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Abstract

In this technical report, we introduce a novel hand-mounted intelligent device called Pal/mSight
that aims at helping the blind and visually impaired identify, locate, and grasp an object in their
surroundings. The present implementation of PalmSight acquires stereo visual information
through a binocular camera mounted on user’s palm and provides haptic feedback via five vibrators
attached on the back of the same hand, which direct the user to grasp the target object. A standard
laptop computer is used to receive and process the acquired visual information, and then generate
corresponding control signals for the five vibrators. PalmSight uses computer vision methods to
identify and locate the target in 3D, and subsequently to realize vision-to-touch substitution. This
assistive technology is an extension of the previous research in our laboratory on a device called
FingerSight, which translates visual information to haptics stimulation on an individual finger for
use in localization, navigation, and control by the blind and visually impaired. This report is
submitted in partial fulfillment of the requirements for the degree of Master of Science in
Biomedical Engineering at Carnegie Mellon University for Zhixuan Yu.

Index terms: Blind, visually impaired, assistive technology, haptics, sensory substitution,
computer vision.
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1 Introduction

According to a National Health Interview survey in 2012, more than 20 million adults in the
United State suffer from significant visual impairment [1]. Vision is the most important perceptual
channel, accounting for a large percentage of the information people acquire in daily life. At
present, most visually impaired people rely on white canes and service dogs for navigation, as well
as their sense of touch for identifying objects to grasp and manipulate Such methods are essentially
unchanged from twenty years ago [2].

The task of picking up specific objects is extremely common, to drink a cup water or answer a
cell phone. In those with normal vision, such tasks are accomplished through hand-eye
coordination. However, the visually impaired usually rely on touch to locate objects they want to
pick up, which, in turn, may not be very efficient. Therefore, there exists a need for a device that
provides the visually impaired with the ability to identity and locate objects around them, and
subsequent guidance to grasp those objects, thus making the accomplishment of this everyday task
more convenient.

Many devices for the visually impaired are designed with the concept of sensory substitution,
circumventing the loss of one sense by feeding the information through another channel [3].
Sensory substitution systems generally consist of three components: a sensor that collects a signal,
a coupling system that processes that signal, and finally an output transducer, which transmits the
signal to a sense organ not normally used for that signal [4] [5]. There are many technologies use
the auditory sense as the substitution for the visual sense taking advantage of the high-bandwidth
attribute of hearing. However, we are specifically focused on vision-to-touch substitution rather
than hearing, since hearing is usually well-developed for visually impaired people and provides
them with essential environmental acoustic cues.

A variety of vision-to-touch sensory substitution systems have been developed. Some employ
tactile arrays that feature a grid of small pins with adjustable heights to depict the captured image,
which are interrogated by fingers in an effort to “visualize” the image [6]. Others use electrode
arrays placed on the tongue to relay visual information [7]. Our general approach, first put forth in
our FingerSight device, differs by providing for searching the visual environment more directly,
using hand and finger motion to couple the view from a miniature camera and a vibrator [8] [9].

PalmSight, which we introduce in this paper, is a vision-to-touch sensory substitution system
(Figure 1) with stereo cameras mounted on the user’s palm and vibrators on the back of the same
hand. The captured visual information is processed by computer vision algorithms to determine
the presence of a target object and compute its approximate position in 3D space relative to the
user’s hand. This information is processed in real-time and communicated to the user by the
vibrators. PalmSight relies on the computer to make the high-level judgment, e.g. whether the
target object is identified and what its relative location is to the hand. This differs a from previous
systems from our laboratory, called FingerSight, which relied on substitution of more primitive
visual features such as edges [8], and assigned the user the task of integrating such information by
moving the finger-mounted camera. Our present approach is thus a potentially important
application of computer vision in the field of assistive technology, placing emphasis on such
algorithms that are presently experiencing rapid growth in capabilities and utilization throughout
the field of computer vision.



Figure I PalmSight apparatus, including stereo cameras, tactors, associated hardware interface, and laptop
computer.

1.1 Initial Experiment and Envisioned Use

This paper describes the first PalmSight prototype, including hardware and software, as well as
the design for initial experiment using that prototype. At the time of this writing, institutional
review board (IRB) approval has been obtained, and the experiments are just beginning to be
performed Once sufficient data has been collected, we will describe the results in a future
publication. It is, however, instructive to briefly describe the experiment here, to convey how we
envision PalmSight being used.

