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Abstract—In many scenarios involving human interaction with
a remote swarm, the human operator needs to be periodically
updated with state information from the robotic swarm. A
complete representation of swarm state is high dimensional
and perceptually inaccessible to the human. Thus, a summary
representation is often required. In addition, it is often the
case that the human-swarm communication channel is extremely
bandwidth constrained and may have high latency. This mo-
tivates the need for the swarm itself to compute a summary
representation of its own state for transmission to the human
operator. The summary representation may be generated by
selecting a subset of robots, known as the information leaders,
whose own states suffice to give a bounded approximation of the
entire swarm, even in the presence of uncertainty. In this paper,
we propose two fully distributed asynchronous algorithms for
information leader selection that only rely on inter-robot local
communication. In particular, by representing noisy robot states
as error ellipsoids with tunable confidence level, the information
leaders are selected such that the Minimum-Volume Covering
Ellipsoid (MVCE) summarizes the noisy swarm state boundary.
We provide bounded optimality analysis and proof of convergence
for the algorithms. We present simulation results demonstrating
the performance and effectiveness of the proposed algorithms.

I. INTRODUCTION

Robotic swarms consist of a large number of robots whose
global behavior emerges from simple control laws and collec-
tive decision making based on local communication or sensing.
Since each robot only uses local information from other robots
within its spatial neighborhood, robotic swarms demonstrate
high robustness and scalability, exhibiting great potential for
various applications including search and rescue, environmen-
tal monitoring and disaster response. However, recent work in
[1] has shown that the high dimensionality of the swarm’s state
space makes it hard for humans to perceptually access and
interpret the state of the swarm, which causes difficulty for hu-
man interaction with robotic swarms. Therefore, it is important
to simplify or summarize swarm state into low dimensional
representations. Previous experiments in [2], [3] showed that
a summary representation (e.g. convex hull) can help humans
estimate the state of the swarm to more effectively control
the swarm. Thus, human control may be enhanced by a
small number of appropriately selected swarm members. In
addition, when the human operates a remote swarm under
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conditions where human-swarm communication bandwidth is
significantly constrained and human-swarm communication
latency is high (e.g. underwater environments, disaster zones
with minimal infrastructure), it is important for the swarm
itself to compute this summary representation before transmis-
sion to the human. In [4], this group of swarm members was
termed information leaders, whose state information enables
constructing an accurate summary representation of the entire
swarm. The communication constraints motivate the need to
ensure there is minimal dependence between the number of
robots in the swarm and the number of selected information
leaders or the individual inter-robot message size.

In addition to perceptual accessibility of overall swarm state
information by a human operator, another main challenge in
human-swarm interaction is the noisy state information from
individual robots. Each robot’s state information is inherently
noisy due to localization errors and when incorporated into
a swarm summary representation that does not explicitly
account for the noise, such as [4], there may be undesirable
artifacts (e.g. incorrect information leaders whose minimum
volume enclosing ellipse does not actually enclose the true
positions of the robots). In this paper, we extend our previous
work [4] on selecting information leaders for swarms by
encoding the uncertainty of robot states into our framework.
The contributions of this work are (a) distributed algorithms
for information leader selection under uncertainty to generate
a representative summary of the entire swarm’s noisy state
to a tunable, user-defined, guaranteed confidence level, (b)
bounded optimality analysis and proof of convergence of
the proposed distributed algorithms and (c) simulation results
evaluating the performance of the algorithms for swarms of
various sizes.

II. RELATED WORK

Within the literature discussing summary representations of
robotic swarms, ellipsoids are a commonly used geometric
abstraction to describe the overall state of the robot system.
For instance, [5] constructs an ellipsoid as an abstraction of
a group of robots using first and second order geometric
moments. However, [5] assumes that global information (i.e.
geometric moments) is shared by all robots in the robotic
swarm, which is impractical in multi-robot systems where
robots can only communicate with their direct neighbors.
Based on this geometric moments abstraction, [6] proposes a
distributed proportional-integral average consensus estimator
to estimate the global information. Although these geometric
moment based algorithms can represent average information978-1-5090-1897-0/16/$31.00 c©2016 IEEE



among robotic swarm members which enables convenient
control and state estimation, these abstractions fail to take
care of boundary information without further assumptions
regarding distribution of robotic swarm members (e.g. normal
distribution [5]). In contrast with geometric moment based
algorithms, [4] introduces an abstraction based on the min-
imum volume enclosing ellipsoid (MVEE) [7] that covers the
position of each robot in the robotic swarm. It also defines
a set of boundary robots selected in a distributed way called
information leaders based on a core set which can be used to
estimate a (1 + ε)-approximation of the MVEE.

