pa,b) € BS(p) and ¢" = (q4,8) € BS(q)
denote the projections of p and g on m(b). We show
that the path which is the concatenation of the segments
(p/7p//)7 (plljplll)7 (p'",q'“),( ///7(]//) and (q”,q’) lies on
(m(ap) U m(b) U m(ay)) within the union of the balls
(BS(p) U BS(q)). See Fig. 6(b).

By Lemma II1.2 the intersection points p’ and ¢” are inside
B¢ (p) and BS (g), respectively. Thus, by convexity of each ball
the segments (p',p"") € m(g,) and (¢',¢") C m(a,) as well
as the segments (p",p""), (¢",¢"") C m(b) are in (BS(p) U
By (q))-

It remains to show that (p"',¢") < m(b) is inside
(BS(p) U BS(q)). Recall that dist(p,q) < p and, therefore,
dist(p"’,¢""") < p. Let p be a point on the segment (p"’, ¢'"’)
that, w.Lo.g, is closer to p"’. Thus, dist(p,p”’") < p/2. The
manifold m(b) is p/+/2-intersecting, thus dist (p, p"’) < p/v/2.
As the segments (p, p'"') and (p"’, p) are perpendicular it holds

dist(p,p) = \/dist(p,p”’)2 -+ dist(p"’, p)?
<VpH/2+p*/4

< p.

|

Theorem II1.4: Let p, q be points in Cgee such that there ex-

ists a collision-free path -y, , € T’ of length L and clearance p

between p and ¢. Then, the probability of the MMS algorithm to

return a path between p and ¢ after generating n 4 and np man-
ifolds from families M# and MP as above, respectively is

Pr[(p, ¢)SUCCESS]
=1 — Pr[(p, ¢)FAILURE]

e ICE DR R

where 11 4 and 77p are some positive constants smaller than 1.

The constants p 4 and np reflect the probability of a mani-
fold to be p/+/2-intersecting for one or two nearby points, re-
spectively. The proof for Theorem II1.4 is rather technical. It
involves using Lemma I11.3 repeatedly for points along the path
Yp,q Of distance less than p. We omit the details and refer the
reader to [35] for the full proof.

Recursive Application: The proof of Theorem I11.4 assumes
that the samples are taken using full high-dimensional mani-
folds. However, Section II demonstrates a recursive application
of MMS where the approximate samples are generated by an-
other application of MMS.

In order to obtain a completeness proof for the two-level
scheme let v be a path of clearance 2p. First, assume that the
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Fig. 7. Tightest solvable Pacman scenario. The gray rectangle shows valid
placements of the square such that the Pacman can engulf it without colliding
with the scene's bounding box.

samples taken by the first level of MMS are exact. Applying
Theorem II1.4 for v and p shows that with sufficient proba-
bility MMS would find a set M’ of manifolds that would con-
tain a path ¥'. Since we required clearance 2p but relied on the
tighter clearance p, it is guaranteed that ~' still has clearance p.
Now, each manifold m’ € M’ is actually only an approxima-
tion constructed by another application of MMS. Thus, for each
m' € M, apply Theorem IIL.4 to the subpath v/ , = v N'm/
which has clearance p. Concatenation of all the resulting sub-
paths concludes the argument. Of course the parameters in the
inequality in Theorem I11.4 change accordingly.

We remark that the recursive approach imposes a mild re-
striction on the sampling scheme as the sampling and the ap-
proximation must be somewhat coordinated. Since in theory
m{a)Nm(b) = (a, b) we must ensure that points that we sample
from A are contained in every approximation of m(b) € M?
and vise versa. In our implementation, this is ensured by re-
stricting the set of possible angles to those used to approximate
m(b) € MP® (see Section II).

IV. ON THE DIMENSION OF NARROW PASSAGES

Consider the Pacman scenario illustrated in Fig. 3(c) of the
experiments section. We obtain a narrow passage by increasing
the size of the square-shaped robot making it harder for the
Pacman to swallow it. Fig. 4 shows that our approach is sig-
nificantly less sensitive to this tightening of the free space than
the PRM algorithm. In order to explain this, let us take a closer
look at the nature of the narrow passage for the tightest solvable
case.

In order to get from the start placement to the goal placement,
the Pacman must swallow the square, rotate around it and spit it
out again. We concentrate on the swallowing motion. Fig. 7 de-
picts the tightest case, i.e., when the square robot fits exactly
into the “mouth” of the Pacman. The gray rectangle indicates
the positions of the reference point of the square such that there
is a valid movement of the Pacman, considering the walls of the
room, that will allow it to swallow the square robot (two-dimen-
sional region, two parameters). The rotation angle of the square
is also important (one additional parameter). The range of con-
currently possible values for all three parameters is small but
does not tend to zero either. The passage becomes only narrow
by the fact that the rotation angle of the Pacman must correlate
exactly with the orientation of the square to allow for passing
through the mouth. Moreover, the set of valid placements for
the reference point of the Pacman while swallowing the square
(other parameters being fixed) is a line, i.e., its  and y param-
eter values are coupled. Thus, the passage is a four-dimensional

object as we have a tight coupling of two pairs of parameters in
a six-dimensional C-space.