In our initial planned experiments (see Figure 2), the PalmSight device will be employed as
follows: First, the user searches the surroundings for a preselected target object by moving the
hand around in different directions with the palm facing forward. In doing so, the user is instructed
to stay in one pose for approximately 1 second and then turn approximately 30 degrees to the next
pose, until some vibration is felt on the back of the hand, indicating the identification of the target
object. Then, based on which of the 5 vibrators are activated, the user adjusts the position of the
hand according to the haptic feedback, so as to have the palm face pointed more directly toward
the target. Subsequently, the user moves the hand forward towards the target object with an
indication of distance provided by the haptic feedback, possibly with additional slight adjustment
of direction along the way. When the target is close enough to grasp, the user receives additional
haptic feedback. During the procedure, the PalmSight device may lose track of the target object,
which would require reestablishing tracking by moving the hand backward and/or reorienting the
direction in which the hand is pointed.

A competing approach to PalmSight is a standard smartphone held in the non-reaching hand.
Smartphones already comes equipped with one or more cameras and a vibrator, and they are



already widely disseminated. Therefore, we will test our PalmSight device against an equivalent
system to a smartphone, namely, a camera/vibrator system held in the non-reaching hand.

Figure 2 PalmSight apparatus used in experiment to locate target soda can.

From the above experiment, it can be seen that the intended use of PalmSight is not for
navigation through a large space, but rather to guide moving, reaching, and grasping when in close
proximity (up to few meters) to a desired object. This is an area well studied by traditional
(commercial) robotics, but one relatively unexplored in assistive technology for humans.

We will describe our prototype in detail in the following sections. The complete schematics
and software source code are provided in the Appendix.



2 Methods

2.1 System components

The overall PalmSight system consists of three physical components: (1) the stereo vision
capturing system, (2) the haptic feedback system, and (3) a standard laptop computer with the
PalmSight application program. We briefly describe each in the following sections.

2.1.1 Stereo vision capture system

The stereo vision capture system is composed of a homemade binocular camera that contains
two identical fisheye universal serial bus (USB) camera modules (Ailipu Technology Co., ELP-
USBFHDO1M 180 degree 1080p) fixed on an acrylic board, with an adjustable Velcro strap to
attach the system onto user’s palm (Figure 3).

Figure 3 Stereo camera with Velcro strap for palmer mounting.

2.1.2 Haptic feedback system

The haptics feedback system is composed of five vibrators (Adafruit Vibrating Mini Motor
Discs ADA1201), circuitry for driving those vibrators, and a programmable microcontroller
(Wixel, Pololu, Inc.) for transmitting control signals via USB from the laptop to the circuitry (see
Figure 4). Those five vibrators are attached to the back of user’s hand using a commercial product
called glue dots (Glue Dots International) following the pattern shown in the picture. There are
five red buttons on the breadboard, each activating one of the vibrator manually. We used this
manual activation to test whether the user can differentiate the vibration of different vibrators. The
vibrators can also be activated by the computer, as described next.



Figure 4 Tactor array with hardware interface.

2.1.3  Standard Laptop Computer with the PalmSight Application Program

We used a laptop computer (Dell Latitude E5450 2.2GHz) to perform the computer vision
aspects of the system. The program on the laptop continuously receives stereo image pairs from
the stereo cameras and processes that information using computer vision algorithms to determine
the presence of a target object, and to compute the object’s approximate position in 3D space
relative to the user’s hand. Based on these results, control signals for the five vibrators are
generated and transferred to the haptic feedback system. The software on the laptop is listed in
the Appendix starting on page 32.

As shown in Figure 5, the program opens three windows for displaying (1) the original camera
view, (2) the camera view after undistorting and rectification (described later), and (3) a depth
map, in which grayscale indicates distance. Calculated information about relative position of the
target object is also printed on the terminal.

10
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Figure 5 Program display showing original camera view (lower right), camera view after undistorting and
rectification (upper right), depth map (lower left), and target camera coordinates (upper left).

The program was developed under the Window 7 platform in Visual Studio 2013, with the
support of the Open Source Computer Vision (OpenCV) Version 3.1.

2.2 Camera Calibration and Rectification

The camera is the central device in the field of computer vision, as it is the interface between
the computer and the visible world. However, a camera with one lens can only capture 2D images
from the 3D world. Employment of binocular cameras is a common way to acquire a 3D model of
the scene. The geometric parameters of a binocular camera are commonly divided into two
categories: intrinsic parameters and extrinsic parameters. Intrinsic parameters are determined by
each individual camera while extrinsic parameters are determined by the geometrical relation
between the two cameras. Knowledge of these parameters is essential for subsequent image
processing. Usually, there are three steps involved in estimating the parameters: (1) monocular
calibration, (2) stereo calibration, and (3) rectification.