Extending the MVEE concept for enclosing a set of points
with an ellipsoid, a minimum volume covering ellipsoid
(MVCE) of ellipsoids is defined as the minimum volume
ellipsoid to cover a given set of ellipsoids. This problem
can be formulated as a minimum determinant problem with
linear matrix inequalities, which can be solved by optimization
algorithms proposed in [8] and [9]. However, such opti-
mization algorithms cannot be efficiently decentralized and
thus cannot easily fit into the swarm robot framework for
state estimation. However, [10] proposes an extension to the
first-order Khachiyan’s algorithm[11], which constructs an
approximation of MVCE in an incremental way which can
be conveniently decentralized. Moreover, since this algorithm
results in a core set which generates a close approximation
of the MVCE of all the ellipsoids, it can also be useful for
selection of information leaders.

In this paper, we extend the minimum volume enclosing
ellipsoid based algorithms proposed in [4]. In contrast to
[4], we use a probabilistic representation which describes the
position of each robot with a confidence ellipsoid instead of an
exact position. We also propose an asynchronous distributed
framework for the MVCE core set algorithm proposed in [10].

III. PROBLEM STATEMENT

Consider a robotic swarm consisting of N robots. The
position of each robot is defined as qi ∈ Rd with d ∈ {2, 3} in
common reference frames. Each robot can only communicate
with its direct neighbors. The communication graph is given
by G = (V,E), where each node i ∈ V represents a robot.
If robot i ∈ V can communicate with robot j ∈ V , then
edge (i, j) ∈ E. We assume that the communication graph is
undirected and connected.

In contrast to [4], we do not assume we have perfect
state information about every robot and instead assume a
probabilistic distribution over robot states. In the scope of
this paper, we assume that this distribution satisfies Gaussian
distribution. However, it is easy to see that the algorithm we
discuss in this paper can be easily extended to any other
probabilistic distribution with closed iso-contour.

Confidence Level Ellipsoids: For each single robot, we
define the γ-confidence level ellipsoid as,

Ei :=
{
x ∈ Rd : (x− µi)TAi(γ)(x− µi) ≤ 1

}
s.t.

∫
x∈Ei

p(qi = x) = γ
(1)

Therefore, we have a set of γ-confidence level ellipsoids
S = {E1, E2, . . . , En} over the robotic swarm. Without
loss of generality, we assume that each of the ellipsoids
E1, E2, . . . , EN is of full dimension, since every degenerate
ellipsoid can be approximated by a full-dimensional ellipsoid
with some axes extremely short. We define the ellipsoidal
norm between a point x ∈ Rd and ellipsoid determined by
A,µ as dE(x,A, µ) =

√
(x− µ)TA(x− µ). For simplicity

of exposition, we will use E = (A,µ) to refer to ellipsoid E
defined by matrix A and µ.

Since we assume that exact position of each robot given
its estimation satisfies Gaussian distribution, the probabilistic
distribution is determined by mean µi and covariance matrix
Σi. In practice, µi and Σi can be either directly known from
sensor or computed by estimators (e.g. Kalman filter).

