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Abstract— A robot with a hand-mounted depth sensor scans
a scene. When the robot’s joint angles are not known with
certainty, how can it best reconstruct the scene? In this work,
we simultaneously estimate the joint angles of the robot and
reconstruct a dense volumetric model of the scene. In this
way, we perform simultaneous localization and mapping in the
configuration space of the robot, rather than in the pose space of
the camera. We show using simulations and robot experiments
that our approach greatly reduces both 3D reconstruction error
and joint angle error over simply using the forward kinematics.
Unlike other approaches, ours directly reasons about robot joint
angles, and can use these to constrain the pose of the sensor.
Because of this, it is more robust to missing or ambiguous depth
data than approaches that are unconstrained by the robot’s
kinematics.

I. INTRODUCTION

Uncertainty is a central problem in robotics. In order to
understand and interact with the world, robots need to inter-
pret signals from noisy sensors to reconstruct clear models
not only of the world around them, but also their own internal
state. For example, a mobile robot navigating an unknown
space must simultaneously reconstruct a model of the world
around it, and localize itself against that model using noisy
sensor data from wheel odometry, lasers, cameras, or other
sensors. This problem (called the Simultaneous Localization
and Mapping (SLAM) problem) is very well-studied in the
mobile robotics community.

Less well-studied is the equivalent problem for robot
manipulators. That is, given a multi-jointed robot arm with
a noisy hand-mounted sensor, how can the robot simultane-
ously estimate its state and generate a coherent 3D model
of the world? We call this the articulated SLAM problem.
Solving it would allow the robot manipulator to plan around
obstacles and locate objects of interest. If done online, the
SLAM system would enable the robot to do eye-in-hand 3D
visual servoing against the map.

At first glance, this problem appears trivial; because typ-
ically the joint angles of the robot are directly measurable
from joint encoders, and the forward kinematic equations of
the robot are known with certainty. Therefore, the pose of
the sensor is known with certainty, and so mapping can be
accomplished without simultaneously localizing the sensor.
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(a) Experimental setup.

(b) Forward kinematics. (c) ARM-SLAM

(d) Colorized ARM-SLAM. (e) Kinect Fusion (baseline).

Fig. 1: Robot scans and reconstructions of a bookshelf at 1.5cm
resolution using real depth and encoder data (Section V-C). Our
approach (which estimates robot configurations rather than camera
poses) results in preservation of fine detail and edges that are lost
when only using the robot’s forward kinematics, with comparable
reconstruction quality to Kinect Fusion.



However, in practice, all robots are subject to some amount
of actuator uncertainty. Their joint encoders do not perfectly
capture the true geometric angles of the robot’s joints because
of gear thrash, cable stretch, nonrigid deformities, and other
unknown dynamics (see section III-B).

Given actuator uncertainty and sensor uncertainty, what
is the correct way of simultaneously constructing a model
of the world and estimating the robot’s state? In this work,
we show that certain contemporary visual SLAM techniques
can be mapped to the articulated SLAM problem by using
the robot’s joint configuration space as the state space for
localization, rather than the typical SE(3). We map one kind
of visual SLAM technique, Kinect Fusion[9] to the robot’s
configuration space, and show how the robot’s joint encoders
can be used appropriately to inform the pose of the camera.

The idea that the configuration of the robot is not merely
a sensor which informs the pose of the camera, but rather
it is the underlying latent state of the system is critical to
our analysis. Tracking the configuration of the robot directly
allows us to build algorithms on top of the SLAM system
which depend on knowledge of the joint angles (such as
motion planners and control systems).

II. RELATED WORK

Our work combines ideas from two other related fields:
visual SLAM, and articulated tracking. Visual SLAM is
concerned with tracking the pose of a camera as it moves
through an unknown scene. Articulated tracking (a subset of
motion capture) is concerned with finding the joint angles
of a robot or actor by use of an externally mounted camera.
There is also some relation to robot arm state estimation in
control theory, and to visual servoing.