2.2.1 Monocular Calibration

Monocular calibration is the process of calculating the intrinsic parameters. The list of intrinsic
parameters includes focal lengths, principle point, skew coefficients, and distortion coefficients.
In practice, focal lengths, the principle point, and skew coefficients are usually stored in an upper
triangular matrix known as the intrinsic matrix, K

11
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called the intrinsic matrix, where f, and f, are focal length along x and y axis respectively (xo, ¥o)
is the principle point and s is skew coefficient.
Without distortion, the relation between 3D points and 2D points can be written as:

X X
AylzKY
1 VA

where X, Y, Z are the coordinates of a 3D point in the camera coordinate system, (x,)) are the
coordinates of the corresponding 2D point in the image, and A is a scaling factor. Assuming no
skew angle and square pixels, K can be simplified to

f 0 x
KZOfyO,
0 0 1

which has only 3 parameters.

There are two different kinds of geometric distortion: radial distortion and tangential distortion.
The former is related to the shape of a lens while the latter arises from the assembly process of the
camera [10]. Radial Distortion is very obvious in images captured by fisheye cameras (such as the
one we use to maximize field of view), especially for the pixels near the edges of the image. Thus
the phenomenon caused by radial distortion is called “fisheye effect” or “barrel effect” (Figure 6).
Compared to the effect of radial distortion, tangential distortion is usually negligible, and we
ignore it in our implementation.

Within the implementation of fisheye model camera calibration of OpenCV, the distortion
coefficient vector D has four parameters (whereas three are normally only required, due to the
fisheye lens we add a forth),

and the actual coordinates (x', y") of the 2D points in the image will be scaled according to the
following equations:

x'=x(1 4 kqr? + kyr* + kyr® + kyr?®)
y =y + kyr? + kyr* + kyr® + k,r®)

where 7 =/ (x — x0)% + (¥ — ¥o)2.
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Figure 6 Tmage showing "fisheye" or "barrel" distortion.

We use the OpenCV 3.1 function fisheye::calibrate to perform monocular camera
calibration for each camera respectively. Before doing so, we prepared a 7X9 chessboard as the
calibration target (Figure 7). We captured 25 images of the chessboard through the fisheye camera
under different poses for each camera (an example is shown in Figure 8).

Figure 7 Calibration target.

Figure § Example of the calibration target image from a fisheye camera.

13



2.2.2 Stereo Calibration
Stereo calibration is the process of calculating the extrinsic parameters. The geometric relation
between the two cameras in 3D space can be decomposed into a rotation and a translation (see

Figure 9).

P

\r

— (RT)

Figure 9 Geometric relation between the two cameras in 3D space.

Therefore, all the extrinsic parameters are stored in a rotation matrix R and a translation vector 7,
based on intrinsic matrices and distortion vectors of the two cameras. For a certain 3D point p, the
relation between its coordinates with reference to left camera and right camera is

Xr Xl
Y, |=R|V|+T
Zr Zl

We use the OpenCV 3.1 function fisheye::stereoCalibrate to perform stereo
calibration for the binocular system. We captured 25 image pairs with the 7X9 checkboard as the
calibration target (example shown in Figure 10).

Figure 10 Example of stereo images for calibration of the binocular system.

14



2.2.3 Stereo Rectification

With R and T computed, as well as K and D, calibrated from each monocular camera according
to epipolar geometry, now we can confine the search space to be a line in the image for matching
points in both images. If the two cameras are aligned to be parallel, the search space can be further
simplified to a one-dimensional line, i.e., a horizontal line parallel to the baseline between the two
cameras. Although this perfect camera alignment is impractical to maintain, stereo rectification is
an alternative way to achieve that alignment.

There are many different ways to do stereo rectification, but all of them ensure that epipolar
lines are parallel to the horizontal axis and corresponding points have the same vertical
coordinates. In practice, we need to find two rotation matrices R; and R,, which would rotate the
two cameras to be coplanar.

We use the OpenCV function fisheye: :stereoRectify to perform stereo rectification
for the binocular system, using the two intrinsic matrices K, K, the two distortion vectors D, D,
and extrinsic parameters R and 7 as input parameters. This yields two rotation matrix R; and R»,
two new projection matrices P; and P,, and a disparity-to-depth matrix Q.

Since the two cameras are in fixed adjustment and the geometric relationship between them is
also fixed, the intrinsic parameters (K, K>, D1, and D») and extrinsic parameters (R, 7, R; and R;)
of both cameras are fixed, as are the projection matrices (P; and P;) and the disparity-to-depth
matrix Q. Thus, we only need to do the calibration and rectification once, as long as we neither
change cameras nor their relative position and orientation. We store all the intrinsic parameters in
a file named intrinsics.yml and all other parameters in a file named extrinsics.yml.

The camera calibration and rectification process follows the work flow in Figure 11.

Monocular calibration x 2

K1, D1 K2, D2

v v
Stereo Calibration
K1, D1 R, T K2, D2

v \ 4

Stereo Rectification

R1, P4 Q Rz, P2

v v

Figure 11 Camera calibration and rectification work flow.