From the statistics literature [12], [13], for normal distri-
butions, the probability of an observation is defined by the
Mahalanobis distance dΣ−1

i
(qi, µi), where

d
Σ−1

i
(qi, µi) =

√
(qi − µi)T Σ−1

i (qi − µi) (2)

and dΣ−1
i

(qi, µi)
2 satisfies chi-squared distribution and the

degree of freedom of chi-squared distribution is same as
the dimension of space where the swarm is operated. The
probability that true value is t away from µi in terms of
Mahalanobis distance is

√
χ2

1−γ . In other words, the p-

confidence level ellipsoid is Ei = ((1/χ2
1−γ)Σ−1

i , µi). In 2
dimensional cases, there is a closed formed solution of the
confidence level ellipsoid, with Ai = −(1/2 ln(1− γ))Σ−1

i .
In this paper, we are interested in distributedly computing

the Minimum Volume Covering Ellipsoid (MVCE) E = {x ∈
Rd : (x − ω)TM(x − ω) ≤ 1} over the set of confidence
level ellipsoid S = {E1, E2, . . . , EN}, which is formulated as
follows.

arg min
M,ω

log det
(
M−1

)
s.t. Ei ⊆ E, i = 1, 2, . . . , N

M � 0

(3)

IV. MINIMUM VOLUME COVERING ELLIPSOID AND CORE
SETS

Instead of optimization based algorithms which are hard
to fit into a distributed framework, there are core set based
MVCE algorithms [10], [11], [14], [7] that are beneficial to
our problem. Instead of computing the exact MVCE over the
whole set of ellipsoids, these algorithms identify a core set
of ellipsoids to generate a close approximation to the exact
MVCE.

Definition 1: Given ε > 0 ∈ R and a compact convex set
S ⊂ Rd, an ellipsoid E = (A,µ) is said to be a (1 + ε)-
approximation to MVCE(S) if

E ⊇ S, vol E ≤ (1 + ε)vol MVCE(S), MVCE(S) ⊆ (1 + ε)E (4)

where (1 + ε)E is defined as (1 + ε)E := {x ∈ Rd : (x −
µ)TA(x− µ) ≤ 1}, i.e., (1 + ε)E = (A/(1 + ε), µ).

A core set is a small subset X ∈ S, such that using
this subset gives the approximately same MVCE as the one



obtained from the entire set S. In this paper, we define the core
set XE of S as the subset of ellipsoids (confidence ellipsoids
of robots) that can approximate the MVCE of the entire set.
It satisfies

vol MVCE(XE) ≤ vol MVCE(S) ≤ (1 + ε)vol MVCE(XE)

≤ (1 + ε)vol MVCE(S)
(5)

A. Centralized MVCE-from-MVEE Algorithm

The general idea of the discretized MVCE-from-MVEE
algorithm is to discretize the boundary of the confidence level
ellipsoid into a set of points Si ⊂ ∂Ei, and approximate
confidence level ellipsoid by the polyhedron which is the
convex hull of {Si}. If the discretization is fine enough, then
the MVEE over {S1,S2, . . . ,SN} can give a sufficient good
approximation of MVCE over ellipsoids {E1, E2, . . . , EN}.

Theorem 1: If localization of each robot is reasonably good,
where any axis of the estimated MVEE E = (A,µ) over
{S1,S2, . . . ,SN} ⊂ Rd is greater than the length of the major
axis of each confidence level ellipsoid, then E is guaranteed to
be an (1+ε)-approximation of the Minimum Volume Covering
Ellipsoid over {E1, E2, . . . , EN} ⊂ Rd if Si is discretized by
same angle interval over Ei = (Ai, µi), and discretization
interval ∆θ satisfies,

∆θ ≤ 2 arctan

(
rmin

√
(1 + ε)2/d − 1

)
(6)

where rmin is the maximum among square root of ratio of the
minimum and maximum singular value of matrix Ai,

rmin = min
{√ σmin(Ai)

σmax(Ai)
, i = 1, . . . , N

}
Proof: Consider the worst case that two nearby points

are located symmetrically about the major axis of an ellipsoid
Ei = (Ai, µi) and the major axis of Ei coincides with an
axis of MVEE E = (A,µ). Let the convex hull intersect with
that axis at xc, MVEE intersects with that axis at xe and the
furthest point on Ei located on xm, which is obviously a point
on major axis of Ei. To prove Theorem 1, what we have to
prove is that in this worst case, ‖xe − µ‖2/‖xm − µ‖2 ≥
1/(1 + ε).