A. Robot Arm State Estimation

In control theory, often the state of the system being
controlled cannot be directly observed, but instead must
be inferred from sensor measurements. Generalized filtering
techniques (such as Kalman filters, and Particle filters) have
long been applied to robot arms which have only partially
observable state. For instance, recent works have tracked the
state of flexible robot arms using inertial sensors on the end
effector [1] and from motor voltage inputs alone using a
learned dynamic model and particle filter [29].

State estimation literature from control theory provides a
backdrop for our work, which is concerned with estimating
the state of a robot arm. However, unlike these other works
we wish to also simultaneously estimate a model of the scene
using a visual sensor, and use this model to further inform
the state of the robot.

B. Articulated Tracking

Tracking articulated bodies with known kinematic struc-
ture using externally-mounted visual sensors is a well-studied
topic in computer vision. For instance, commercial motion
capture systems [19] often use markers (such as fiducials or
reflective spheres) attached to articulated bodies along with
an external camera to track the pose of human actors and

objects in the scene. The kinds of motion capture systems
most related to our purposes are those which use actor-
mounted sensor systems (most commonly inertial sensors
[26]) to measure the actor’s joint angles.

When only the kinematic structure of the body is known,
but no markers are available, the problem is more difficult
due to the unknown correspondences between sensor mea-
surements and the body itself (i. e the segmentation prob-
lem). But even in this case, efficient solutions for tracking
articulated bodies exist.

In general, the approach is to model the articulated body so
as to simulate sensor measurements at a particular configura-
tion. Then, a maximum likelihood estimate is obtained which
causes the sensor measurements from the external camera to
agree with the model of the articulated body.

For instance, one method intended for tracking humans
in 2D images, Articulated Iterative Closest Point (ICP) [20],
computes the posterior using image-based edge features, and
maximizes the likelihood of a configuration by coordinate
descent in configuration space.

Another algorithm, Real-time Markerless Articulated
Tracking (RMAT) [15] tracks robots using a depth camera.
It uses a simple posterior model that sensor measurements
are near the robot’s surface as projected onto the depth
image, and a simple motion model which assumes the robot’s
configuration changes slowly between time-steps. Sensor
measurements are matched to corresponding points on the
robot’s body using an octree, and gradient descent is used to
maximize the likelihood of the robot’s configuration given
its previous configuration and depth image.

A related work, Dense Articulated Real Time Tracking
(DART) [27], improves upon RMAT by using a signed
distance field representation of the robot’s body rather than
an octree, a more complex motion model that considers joint
velocity, and an extended Kalman filter for tracking. DART
has been shown to effectively track robots, human hands, and
rigid bodies in real-time with commercial depth cameras.

Our work builds on some of the mathematical foundations
of these approaches. The key difference is that we are con-
cerned with eye-in-hand sensors which cannot see any part of
the robot. This means we must simultaneously estimate the
robot configuration and the structure of the scene; whereas
in articulated tracking, only the robot configuration must be
estimated.

C. Visual Servoing

When the camera is not mounted externally, but instead
is mounted in-hand, it can be used to control the robot to
achieve visual objectives (such as aligning points or shapes
in an image). Visual servoing and control [4] expresses the
robot’s objective in terms of positions and velocities in the
camera image frame, and system state as the robot’s joint
angles.

Visual servoing works are related to ours in the sense that
they use a hand-mounted camera to inform the joint angles
of a robot, but they typically rely on known models of the
scene (in terms of image points or features), and do not



explicitly consider actuator uncertainty; but in our case, we
cannot assume any prior knowledge about the composition
of the scene, and must consider actuator uncertainty.

However, the underlying mathematics of visual servoing
relating motions in the image space to joint angle displace-
ments are used extensively in our work. Further, our work
enables a kind of model-based 3D visual servoing by way of
creating a 3D model of the scene while the robot localizes
itself.