2.3 Target Detection and Tracking

Target detection and tracking constitute the core part of the PalmSight computer vision
application, and represent two distinct modes of operation. The program is in detection mode until



the object is located and then switches to tracking mode after the target is successfully detected.
If the target is lost in tracking mode, the program will switch modes back to detect the target again.

We have initially used a Pepsi-can, with its distinct red, white, and blue logo, as the preselected
target. Both detection and tracking are performed on the unprocessed images captured by the right-
hand camera in the stereo pair.

2.3.1 Detection

There are so many different methods for object detection [11] [12], such as Harr-Cascade [13],
histogram-of-gradient/support-vector-machine (HoG-SVM) [14], and even some deep learning
approaches. The Harr-Cascade method is famous for its application on face and eye detection while
the HoG-SVM method is very effective in pedestrian detection. Both of them have been included
in OpenCV. Since HoG-SVM is better at detecting objects with features mainly along edges, it is
more suitable for our application. We take advantage of the cv: : HOGDescriptor struct in the
object detection module and cv: :m1l: : SVM in the machine learning module of OpenCV.

The model for Pepsi-can detection is acquired as the following four steps: (1) We collect a set
of positive samples (image patch with Pepsi-can) and negative samples (image patch without
Pepsi-can). We choose to include many negative samples in the same region where we will test
the performance of detection when the Pepsi-can doesn’t appear, and generate random bounding
boxes to get the negative samples. (2) We extract HoG features for all those samples and set the
sample labels of positive samples to be 1 while those of negative samples to be —1. Then we train
all these data by linear SVM and save the generated parameters. (3) We run the initial detector on
all the negative pictures and capture false positives (called hard negatives). (4) We add all those
false positives to the existing negative sample set and retrain the detector. This step is called hard
negative mining. The work flow is shown in Figure 12.

Data collection

Feature extraction

P
<

Training

\ 4

Hard negative mining

Figure 12 Model training work flow.
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After the model is trained, we save all the parameters into a xml file, which can be read by the
OpenCV function setSVMDetector.

The detection is performed as following: (1) We read the model parameters into the detector.
(2) We perform multi-scale detection and obtain a list of results. Then we sort these detection result
by their confidence from high to low. We treat the detection result with the highest confidence as
the initial detection. (3) We compute the overlapping area between the initial detection with all
other detection result and keep those detection results that have an overlapping area with the initial
detection above a certain threshold. (4) The final detection result is then obtained by computing a
minimum bounding box that contains the initial detection and all the other remaining detection
results. This step is called non-maximum suppression.

In order to improve detection accuracy and decrease the false positive rate, we introduce two
optional approaches to check the detection result. One is to check whether the similarity between
the color histogram of the detection result and the average color histogram of all the positive
templates is above a certain threshold. The other is to check whether the featured color ratio (in
this case, blue) of the detection result is above a certain threshold. The entire detection work flow
is shown in Figure 13.

A

Set detector

y

Sort detection
Detection result
Histogram similarity check

A 4

Featured color ratio check

v

Figure 13 Detection workflow in PalmSight.
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Although we have had considerable success with our Pepsi-can detector, it currently is not
reliable enough for the initial experiment described in Sections 1.1 and 3.2, due to the trade-off
between the false positive rate and false negative rate. So in order to not affect the subsequent steps
discussed below, we have for now resorted to printing a small 3X3 chessboard pattern as the
detection target and modifying the built-in OpenCV function findChessboardCorners to
acquire the bounding box of it. For the sake of the initial experiment, we are simply attaching the
chessboard pattern to whatever object we wish to establish as the target.

2.3.2 Tracking

In most circumstances, object tracking is less time-consuming than object detection. So once
the target is detected, we use it as a template and switch to tracking mode immediately. There are
many different tracking methods to choose, from the classic Lucas-Kanade template tracking [15]
to the state-of-art correlation filter based tracking methods [16]. Here, we choose to use an image
alignment method using enhanced correlation coefficient maximization (ECC tracker), which has
been written into OpenCV (findTransformECC). It is similar to some well-known variants of
the Lucas-Kanade alignment method that take lighting changes into account, but has been reported
to demonstrate superior performance [17]. The function findTransformECC estimates the
optimum transformation with respect to ECC criterion

warpMatrix = arg max ECC(templateImage(x,y), inputlmage(x',y"))

where

During the tracking phase, we first estimate the warp based on a initial warp, which is a pure
translation, and then compute the new bounding box and update the template. When any of the
following situations occur, the program determines that the target is lost and switches back to
detection mode.

e correlation output of function findTransformECC is below a certain threshold
e estimated new bounding box crosses the boundary of camera view
e width-to-height ratio of the estimated new bounding box does not lie within a certain range

2.4 Depth perception

By taking advantage of stereo vision, we can acquire depth information based on the disparity
map. There are two categories of techniques to solve the correspondence problem and build a
disparity map. One category includes local algorithms such as block matching and semi-global
block matching [18], both of which have been included in OpenCV. The other category includes
global optimization algorithms such as Graph Cut [19] and Belief Propagation [20]. Compared to
local algorithms, methods in this category achieve better performance, since they not only focus
on the quantified similarity, but also attempt to minimize the penalty caused by unsmoothness of
the disparity solution. However, these methods require greater computation time.