As is proved in [4], ‖xe − µ‖2 ≤ ‖xc − µ‖2. Based on our
assumption that localization is reasonably good and axis of Ei
and E coincide, we have

‖xe − µ‖2
‖xm − µ‖2

≥ ‖xc − µ‖2
‖xm − µ‖2

≥ ‖xc − µi‖2
‖xm − µi‖2

Therefore, Theorem 1 holds if we can guarantee that ‖xc −
µi‖2/‖xm − µi‖2 ≥ 1/(1 + ε). The rest of proof follows
directly from geometry.

Note that Theorem 1 also shows that a bound of discretiza-
tion interval does not exist without certain assumptions on the
shape of the ellipsoid. For example, the bound of discretization
interval needs to be extremely small if we consider a near
degenerate case. Furthermore, since (6) is a worst case bound,
the actual output MVEE of this algorithm may be much closer
to the exact MVCE, which results in unnecessary enlargement
of the estimated MVCE (note that the estimated MVCE is the

(1+ε) expansion of the output MVEE). Another remark is that
the cost of discretization grows exponentially as the number
of dimensions increase. This means that there is a significant
difference between the computational cost of this algorithm in
2 dimensional space and 3 dimensional space.

B. Centralized MVCE-KY Algorithm

The centralized MVCE-KY algorithm described in [10] is
a two stage algorithm. The first stage initializes the core set
of size |X0| = 2d to generate an initial volume approximation
with a bounding box. Each ellipsoid is traversed to find the 2
furthest points in d orthogonal directions. This subroutine has
the following analytical solutions

x∗i,k = arg max
x∈Ek

{
±
(
bi
)T

x
}

= µk ±
(Uk)−1 (Uk)−T bi∥∥∥(Uk)−T bi

∥∥∥ (7)

where bi is the unit vector in ith direction and Uk is obtained
by the Cholesky factorization of Ak, which is the shape matrix
for each ellipsoid E1, E2, . . . , EN . It is noted that the initial
estimation E = (M0, ω0) is constructed by the center of mass
of X0 as center ω0, and the inverse of the scaled covariance
matrix of X0 as matrix M0.

Then the initial volume approximation ellipsoid is recur-
sively expanded to include the furthest violator point xnew =
arg maxx∈S{(x−ω)TM(x−ω)} and expand the estimate of
the MVCE until the squared ellipsoid norm of the furthest
violator point is within threshold. The algorithm ends up
with a core set which spans an ellipsoid which is a (1 + ε)-
approximation to the exact MVCE of ellipsoids.

Note that the sub-procedure for finding the furthermost
violator in each Ei, i = 1, . . . , N w.r.t. current estimation
of MVCE is a nonlinear optimization problem. In terms of
distributed computation, the centralized MVCE-KY algorithm
can be regarded as the basic function to compute the MVCE
and core set for sets of ellipsoids.

arg max
x

(x− ωk)TMk(x− ωk)

s.t. (x− µi)TAi(x− µi) ≤ 1
(8)

This problem is a quadratic optimization problem, and can be
solved by nonlinear optimization techniques such as Sequen-
tial Quadratic Programming (SQP).

V. DISTRIBUTED INFORMATION LEADER SELECTION
USING CORE SETS

Assume each robot is labeled with a unique identifier (UID)
that can be used to identify each other. Without loss of
generality, we assume that UID(i) = i. The UIDs of direct
neighbors of robot vi in the communication graph are defined
by the set Ni = {j | j ∈ V : (i, j) ∈ E}. In this section,
we will discuss algorithms that solve the MVCE problem in
a distributed manner and only require local communication
between connected robots.



A. Distributed MVCE-from-MVEE Algorithm

As introduced in Section IV-A, the MVCE-from-MVEE
algorithm discretizes each error ellipsoid of a robot into a set
of boundary points and approximates the ellipsoid based on the
convex hull of these discrete points. Then the MVEE of these
points from all the robots can provide a sufficiently precise
approximation to MVCE over confidence level ellipsoids.

Since this algorithm only computes the MVEE over a finite
set of points, we adopt the framework introduced in [4], [15]
into Algorithm 1, which uses the CH-KY framework and calls
the exact MVEE core set algorithm presented in [14] to select
MVEE core set. Note that [14] never computes the MVEE
explicitly, but rather outputs the MVEE core set directly.