D. Visual SLAM

Visual SLAM involves determining the full 6 Degree of
Freedom (DOF) trajectory of a camera as it moves through a
scene as well as a geometric model of the (unknown) world
online [8]. A broad range of techniques have been used in
the literature depending on the type of the sensor and desired
world model.

When only a single (monocular) camera is available,
sparse feature-based techniques can be used to determine
the camera pose. Feature-based techniques typically mini-
mize the reprojection error of a global set of 3D feature
landmarks shared between camera frames. Examples of this
kind of approach include Parallel Tracking and Mapping
(PTAM)[13], and ORB-SLAM [21]. Feature-based methods
have very good performance due to their sparsity, but the
reconstruction quality is limited to a sparse set of 3D points.

Dense or semi-dense monocular approaches to visual
SLAM, in contrast, compute image intensity error for all
(or most) pixels in each camera frame. Examples include
LSD-SLAM [6] and DTAM [22]. These approaches are more
memory intensive and computationally expensive than their
sparse counterparts, but provide much more detailed world
models that are suitable for robotics.

When a depth sensor is available, dense visual SLAM is
made easier because the need to estimate the depth of visual
features is eliminated. Fully dense geometric methods, such
as Kinect Fusion [9], Point Fusion [10] and Elastic Fusion
[30] generate a full geometric 3D model of the world, which
is in turn used to estimate the pose of the depth sensor using
mainly geometric techniques, such as point-to-plane ICP.
Fully dense methods enable very high quality pose estimation
and scene reconstruction within a small area, but they tend
to drift over time, and are unable to track the sensor against
scenes without much geometric structure.

Our work makes use of SLAM techniques and terminol-
ogy. But, unlike the pure visual SLAM problem, we are not
concerned with a free-floating camera, but rather a camera
attached to an articulated robot arm. Because of this, we have
an extremely strong prior on the allowable motion of the
camera from the robot’s kinematics, and have a very strong
indication of the sensor’s pose from the joint encoders.

In this sense, our work is related to other SLAM works
which fuse visual SLAM together with other sensors, such
as inertial sensors. State of the art examples include Li et. al
[17], Leutteneger et. al [16] and Forster et. al [3]. These
techniques harness the advantages of both visual and inertial
sensors to provide much more robust pose estimation in

the presence of missing or ambiguous visual data. However,
unlike these works, we do not treat the robot’s kinematics as
a mere sensor to inform the camera pose, but rather treat it
as the true latent state of the system, and directly estimate
it.

In this work, we present a fully-dense geometric visual
SLAM technique which estimates the robot configuration
(rather than camera pose) from an online 3D model produced
with depth images. As in Kinect Fusion [9], we construct a
volumetric model of the scene, and localize against it using
a geometric objective function.

III. BACKGROUND

A. Robot Kinematics

A kinematic linkage [18] consists of a series of rigid bodies
(called links) attached to one another through mechanisms
(called joints) that constrain their motion. A joint has be-
tween 1 and 6 degrees of freedom (DOF) which define how
it constrains the motion of its attached links. The joint which
constrains link A to link B, and which has configuration qi
has the transformation:

TA
B (qi) ∈ SE(3) (1)

and as qi changes, so does the transformation between links
A and B.

The transformation of any link Li with respect to a
fixed reference frame W can be calculated by traversing the
kinematic tree and appending the transformations implied by
each joint from the root of the tree (a process called forward
kinematics):

TW
Li

= T
Li−1

Li
(qi−1) . . . TL1

L2
(q1)TW

L1
(2)

A robot’s configuration q ∈ RN is a vector which concate-
nates all of its joints’ degrees of freedom:

q = [q1 . . . qN ]T (3)

The partial derivative of link i’s reference frame with respect
to q:

Ji(q) =
∂

∂q
TW
Li

(4)

is called the link’s kinematic Jacobian, and for simple kine-
matic chains it can be computed in closed-form efficiently.