18



2.4.1 Generate undistorted rectified image pairs

As mentioned above, for undistorted and rectified stereo image pairs, the search space could be
confined to corresponding horizontal lines on image. So we would like to compute undistorted
rectified image pairs first and then perform correspondence algorithm on them instead of on the
original image pairs captured by the fisheye cameras. Based on all the camera intrinsic and
extrinsic parameters, we use the OpenCV function fisheye: :initUndistorRectifyMap
to generate two mapping functions for x and y. Then the undistorted rectified image pairs can be
generated according to the following relation:

dst(x,y) = src(mapy(x,y), mapy (x,y))

where src is the original image and dst is the undistorted rectified image. Sample original image
pairs and the generated undistorted rectified image pairs are shown in Figure 14.

i Original View

Figure 14 Original (top) and undistorted rectified (bottom) image pairs
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2.4.2  Generate disparity map

In order to achieve real-time performance in our application, we choose the naive block-
matching algorithm. There are several metrics we can use to quantify similarity, such as sum of
squared differences (SSD), normalized cross-correlation (NCC) and sum of absolute differences
(SAD). The implementation of the block matching algorithm in OpenCV uses SAD, which is
inherently faster than the other two. The algorithm has two important parameters: block size and
disparity search range. Block size is the linear size of the blocks compared by the algorithm.
Larger block size implies smoother, though less accurate disparity map. Smaller block size gives
more detailed disparity map, but there is a higher chance for the algorithm to find an incorrect
correspondence. For each pixel, the algorithm will try to find the best disparity within the disparity
search range along the corresponding epipolar line.

Since we use a local method to solve the correspondence problem, the outcome disparity map
is not likely to be smooth. Therefore, we apply a disparity map filter based on weighted least
squares so as to get a smoothed version. An example of such a generated disparity map compared
to the corresponding undistorted rectified image from the right camera is shown in Figure 15.

o —— s

Figure 15 Depth map (left) and one image from the corresponding stereo images pair (right).

2.4.3  Compute depth within interest area

In practice, we are only interested in perceiving the depth of the target, not the other objects in
the image. So we need to create a corresponding target bounding box in the undistorted rectified
image to determine the interest area. Using both the intrinsic and extrinsic parameters of the
cameras, we can undistort the 4 vertices of the bounding box in the original image to get their
counterparts in the undistorted rectified images, using the OpenCV function
undistortPoints. Then we can compute the depth within the interest area according to the
following formula:

Bf

depth = ———
P disparity
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where B is the baseline length that computed according to camera extrinsic matrix 7, and f"is focal
length, which is computed from camera calibration (See Figure 16).

X

@) Baseline O’
B

Figure 16 Geometry of depth computation.

Due to noise, there are usually some pixels in the area of interest in the disparity map that
correspond to 3D points at infinity, which is generally not accurate. Given the limitation of the
baseline length, the error of the depth computation increases dramatically as the distance increases.
So we choose to use the minimal depth within the interest area to represent the distance between
the target and the camera.

For purpose of efficiency, the depth computation will only be performed when the program is
in tracking mode, since we do not really care about depth when the target has not yet appeared.

2.5 Haptic feedback

The core idea of PalmSight is to convert a high-dimensional image signal to a low-dimension
haptic signal indicating the target position to the user. We choose to use an array of 5 vibrators
arranged as shown in Figure 4, located in the top, bottom, left, right, and central position in the
array. The response of these vibrators is determined as follows:

1. The vibrators are active only when the target is already detected.

2. The central vibrator is active if the target appears in the center of camera view, which
means the user’s palm is already facing towards the target. So in this case the user could
just move the hand forward to get closer to the target. The vibrating intensity of the
central vibrator denotes the hand-to-target distance (camera-to-target distance strictly
speaking). As the hand gets closer to the target, the central vibrator vibrates more softly.

3. The other four vibrators are used to indicate which direction the user should move the
hand (a small amount) in order to make the target appear in the center of the camera
view. We call these direction vibrators. The vibration of one direction vibrator or that
of two adjacent direction vibrators give the user eight possible directions to move his
hand: left, right, top, bottom, top-left, top-right, bottom-left, and bottom right. The
direction vibrators and central vibrator will not vibrate at the same time.
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In the following sections, we will discuss further how these feedback signals are generated,
transmitted to the electronics hardware, and finally used to drive the vibrators.