Algorithm 1 Distributed MVCE-from-MVEE Algorithm Core
Set Selection
1: procedure DISTRIBUTED MVCE-FROM-MVEE(u, Eu,Nu)
2: l← u, h← 0, m← NIL
3: HS ← DISCRETIZE(Eu), CS ← MVEECORESET(HS)
4: for all i ∈ Nu do
5: SENDMSG(i, u, h, l,HS)
6: end for
7: while {n, h′, l′,HS′} ← RECVMSG() do
8: if (l > l′) ∨ ((l = l′) ∧ (h > h′ + 1)) then
9: l← l′, h← h′ + 1, m← n

10: HS ← DISCRETIZE(Eu), CS ← MVEECORESET(HS)
11: for all i ∈ Nu do
12: SENDMSG(i, u, h, l,HS)
13: end for
14: else if (l = l′) ∧ (h < h′) then
15: HS ← CONVEXHULL(HS ∪HS′ )
16: if m 6= NIL then
17: SENDMSG(m,u, h, l,HS)
18: else
19: CS ← MVEECORESET(HS)
20: end if
21: end if
22: end while
23: end procedure

In Algorithm 1 every robot first initializes its belief of leader
UID l, number of hops h from leader, master UID m, convex
hull estimateHS , and MVEE core set estimate CS with its own
knowledge (lines 2–3) and sends its estimate to its neighbors
(lines 4–6).

Then the algorithm simultaneously performs two tasks: (1)
implicitly establish a spanning tree rooted at the robot leader
with the lowest UID, which is optimal in terms of number of
hops to leader and the diameter of the tree (lines 8–13), and
(2) propagate convex hull information from leaves of the tree
to the root robot leader (lines 15–17).

Note that the convex hull has the property that given several
sets of points X1, . . . ,Xn,

Conv

 ⋃
i=1,...,n

Xi

 = Conv

 ⋃
i=1,...,n

Conv (Xi)

 (9)

which means that the convex hull of the union of convex
hulls is the convex hull of X1, . . . ,Xn. Therefore, messages in
Algorithm 1 are only needed to be sent one way from leaves
to the root of tree and there is no convergence issue. The total

number of messages transmitted is O(|V |+ |E|) and the size
of message is bounded by O(|V |).

The algorithm will end up with the leader having the
correct estimate of MVCE-from-MVEE core set. However,
this information is not shared by other robots.

B. Distributed MVCE-KY Algorithm

As is pointed out in [4], core sets selected by KY algorithm
in [4] for MVEE problem don’t have the same property that
the union of two core sets contains all the points enclosed
by both individually. It is the same for MVCE-KY core
set. Namely, given core sets MVCE (XEA) ⊆ MVCE (SA)
and MVCE (XEB) ⊆ MVCE (SB), MVCE (SA ∪ SB) 6=
MVCE (XEA ∪ XEB). Algorithm 2 accounts for this property
by maintaining a hypothesis core set that is updated by parents
and verified by descendants in the spanning tree. On line 15
and 21, MVCECORESET() is defined as a specific algorithm
to merge several core sets and will be introduced.

Algorithm 2 Distributed MVCE-KY Core Set Selection
1: procedure DISTRIBUTED MVCE-KY(u, Eu,Nu)
2: l← u, h← 0, m← NIL
3: CS ← Eu
4: for all i ∈ Nu do
5: SENDMSG(i, u, h, l, CS )
6: end for
7: while

{
n, u′, h′, l′, C′S

}
←RECVMSG() do

8: if (l > l′) ∨ ((l = l′) ∧ (h > h′ + 1)) then
9: l← l′, h← h′ + 1, m← n

10: CS ← Eu
11: for all i ∈ Nu do
12: SENDMSG(i, u, h, l, CS )
13: end for
14: else if (l = l′) ∧ (h < h′) then
15: CS ←MVCECORESET(CS ∪ C′S ∪ Eu, ε)
16: SENDMSG(n, u, h, l, CS )
17: if m 6= NIL then
18: SENDMSG(i, u, h, l, CS )
19: end if
20: else if (l = l′) ∧ (m = n) ∧ (CS 6= C′S) then
21: CS ←MVCECORESET(CS ∪ C′S ∪ Eu, ε)
22: for all i ∈ Nu do
23: SENDMSG(i, u, h, l, CS )
24: end for
25: end if
26: end while
27: end procedure

Similar to Algorithm 1, on line 2–3, each robot initializes
its estimate of leader UID l, number of hops h from leader,
master UID m and core set estimate CS . On lines 4–6, it sends
a message to each of its neighbours i ∈ Nu.