B. Actuator Uncertainty

Robots usually have motor encoders which measure the
number of rotations that each of their motors make. Motor
encoders can be used to indirectly infer the angle of the
robot’s joints. However, intervening mechanisms (such as
gear trains, non rigid links, elastic bands, cables, etc.) make
the mapping between the joint encoder reading and the
robot’s true joint angles unclear.

For instance, in the case of the Barrett WAM robot arm,
motors drive a series of pulleys and cables which in turn
rotate the joints. Depending on the amount of torque applied
to the cables, they can stretch and deform, introducing
hysteresis into the system. Boots et. al [2] found the end



Fig. 2: The Kinova Mico robot was sent to 10 inverse kinematics
solutions for a fixed pose (left). The solutions are overlaid on the
right. Error at the end effector exceeds 5 cm.

effector error on this robot due to cable stretch to be over
8 cm, and Klingensmith et. al [15] found it to be over 10
cm. Worse, the error is nonlinear, and depends mostly on the
torque applied to the robot along its trajectory.

We sent our robot, a Kinova Mico [12] to ten inverse
kinematics solutions, and measured the resulting end effector
pose with an Optitrack [24] motion capture system Fig.
2. Even though mathematically, the end effector should be
in exactly the same place each time, we found the end
effector pose to differ by as much as 5cm. According to the
manufacturer specifications [11], the robot’s actuators have
a resolution of 0.055◦; and we found the numerical error
from our inverse kinematics solver to account for less than
a millimeter of end effector error. These factors are thus
too small to account for the error we see. Instead, non-rigid
deformation of the plastic links under gravity, and off-axis
motion of the joint seems to account for this error.

In our work, we do not attempt to model the actuator
uncertainty directly, and instead simply assume it follows
a simple Gaussian Process model. Define the joint encoder
readings as a random variable drawn from the distribution

qe ∼ q +N (µq,Σq) (5)

where µq is the mean of the distribution at q, and Σq is
its covariance. Since we anticipate the uncertainty to be
more like an unmodeled dynamic effect and less like a
random process, Σq is likely to be small, while µq is a
function representing an offset in configuration space due to
the dynamic effect.

C. Depth Sensors

In this work, we will assume access to a depth camera
mounted to the robot’s hand. Depth cameras work by either
projecting a pattern onto a scene and reading with an infrared
camera, or with active time-of-flight pulses. Call the depth
image ID, it is a function with domain Ω ∈ R2. The
relationship between 3D points in the scene and 2D points
on a camera image can be modeled using the simple pinhole
camera intrinsic [8] model:

Proj(x, y, z) = [u, v] =

[
fxx

z
+ cx,

fyy

z
+ cy

]
(6)

where u, v are the 2D images coordinates, x, y, z are the 3D
point’s coordinates in the camera’s frame of reference (with
x to the right, y down, and z forward), and fx, fy, cx, cy are
the intrinsic parameters of the camera. We can also define the
inverse projection model, which takes a camera coordinate
u, v and depth measurement z, and converts it into a 3D
vector relative to the camera’s focal point. The resulting 3D
points are called the point cloud of the depth image. For a
particular pixel u, v with depth z, its point in the point cloud
is given by:

Proj−1(u, v, z) = z

[
u− cx
fx

,
v − cy
fy

, 1

]
(7)

Depth cameras measure the range (z) at each image pixel
to points in the scene. The depth measured by depth cameras
is noisy, incomplete, and contains systematic error.

D. Dense Fusion

When multiple depth images are given at known camera
poses, it is possible to reconstruct an estimate of the 3D
geometry of the scene. This process is called dense fusion.
In this work, we use a method of dense fusion from Curless
and Levoy [5], also used in Kinect Fusion [9] and variants,
called Truncated Signed Distance Field (TSDF) fusion. The
TSDF (Φ : R3 → [−τ, τ ]) stores a voxelized representation
of the scene where each voxel encodes the distance to
the nearest surface in meters, and has a weight. Positively
signed distances correspond to points outside of surfaces,
and negatively signed distances correspond to points inside of
surfaces. Voxels with a distance of zero correspond implicitly
to the surfaces of objects.