2.5.1 Generating the haptics feedback signal

Within the image from one of the cameras (the right camera), we use the central point of the
target bounding box to represent the target position relative to the line of sight extending outward
orthogonal to the user’s palm. As shown in Figure 17, the camera image is divided into 9 regions,
according to a grid defined by a central region occupying 20% of both the horizontal (H) and
vertical (V) axes. The haptic feedback command is generated according to which region contains
the central point of target bounding box.

0.2
e

Top-left Top Top right

H < Left Center Right 0.2

Bottom-left Bottom Bottom-right

e

Y

Figure 17 Regions of right camera image used to determine haptic feedback.

When the central point of the target bounding box lies in the center area, a specific “center”
command will be generated according to the current target depth. We divide the target depth into
4 different ranges:

>45 cm
25-45 cm
15-25 cm
7-15 cm

So there are four different “center” command, depending on depth. When the target depth is less
then 7 cm, a “grab” command is triggered, all the five vibrators vibrate, indicating that the target
is close enough to grab. If the center of the bounding box lies in any of the other region, the
corresponding direction vibrator(s) are activated, indicating that the target is off center and the
user should move in that direction.
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2.5.2 Communication between laptop and vibrators

We designed the commands to the haptic system to fit into a single BY TE-type variable, which
is very convenient for communication. The four least significant bits (LSB) correspond to the four
direction vibrators and the four most significant bits (MSB) corresponds to the four different
vibration modes of the center vibrator (see Figure 18). Setting a bit to 1 activates the corresponding
vibrator/mode. The command is updated and transmitted to the haptic system within each loop of
the main function of the program.

| Center4 | Center3 | Center2 | Centerl | Right | Left | Bottom | Top |
MSB LSB

Figure 18 Communications control byte for vibrators (tactors).

The one-byte commands are transmitted from the laptop to the programmable Wixel
microcontroller via a USB virtual COM port on the laptop. A simple C program on the Wixel
receives and processes those commands. (The Wixel source code is listed in the Appendix, page
51.) The C program continually reads the byte, compares it to previous byte received, and if
changed, updates the status of five output pins on the Wixel, each controlling a different a vibrator
through a current amplifier (see hardware schematic in Appendix, page 31.) For the four pins
coupled with the four direction vibrators, the on-off status is simply consistent with the lowest four
bits of the command byte. However, for the pin coupled with the center vibrator, we use pulse-
width modulation (PWM) to realize the four different intensities of vibration.
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2.6 Program Work flow

The core work flow of the PalmSight program is shown in Figure 19.

Update image pairs

Detected?

Y
Detection

Detected?
Y

Update tracking template N
Generate depth information
<
Update and send command

Figure 19 Core work flow of the PalmSight program

First, the program performs initializations, including opening the camera and communications
(COM) ports, reading in camera parameters, and computing the undistort rectify map, etc. After
that, the program enters the main loop, where first it updates the image pairs captured by the
cameras, as well as the corresponding undistorted rectified image pair. If the target object is
already detected, the program proceeds to tracking; otherwise it continues to attempt detection.
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The detection status may turn to false in the tracking phase due to a failure in tracking, in which
case it checks the detection status again to see whether the target object has just been detected. If
so, the program updates the tracking template, generates the depth map, and computes depth
information for the target.

No matter whether target object is detected or not, the program displays the original captured
image pairs and corresponding undistorted rectified image pairs. But it only displays the depth
map if target is currently detected, since actually we cannot otherwise compute depth information
for the target. Finally, the resulting command for haptic feedback system is updated and sent to
the Wixel at the end of each loop.
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3 Experimental Protocols and Results

3.1 Tactor Array Discrimination

In the design of the PalmSight prototype, an experiment was conducted to determine the best
tactor positioning on the back of the hand. As shown in Figure 20, Four different configurations
of 4-vibrator, and 5-vibrator arrays were established and placed on subjects’ hands using glue-dots
at locations marked with a pen using paper guides (B). Subjects were asked to distinguish between
vibrations of the individual vibrators, by pressing letters on the computer keyboard corresponding
to labels on the individual vibrators (C). Subjects were asked to identify vibrators in randomized
trials of 32 vibrations (4-vibrator) and 40 vibrations (5-vibrator) containing 8 repeats of each
vibrator vibration within each trial.

Figure 20 Experiment to determine optimal placement of vibrators.

The results indicate a seemingly consistent ability to distinguish between and correctly identify
the different vibrator vibrations. Of the sum total 286 vibrations experienced by the two
participating subjects, only 6 vibrations were incorrectly identified.