The way Algorithm 2 constructs the spanning tree is the
same as MVCE-from-MVEE algorithm. However, since the
MVCE-KY core set does not have a similar property to the
convex hull in (9), information transmission is bi-directional.
When a message is received from a descendant, the robot re-
estimates its MVCE-KY core set using the algorithm intro-
duced in Section IV-B (line 14) and sends a message to its
master (line 18) and back to that descendant (line 16). When
a message is received from its master, the robot updates its
estimate and informs its direct neighbors, since we do not



assume robots know which robot is its descendant (lines 20–
25).

The algorithm terminates when every robot in the connected
component has same and correct leader UID l, minimum hops
to leader h and a consensus on the MVCE-KY coreset.

Theorem 2: In the subroutine MVCECORESET() of Algo-
rithm 2, we assume each robot uses the same orthogonal basis
in Rd for the initialization phase, which ensures the algorithm
will converge to the same core set XE as the one obtained by
the centralized MVCE core set algorithm [10].

Proof: Recall that the centralized MVCE-KY algorithm
[10] as the subroutine of Algorithm 2 works in the following
way. In the initialization phase (first stage), the initial MVCE-
KY core set is identified by finding the bounding box of
the input ellipsoids defined in (7). In the second stage, the
MVCE core set is then recursively expanded by including the
furthest violator from the current non-core set input ellipsoids
at each round w.r.t. the MVCE defined from the current core
set ellipsoids until no violators are found. In this manner even
if the Algorithm 2 is asynchronous and distributed, a compu-
tation sequence is imposed such that as messages propagate
through the robotic network, each robot will first agree on the
same bounding box of all the input robot ellipsoids (given
the same orthogonal basis as supporting vectors) and then
compute the remaining furthest violators in the same order.
Hence each robot will eventually agree on the same core set as
obtained from the centralized MVCE-KY algorithm and mute
from bottom to top of the spanning tree, which terminates the
algorithm.

VI. RESULTS

We implement the distributed MVCE-from-MVEE algo-
rithm and distributed MVCE-KY algorithm on a simulated 2
dimensional robotic swarm. The robots can communicate with
their neighbor within communication range R = 10 and the
ratio of length of minor axis and major axis of confidence
level ellipsoids is bounded by [1/6, 1]. In this section, we
will compare these two distributed MVCE algorithms in terms
of approximation accuracy, core set size, message size and
number. Figure 1 shows an example of distributed MVCE-KY
algorithm on a swarm consisting of 35 robots. The spanning
tree constructed by our algorithms is shown in Figure 1a.
Figure 1b shows the MVCE and MVCE-KY core set estimates
by robots in an intermediate step. Robots within their own
estimate of the core set are shown in red. The algorithm
converges to the MVCE estimate shown in Figure 1c where
4 robots within MVCE-KY core set is shown in red. As a
comparison, convex hull of the swarm consists of 10 robot.
Robots within the convex hull, but not within MVCE-KY core
set are shown in green.

We tested both the distributed MVCE-from-MVEE algo-
rithm and distributed MVCE-KY algorithm on simulated robot
swarms with 20, 35, 50, 65 robots. For each swarm size,
20 trials were conducted and other settings are the same as
the previous section. Core set size, message size and message
number are compared in Figure 2.