To fuse multiple depth images into a TSDF, we can simply
compute a local linearization of the distance field around
each depth pixel as projected into the scene. Overlapping
linearizations are simply averaged. Curless and Levoy [5]
provide an efficient means of doing this (Alg. 1), and show
that the resulting implicit surface is a least squared minimizer
of the point clouds from each depth image.

Kinect Fusion [9] and variants use the TSDF both for
mapping and localization. New camera poses are computed
by aligning the point cloud of the depth image to the
previously constructed map using the gradients of the TSDF.
Our work uses a similar approach to estimate the robot’s
configuration.

IV. ARTICULATED ROBOT MANIPULATOR SLAM

The task is, given a series of joint encoder readings
Qe = q

(1)
e , . . . ,q

(t)
e received online along with sensor

measurements from a hand-mounted depth camera Z =
z(1) . . . z(t), simultaneously reconstruct a TSDF of the scene
Φ, and estimate the true joint angles Q = q(1), . . .q(t).

Formally, this can be expressed as a maximum likelihood
estimate problem, first for localization:



Algorithm 1: FUSETSDF

1 // Given a depth image, sensor pose,
previous TSDF, previous voxel
weights, a weighting function, a
volume of interest, and a
truncation distance

Input: , C,Φ(t−1),W (t−1), w, V, τ
2 // Inverse of the camera transform
3 T ′ ← T−1

4 // Initialize the new TSDF to the
previous one

5 Φt ← Φt−1

6 // Initialize the weights
7 Wt ←Wt−1

8 for v ∈ V do
9 // Depth of voxel v

10 vc ← T ′v
11 di ← ID [Proj(vc)]
12 // Dist to camera plane.
13 dv ← vc(z)
14 // Locally linear approximation.
15 u← dv − di
16 // If dist within τ
17 if |u| < τ then
18 // Weighted average

19 Φt(v)← Wt(v)Φt(v)+w(u)u
Wt(v)+w(u)

20 Wt(v)←Wt(v) + w(u)
21 end
22 end

Output: Φt,Wt

Q∗ = argmax
Q

P(Q|Qe, Z) (8)

= argmax
Q

P(Z|Qe, Q)P(Q)

P(Qe, Z)
(9)

= argmax
Q

log P(Z|Qe, Q) + log P(Q|Qe) (10)

and for mapping

Φ∗ = argmax
Φ

P(Φ|Q∗, Z) (11)

As in Kinect Fusion [9], we neglect optimizing the entire
trajectory and map simultaneously, and instead focus on
alternatively optimizing the current pose estimate q(t) and
the current map Φ(t). This implicitly assumes the problem
has a Markov property, and makes the problem tractable at
the expense of allowing drift over time. First, the localization
step:

q(t) ← argmax
q

log P
(
z(t)
∣∣q,Φ(t−1)

)
(12)

+ log P
(
q
∣∣q(t−1),q(t)

e

)
(13)

and the mapping step:

Φ(t) ← argmax
Φ

(
Φ
∣∣Φ(t−1), z(t),q(t)

)
(14)

Eq. 13 has two components: a sensor posterior, and a joint
encoder prior. We will now analyze each term in detail.

A. Sensor Posterior

Kinect Fusion and variants [9] treat the sensor posterior
geometrically, and align sensor points to the TSDF surface
using point-to-plane ICP. This geometric argument can also
be derived probabilistically, as in generalized ICP [28]. If we
assume that the probability of some world-projected sensor
point z ∈ R3 has probability proportional to its distance to
the nearest surface,

P (z|φ) ∝ exp
(
−Φ [z]

2
)

(15)

implying in a sense that all surfaces in the scene are “blurred”
with uniform Gaussian noise, it becomes straightforward to
derive the sensor posterior, assuming independence between
all the points in the point cloud.