The PRM approach has difficulties to sample in this passage
since the measure tends to zero as the size of the square in-
creases. On the other hand, for our approach the passage is only
narrow with respect to the correlation of the two angles. As soon
as the MMS samples an (approximated) volume that fixes the
square robot such that the Pacman can engulf it, the approxi-
mation of the volume just needs to include a horizontal slice of
a suitable angle and the passage becomes evident in the corre-
sponding Minkowski sum computation.

A. Definition of Narrow Passages

Intuition may suggest that narrow passages are tunnel-
shaped. However, a one-dimensional tunnel in a high-dimen-
sional C-spaces would correspond to a simultaneous coupling
of all parameters, which is often not the case. For instance,
the discussion of the Pacman scenario shows that the passage
is narrow but that it is still a four-dimensional volume, which
proved to be a considerable advantage for our approach in the
experiments. Although some sampling-based approaches try to
take the dimension of a passage into account (see, e.g., [13]) it
seems that this aspect is not reflected by existing definitions that
attempt to capture attributes of the C-space. Definitions such as
e-goodness [24] and expansiveness [21] are able to measure the
size of a narrow passage better than the clearance [23] of a path,
but neither incorporates the dimension of a narrow passage in
a very accessible way. Therefore, we would like to propose a
new set of definitions that attempt to simultaneously grasp the
narrowness and the dimension of a passage.

We start by defining the “ordinary” clearance of a path in
Ctree. The characterization is based on the notion of homotopy
classes of paths with respect to a set Iy 4, i.e., the set of all
paths starting at s and ending at ¢{. For a path vy € I's; and
its homotopy class H (<), we define the clearance of the class
as the largest clearance found among all paths in H(vo).

Definition IV.1: The clearance of a homotopy class H(+o)
forvy € Ty is

sup {sup {p > O\Bg & Im(y) € Chree} }

YEH(v0)

where @ denotes the Minkowski sum of two sets, which is the
vector sum of the sets.

By using a d-dimensional ball this definition treats all direc-
tions equally, thus considering the passage of H(7y,) to be a
one-dimensional tunnel. We next refine this definition by using
a k-dimensional disk, which may be placed in different orienta-
tions depending on the position along the path.

Definition IV.2: For some integer 0 < k < d the k-clearance
of H{~p) is:

sup {p >0Vt €[0,1]9R € R : v(t) @ R(t) B} C Chree}
YEH(Y0)

where R is the set of d-dimensional rotation matrices and B’;
is the k-dimensional ball of radius p. In case R is required to
change continuously we talk about continuous k-clearance.
Clearly, the k-clearance of H(vy) for & = d is simply the
clearance of H (o). For decreasing values of k, the k-clearance
of a homotopy class is a monotonically increasing sequence. We
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Fig. 8. Two three-dimensional C-spaces consisting of a narrow passage
(yellow) surrounded by obstacles (blue).

next define the dimension of a passage using this sequence, that
is, we set the dimension to be the first k& for which the clearance
becomes significantly larger3 than the original d-dimensional
clearance.

Definition IV.3: A passage for H(7o) in R? of clearance p
(see Definition IV.1) is called d — k + 1-dimensional if k is the
largest index such that k-clearance(H (o)) > p. If for every
k, k-clearance (M (vo)) » p, then we call the passage one-
dimensional.?

For instance, both passages in Fig. 8 have a measure of % thus
for a PRM like planner, sampling in either passage is equally
hard as the probability of a uniform point sample to lie in ei-
ther one of the narrow passages is proportional to £2. However,
the two passages are fundamentally different. The passage de-
picted on the right-hand side is a one-dimensional tunnel corre-
sponding to a tight coupling of the three parameters. The pas-
sage depicted on the left-hand side is a two-dimensional flume
which is much easier to intersect by a probabilistic approach that
uses manifolds as samples. Our new definitions formally reveal
this difference. For & equals 3, 2 and 1, the k-clearance of the
right passage is ¢, v/2¢ and larger than 1, respectively. For the
left passage, this sequence is ¢* for k = 3 and larger than 1 for
k = 2,1 which characterizes the passage as two-dimensional.