Figure 2a shows the core set size of the robot swarm in
simulations of 20, 35, 50 and 65 robots respectively. For each
size of the swarm, the average, maximum and minimum core
set size are shown. A convex-hull over discretized points (CH)
algorithm is also implemented as a benchmark. As is shown
in Figure 2a, both the distributed MVCE-from-MVEE and
distributed MVCE-KY algorithm have the property that the
size of the core set is independent of the size of the swarm,
which is not satisfied by CH algorithm. Moreover, one may
observe that the core set size of the distributed MVCE-from-
MVEE algorithm is sometimes a few less than the core set
size of the distributed MVCE-KY algorithm. This is because
the core set of the distributed MVCE-KY algorithm must
include confidence level ellipsoids on the bounding box to
guarantee convergence as is shown in Theorem 2. However,
these ellipsoids may not lie in the exact core set which is
generated by the distributed MVCE-from-MVEE algorithm.

The average and maximum message size transferred are
shown in Figure 2b. The message size is independent of the
number of robots in the distributed MVCE-KY algorithm,
since it only transfers each robot’s current estimate of the
core set. However, the message size for the distributed MVCE-
from-MVEE algorithm is subject to the number of boundary
robots, which is dependent on swarm size and configuration.

Figure 2c shows the number of messages transmitted per
robot in the two algorithms. One may observe that the number
of messages for the distributed MVCE-from-MVEE algorithm
is much less than that of distributed MVCE-KY algorithm.
This is due to the distributed MVCE-from-MVEE transmitting
convex hulls and only needing one-way message transfer from
each node to its master. However, the distributed MVCE-KY
algorithm requires bi-directional transmission of messages.
Although transmitting more messages, the distributed MVCE-
KY algorithm implicitly ends with all robots having consensus
on the core set. However, in the distributed MVCE-from-
MVEE algorithm, only the leader has an accurate and com-
plete estimate of the core set. Thus, it could require more
messages if a consensus over the core set is needed.

VII. CONCLUSION

We introduced two distributed algorithms for information
leader selection for robotic swarms that explicitly consider
uncertainty of individual robot states. Both algorithms select
a core set of robots which are used to generate a sum-
mary representation of overall swarm state with relatively
low dimensionality and is independent of swarm size. These
robots can uniquely define an ellipsoid over the environment
that is guaranteed to enclose all the robots up to a desired
user-defined confidence level and proof of convergence is
provided. Simulation results comparing the two algorithms
in the paper evaluating key properties such as core set size,
message size and total number of messages show that the dis-
tributed MVCE-from-MVEE algorithm almost always results
in a smaller core set size and transmits significantly fewer
messages, but the MVCE-KY algorithm has a lower maximum
message size.
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Fig. 1: Simulation example for a simulated robotic swarm with 35 robots. (a) Spanning tree (red) constructed by our algorithm. Robot positions are shown
in dark color but each robot only knows their confidence level ellipsoids defined in (1), shown as light color ellipsoids. Black robot 1 is the root of the tree.

Other robots’ confidence level ellipses are shown in light blue ellipses. (b) An intermediate state of MVCE estimation (dark blue dotted line) for robots.
Robots which are in their own estimation of core set is shown in red. The final estimation of MVCE is shown in dark blue solid line. (c) Final estimation of
MVCE, including both the (1 + ε)-approximation ellipse (dash line), its enlargement (solid line) and the core set, including MVCE-KY core set (red) and

convex hull (both red and green)
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Fig. 2: Simulation results for a robot swarm consisting of 20, 35, 50 or 65 robots (20 trials each) operating in a 2-dimendional workspace. The distributed
MVCE-from-MVEE algorithm almost always results in a smaller selected core set and significantly fewer messages transmitted per robot. However, in this
algorithm since a convex hull must be transmitted in each message, the maximum message size grows significantly with the number of swarm robots. In
contrast, the distributed MVCE-KY algorithm has a much smaller upper bound on message size, so though it has a higher message size on average, the

maximum message size does not grow as much with the number of swarm robots.
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[14] B. Gärtner and S. Schönherr, “Smallest enclosing ellipses–fast and
exact,” 1997.

[15] S. Nagavalli, A. Lybarger, L. Luo, N. Chakraborty, and K. Sycara,
“Aligning coordinate frames in multi-robot systems with relative sensing
information,” in Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on. IEEE, 2014, pp. 388–395.