P
(
z(t)
∣∣q,Φ(t−1)

)
=
∏

z∈z(t)

P
(
Tqz|Φ(t−1)

)
(16)

∝
∏

z∈z(t)

exp
(
−Φ [Tqz]

2
)

(17)

where Tq = TW
Lk

(q) is the pose of the sensor implied
by configuration q in the world frame. Admittedly this
straightforward model is too simple to capture some im-
portant aspects of the depth sensor, such as the presence
of occlusions and aniostropy in the sensor. More complex
posteriors, like those used in DART [27], could be used in
its place.

B. Joint Encoder Prior

The other term in Eq. 13 relates the probability of a
robot’s configuration given its joint encoders. As discussed
in Section III-B, we can model this as a Gaussian process
so that the prior is given by

P(q|qe) ∝ exp[(q− µq − qe)
T Σq(q− µq − qe)] (18)

in our experiments, we simply use a prior that has a mean
centered on zero, with uniform noise Σq = γI; but a more
complicated prior learned from data could be used.

C. Algorithm

The sensor posterior and joint encoder prior together imply
a cost function that can be minimized to localize the robot

C (q) = γεT ε+
1

2

∑
z∈Z(t)

Φ(t−1) [Tqz]
2 (19)

where ε = q − q
(t)
e , and γ is a regularization term. The

gradient with respect to q can be obtained using the chain
rule:

∇C = γε+
∑

z∈Z(t)

∇Φ(t−1) [Tqz]JT
q∇Φ(t−1) [Tqz] (20)



where Jq =
∂Tqz
∂q is the manipulator Jacobian, as described

in Section III-A. This cost function can be minimized by
simple gradient descent. This leads to a filtering approach,
wherein an offset between the joint encoders and true joint
angles is tracked over time, subject to kinematic constraints
such as joint limits.

ε(t) ← ε(t−1) − λ∇C
(
q(t)
e + ε(t−1)

)
− γε(t−1) (21)

Algorithm 2: ARM-SLAM

1 // Where q
(t)
e are the motor encoders at

time t, λ is a learning rate, and γ
is a regularization parameter.

Input: Zt,q
(t)
e ,Φ(t−1), λ, γ, ε(t−1)

2 ε(t) ← ε(t−1)

3 repeat
4 q(t) ← q

(t)
e + ε

5 // The camera transform.
6 Tq ← TW

Lk
(q(t))

7 // Gradient of the sensor
measurement posterior.

8 ∇C ←
∑

z∈Z(t)

[
Φ(t−1) [Tqz]J

T
q∇Φ(t−1) [Tqz]

]
9 // Descend the gradient.

10 ε(t) ← ε(t) − λ∇C − γε(t)
11 until convergence;
12 // Mapping step.
13 Φ(t) ← FUSETSDF

(
Φ(t−1), Z(t),q(t)

)
Output: ε(t),Φ(t)

For mapping, we can simply take the tracked joint encoder
position as ground truth for fusing the depth image into the
TSDF as in Curless and Levoy [5] (Alg. 1). Tracking and
mapping are repeated in alternation.

V. EXPERIMENTS

We conducted three types of experiments to observe the
behavior of this algorithm; 2D simulation experiments, 3D
simulation experiments, and a real robot experiment. 1

A. 2D Simulation

In the simple 2D simulation experiment, a 3-link serial
robot manipulator with a simulated 1D depth sensor scans a
scene. We added zero-centered Perlin [25] noise to its joint
encoder readings. That is,

q(t)
e = q(t) + βnPERLIN

(
snq

(t)
)

(22)

where sn, βn are parameters which control noise frequency
and magnitude, respectively. In our experiments, sn =
1.0, βn = 0.2. The simulated depth image is noiseless.