B. Discussion

We believe that the definitions introduced in Section IV-A,
can be an essential component of a formal proof that shows the
advantage of manifold samples over point samples in the pres-
ence of high-dimensional narrow passages. We sketch the argu-
ment briefly. Let Cpee contain a narrow passage of dimension
k, that is, the passage has clearance p and k-clearance A, where
A > p. This implies that it is possible to place discs of dimen-
sion k and radius A 3> p into the tight passage. The main argu-
ment is that for a random linear manifold of dimension d — &
the probability to hit such a disc is proportional to A, which is
much larger than p. The probability also depends on the angle
between the linear subspace containing the disc and the linear
manifold. However, by choosing a proper set of manifold fami-
lies it is possible to guarantee the existence of at least one family
for which this angle is bounded, independent of the orientation
of the disk.

8We leave this notion informal as it might depend on the problem at hand.

9For simplicity of definition, we chose to stop at the largest index & for which
k-clearance ~>> p. One could contemplate alternative more elaborate definitions
that keep on searching for even larger clearance for smaller indices.

V. FURTHER WORK

The extension of MMS [36] presented here is part of our on-
going efforts towards the goal of creating a general scheme for
exploring high-dimensional C-spaces that is less sensitive to
narrow passages than currently available tools. As discussed in
Section I-C the original scheme imposes a set of conditions that
in combination restrict an application of MMS to rather low di-
mensions. In this paper, we chose to relax condition C3, for ex-
ample, by computing only approximations of three-dimensional
manifolds. An alternative path is to relax condition C2, for ex-
ample, by not sampling the manifolds uniformly and indepen-
dently at random. This would enable the use of manifolds of low
dimension as it allows to enforce intersection. Following this
path we envision a single-query planner that explores a C-space
in an RRT-like fashion. Using these extensions, we wish to
apply the scheme to a variety of difficult problems including
assembly maintainability (part removal for maintenance [49])
by employing a single-query variant of the scheme.

Another possibility is to explore other ways to compute ap-
proximative manifold samples, for instance, the (so far) exact
representations of FSCs could be replaced by much simpler (and
thus faster) but conservativel0 approximations. This is certainly
applicable to manifold samples of dimension one or two and
should also enable manifold samples of higher dimensions. We
remark that the use of approximations should not harm the prob-
abilistic completeness as long as it is possible to refine the ap-
proximations such that they converge to the exact results.

In order to demonstrate the potential of the scheme, we
adapted our motion planner to the problem of three-handed
translational assembly planning. In assembly planning [18],
[46], we are given a collection of parts, and the goal is to as-
semble the parts into one (given) object. Typically, the problem
is tackled by starting at the end configuration and recursively
separating the object into subgroups. Informally, the number of
groups that may be considered simultaneously is the number
of hands used. The problem, which is known in general to
be computationally hard (see, e.g., [22]), has been studied
extensively for two hands but little has been done for more.

The first assembly-planning problem we consider, depicted in
Fig. 9(a) demonstrates a scenario where the two smoothly-tex-
tured parts need to move in alternations in order to exit a sur-
rounding part (the obstacle) in order to reach a disassembled
configuration. This problem was solve by our planner within 37
s (average over ten runs) and could not be solved by the PRM
algorithm (which was terminated after 10 min). The RRT algo-
rithm managed solving this scenario within 160 s with a success
rate of 50% (if the solution was not found within 10 min the run
was considered unsuccesful; average over ten runs). The second
assembly-planning problem, depicted in Fig. 9(b) demonstrates
a scenario where multiple smoothly-textured purple parts need
to be moved out of the surrounding green part textured with
stripes. At each iteration, two purple parts are chosen at random
and the planner attempts to translate both parts (as independent
parts) out of the obstacle. The most interesting case occurs when
the lower triangles have been removed and the two M-shaped
parts need to translate out of the obstacle. In order for this to

10Approximated FSCs are contained in Ceree.
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(®)
Fig. 9. Three-handed assembly-planning scenarios. Static obstacle (first hand)
is depicted in green with a striped texture. Moving parts (second and third hands)
are colored with smooth texture. In (b), at each iteration two moving parts are

chosen randomly while the remaining parts are considered part of the static ob-
stacles (if they were not disassembled in previous iterations).

occur, the left M-shaped part needs to translate to the bottom-left
corner for the right M-shaped part to be able to translate out of
the obstacle. Our planner manages to plan this in under 1 s (av-
erage over ten runs) while this case could not be solved by either
the RRT or PRM algorithms (which were terminated after 10
min). We note that this is not the traditional assembly-planning
formulation as the parts are not touching each other. In order for
a sampling-based algorithm (such as MMS) to be applicable,
some slack is required between the parts. However, the slack
can be much smaller when using MMS as opposed to standard
sampling-based planners.

Finally, we intend to extend the scheme to and experiment
with motion-planning problems for highly redundant robots as
well as for fleets of robots, exploiting the symmetries in the
respective C-space.

For supplementary material, omitted here for lack of space,
the reader is referred to our project web-page http://acg.cs.tau.
ac.il/projects/mms.
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