For the world model, we constructed a simple 2D TSDF.
We compare the performance of ARM-SLAM (Alg. 2)
against a simple unconstrained descent algorithm which

1Videos of these experiments are attached. High resolution videos are
available at http://youtu.be/QrFyaxFUs9w

Fig. 3: 2D simulation experiment (Section V-A). The robot is shown
in red. The simulated depth image is shown as grey rays. The TSDf
is shown as orange or blue pixels. Top left shows the ground truth
TSDF, top right is with forward kinematics only (with actuator
uncertainty). Bottom left corrects actuator noise using unconstrained
dense fusion. Bottom right corrects using ARM-SLAM.

t Fwd. Kin. Dense Fusion ARM-SLAM

500

EE Err. (pix.) 5.2± 5.9 3.4± 4.2 0.8± 0.7
Jnt. Err (rad.) 0.08± 0.06 − 0.06± 0.05
SDF Err (pix.) 1.4± 1.7 0.8± 0.8 0.5± 0.3
Class Err (%) 5.7± 3.2 4.7± 2.3 3.5± 0.6

999

EE Err. (pix.) 9.2± 6.7 14.7± 17.8 1.4± 1.9
Jnt. Err (rad.) 0.17± 0.07 − 0.08± 0.05
SDF Err. (pix.) 6.1± 5.3 12.2± 22.2 1.2± 0.8
Class Err. (%) 11.3± 6.2 9.5± 6.1 4.4± 1.1

TABLE I: Results for the 2D simulation experiments (Section V-
A). The end effector error in pixels, joint angle error in radians,
distance field error in 106 pixels, and occupancy classification error
(the proportion of pixels misclassified as containing an obstacle)
is shown for forward kinematics, unconstrained dense fusion, and
ARM-SLAM for a dataset with 500 and 999 time-steps. Our
approach (ARM-SLAM) reduces all three error terms.

assumes the sensor can move and rotate freely, without
considering the robot kinematics (Fig. 3). We found that
ARM-SLAM managed to both reduce end effector error
and dramatically reduce model error (Table I), whereas
just using a 2D dense fusion technique without constraining
using the robot’s kinematics resulted in severe, unrecoverable
drift because of the scene’s self-similarity and the robot’s
fast motion. Note that in the real experiments, there is
comparatively much less actuator noise, and a much smaller
scene than in the 2D experiments.

B. 3D Simulation

We developed a 3D simulation of a Kinova Mico robot
with a hand-mounted Occipital Structure [23] depth sensor.
In the simulation, the robot scans a simulated bookshelf. As
in the 2D experiments, Perlin noise is added to the ground
truth joint angles to simulate actuator uncertainty. We use the
Open Chisel [14] chunked TSDF library for mapping. The
simulated depth image is noiseless. Reconstructions were
done at a resolution of 1.5 cm per voxel.



(a) Ground truth (b) ARM-SLAM

(c) Kinect Fusion (d) Forward kinematics

Fig. 4: Results of the 3D simulation (Section V-B) with up to 0.8
radians of added noise per joint.

We found that ARM-SLAM was able to correct for
very large actuator error (see Fig. 5), resulting in a final
reconstruction near the ground truth (Fig. 4). By artificially
increasing the actuator noise, we found that ARM-SLAM
significantly reduced the end effector error even when the
uncertainty in the camera’s pose was up to 12 cm (Fig. 5a),
we also found ARM-SLAM to be more robust to tracking
failure from lost data than unconstrained Kinect Fusion (Fig.
5b) due to the very strong motion prior from the robot
kinematics.

C. Bookshelf Scanning

Using the same framework as in the 3D simulation, we
reconstructed a bookshelf with a Kinova Mico robot with a
hand-mounted Occipital Structure sensor (Fig. 1). The robot
was teleoperated using a joystick. Beforehand, the Structure
sensor was extrinsically calibrated to the robot’s hand using
the Tsai[7] method and a fiducial, though extrinsic calibration
error cannot be ruled out. The end effector deviation was
measured using an Optitrack motion tracking system. One
challenge of working with the real robot data is that the
joint encoders and depth sensor are not synchronized. The
joint encoder data is emitted at ∼ 500 Hz, whereas the
camera data is produced at 30 Hz. To compensate for this,
we store the robot’s configuration space trajectory as a series
of linearly interpolated, timestamped waypoints. Using this,
we can infer the joint encoder readings at the time when the
depth image was received.

The 3D reconstructions (Fig. 1) show that our method
is able to recover 3D structure in the scene that is lost
when only the (noisy) forward kinematics are used. This is
especially apparent around the edges of the bookshelf and
its adjacent walls. Our reconstructions are comparable to
Kinect Fusion run at the same voxel resolution (1.5 cm). We
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(a) 3D simulation with added noise.
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(b) 3D simulation with lost tracking.
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(c) Real data validated with motion capture.

Fig. 5: End effector error observed in the 3D simulation (Section V-
B) experiments. Fig. 5a: 100 trials with different noise seeds are run
with increasing noise magnitude. Each trial lasts 60 seconds. The
median deviation of the end effector from ground truth is recorded.
Fig. 5b: in a different simulation, the robot briefly looks away from
the scene and then looks back. Kinect Fusion loses tracking. Fig.
5c: end-effector deviation in the real dataset as measured by an
optical motion capture system, Kinect Fusion briefly loses and then
regains tracking.



measured end-effector motion with an optical motion capture
system (Fig. 5c) and found that Kinect fusion occasionally
lost (and regained) tracking due to self-similar surfaces in
the bookshelf and surrounding walls. Because of the strong
motion prior from the robot’s joints ARM-SLAM did not
have this issue. However, our data from the motion capture
system is too noisy to conclude ARM-SLAM performed any
better than forward kinematics at reporting the true pose of
the end effector (ARM-SLAM had an end effector deviation
of 1.2 ± 0.9cm while forward kinematics had a deviation
of 1.4 ± 1.0cm). It may be that extrinsic calibration error
between the sensor and rigid hand mount is dominating any
error produced at the robot’s joints.

VI. DISCUSSION AND FUTURE WORK

In this work, we have introduced a framework for visual
SLAM in a robot’s configuration space. We have shown that
our approach is capable of reconstructing scenes and re-
ducing actuator uncertainty simultaneously. Many questions
remain to be answered about this problem domain, and it
is clear that our work does not yet address some of its key
components.

First, since it is a pure model-based dense SLAM approach
(like Kinect Fusion[9]), it suffers from many of the problems
that plague these approaches. The system requires clear geo-
metric structure and a large field of view to localize correctly,
and since it uses no global pose graph, it is susceptible to
drift over longer trajectories. Further, we are only able to
track the configuration of the robot when a depth image is
available. Also like those approaches, the underlying tracking
and mapping techniques are largely based on geometric
arguments, making it difficult to incorporate probabilistic
models. As a consequence, we don’t have a way of tracking
the uncertainty in the predicted joint angles.

By committing to localization in the configuration space
of the robot, rather than SE(3), we gain the benefit of only
predicting physically plausible camera poses. We are also
able to express costs and priors (such as joint limit and self-
collision costs) on robot configuration trivially. On the other
hand, error that can’t be expressed in the configuration space
(such as error in the extrinsic calibration, or motion of the
robot base) cannot be corrected for using our technique. Also,
the more joints a robot has in comparison to SE(3), the more
work our technique has to do to compute Jacobian terms,
and the larger the camera motion null-space is (worsening
susceptibility to local minima). For instance, a 2-jointed
robot pan-tilt head would be comparatively easy to localize
vs. a highly redundant 50-jointed snake robot.

In spite of these limitations, our approach provides a good
baseline for conducting further research. We are eager to re-
express other visual SLAM techniques in the configuration
space of the robot, and to explore other ways of correcting
actuator noise through visual sensors.
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