3.2 Evaluation of PalmSight for reaching to target

The planned experiment that will evaluate the PalmSight prototype has already been described
in Section 1.1. Generally speaking, we will test the ability of blindfolded subjects to find an object
in a constrained workspace, and we will record the experiment data such as success rate and time
to success. The experimental protocol is described in detail in the appendix at page 52, and has
been approved by the Institutional Review Board (IRB).
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4 Discussion and Conclusion

The work presented in this paper entails the development of a new form of assistive technology
for the blind and visually impaired. Based on a previous approach called FingerSight, the new
approach places stereo cameras in the palm of the operator to detect and locate objects that the
operator would want to pick up with that hand. Modern computer vision techniques have rapidly
improved such that object identification and 3D localization by stereo depth determination are
quite capable of useful operation given instruction from the user as to what object is desired. This
information can be used to control vibrators on the back of the user’s hand to direct the hand to
find and grasp the object. We have constructed an initial PalmSight prototype, and designed an
experiment in its operation. With recent IRB approval, this experiment is just now getting
underway with subjects from the Psychology Department at CMU. Among other things, the
experiment will compare PalmSight to an approach analogous to using an existing stand-alone
cell-phone in one hand to guide the other hand to find and grasp the target object. Smart-phones,
after all, come equipped already with cameras and vibrators, so this part of the experiment will
explore potential competition for PalmSight from the existing technology.

We expect to learn a great deal from this initial experiment, and to be able to improve the
operation and utility of PalmSight technology based on these results. The modular nature of
computer vision algorithms, in particular, within the OpenCV framework, as well as the continual
updates from ongoing research within the research community, will facilitate this further
development. We further expect to benefit from miniaturization of camera technology in future
iterations, custom design using rapid prototyping, and the introduction of wireless technology,
with the likely switch from laptop computer to tablet or smart-phone for the computational
platform. We believe, however, that the benefits of keeping the hand-mounted cameras and
vibrators, rather than simply having the operator use an existing stand-alone smart-phone, will be
validated by our initial experiment. A possible solution may actually be a combination of smart-
phone and hand mounted camera/vibrator system, connected wirelessly, with the smart-phone
supplying computational power and possibly an extra, detached camera.

One area that we are actively exploring is the use of PalmSight to direct the use of a tool held
in the same hand. Thus, rather than directing the user to pick up an object, PalmSight could direct
the user to bring the tip of a fork to be in contact with a particular food item on a plate, or to insert
a key into a lock in a door. The tools themselves could be equipped with cameras to facilitate this
general approach, an extension of ongoing research in our lab that we call ProbeSight, in which
surgical tools are equipped with cameras to navigate relative to the exterior of the patient [21].

Another potential extension of PalmSight and FingerSight is the incorporation of Simultaneous
Localization and Mapping (SLAM) into its operation. SLAM is a technique by which robotic
devices can explore their environment with cameras and other sensors, incrementally creating a
map and an estimate of the robot’s location on that map as the robot moves [22]. A recent research
effort by Google in the development of their Tango platform was based on a special Android phone
with multiple cameras, structured light, and inertial and magnetic sensors, which can construct,
and continually update, a map of the visible 3D environment. Such systems as this, once
commercially available, could be adapted to use our camera and sensor data, so that the operator
could create an external spatial memory, within which desired objects can be identified and
remembered. Thus the user will be able to say, “Where did I leave my car keys,” and be directed
by the vibrator array to the correct room and table, and finally, to reach out and pick up the keys.
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The spatial memory could also be embedded in a larger context provided by standard GPS and
cellphone location data.

We believe our general approach to assistive technology is both important in its potential impact
and timely in terms of the confluence of current technologies in portable computing and computer
vision. The concept of enlisting the aid of powerful real-time computation in the analysis of the
visual world, for those who lack the biological equivalent, holds great promise in the very near
term, to make a major step forward improving the quality of life for these individuals.
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6 Appendices

6.1 Hardware Schematic
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Figure 21 Schematic of hardware interface for vibrator activation (note optional hardware oscillator for 50% duty
cycle, not used when software controls duty cycle).
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6.2 Laptop Software
6.2.1 palmsight.h

/* palmsight.h */
/* Zhixuan Yu */
/* 12/5/2016 */

#include <iostream>
#include <fstream>
#include <windows.h>

#include <opencv2/core/utility.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/ml/ml.hpp>

#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/video/video.hpp>
#include <opencv2/video/tracking.hpp>
#include <opencv2/calib3d/calib3d.hpp>

#include "opencv2/ximgproc/disparity filter.hpp"

using namespace std;
using namespace cv;
using namespace ml;

#define TOP 0x01
#define BOTTOM 0x02
#define LEFT 0x04
#define RIGHT 0x08
#define CENTER1 0x10
#define CENTER2 0x20
#define CENTER3 0x40
#define CENTER4 0x80

#define LEFT_CAMERA true
#define RIGTH_CAMERA false

class palmsight
{
public:
enum {
STEREO BM = 0,
STEREO_SGBM = 1,
STEREO HH = 2,
STEREO_VAR = 3,
STEREO_3WAY = 4
}i

public:

VideoCapture leftCamera, rightCamera;

Mat leftView, rightview, bothview; // original

Mat leftview_gray, rightvView_gray;

Mat leftImg, rightImg, bothImg; // undistorted & rectified

Mat leftImg gray, rightImg gray;

Mat leftImg grays, rightImg grays, leftImg s, rightImg s; // scaled (for block matching
purpose)

//Mat leftImg, rightImg;

Size viewsize;

Mat mapll, mapl2, map2l, map22;

VideoWriter binocularVideo, depthvideo;

FILE *logfile;

string info;

bool isDetected;
bool isTracking;
bool isCamerasOpen;
bool useflip;

bool usefisheye;
bool useBuzzer;
bool useColor;
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bool useHist;
bool useLabel;
bool recordvideo;
bool isExperiment;

int alg;

int SADWindowSize;

int numberOfDisparities;
double lambda;

double sigma;

float scale_for_match = 0.5;

Ptr<StereoBM> bm;

Ptr<StereoSGBM> sgbm;

Ptr<StereoMatcher> right matcher;
Ptr<ximgproc::DisparityWLSFilter> wls_filter;

Mat disp, disp_right, filtered disp;

Mat visualized disp, visualized_filtered disp, color_visualized_filtered disp;
Mat depth;

float targetDepth;

HOGDescriptor hog;

Mat leftTemplate, rightTemplate;

Rect leftBox, rightBox; // target bounding box in original image pairs

Rect leftBox u, rightBox u; // target bounding box in undistort-rectified image pairs

int histSize = 16;
Mat BlueHist[50];
Mat GreenHist[50];
Mat RedHist[50];

double f; // focal length
double B; // baseline length
Mat K, D, R, P; // corresponding info for dominant camera

// not useful now
Mat warp;
Mat_<Point> pts;

public:
//constructor
palmsight(int indexl, int index2);

//one-time functions

void getViewSize();

void setDetector(char *detectorSavePath);

void iniStereoMatchObject(int SADWindowSize = 9, int numberOfDisparities = 64, double lambda =
8000, double sigma = 1.5);

bool generateUndistortRectifyMap(bool isLeft, string intrinsic_filename, string
extrinsic_filename);

//loop calling functions

void updateViews();

void generateUndistortRectifyStereoImagePairs();

bool detect(bool isLeft, float thr_color_ratio = 0.06, float thr hist ratio = 0.3);

bool detectLabel(bool isLeft);

bool track(bool isLeft = false, float thr_corr = 0.8, float thr hw_ratio max = 1.8, float
thr_hw_ratio min = 1.0);

bool track2(bool isLeft = false, float thr_corr = 0.8, float thr hw ratio max = 1.8, float
thr_hw_ratio min = 1.0);

void generateDepthInfo(float scale = 1.0, int numberOfDisparities = 64);

void display();

BYTE generateCommand(float ratioH = 0.1, float ratiow = 0.1, float grab = 7);

//optional functions

double extractFeaturedColorRatio(bool isLeft);
void calculatehist();

double comparehist(bool isLeft);

void videoRecord();

}i
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int handleError(int status, const char* func_nae, const char* err_msg, const char* file name, int
line, void* userdata);
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6.2.2  palmsight.cpp

/* palmsight.cpp */
/* Zhixuan Yu */
/* 12/5/2016 */

#include "palmsight.h"

/* Constructor */
palmsight::palmsight(int indexl, int index2)
: isDetected(0)
, isTracking(0)
, useflip(1l)
, usefisheye(1l)
, useBuzzer(0)
, useColor(0)
, useHist(0)
, useLabel(1l)
, recordvideo(0)
, isExperiment(0)
, alg(STEREO_ BM)
, leftCamera(indexl)
, rightCamera(index2)
, hog(Size(64, 96), Size(16, 16), Size(8, 8), Size(8, 8), 9)

bool left = leftCamera.isOpened();
bool right = rightCamera.isOpened();

if (!left)
cout << "Failed to open left camera." << endl;
if (!right)

cout << "Failed to open right camera." << endl;
isCamerasOpen = left && right;

}

/* acquire the size of image captured by camera */
void palmsight::getViewSize()

leftCamera >> leftView;
viewsize = leftView.size();

}

/* function to load pepsi detector */
void palmsight::setDetector(char *detectorSavePath)
{
vector<float> detector;
ifstream fileIn(detectorSavePath, ios::in);
float val = 0.0f;
while (!fileIn.eof()) {
fileIn >> val;
detector.push_back(val);
}
fileIn.close();
hog.setSVMDetector (detector);
}

/* function to initiate block matcher object(bm / sgbm) */
void palmsight::iniStereoMatchObject(int SADWindowSize, int numberOfDisparities, double lambda,
double sigma)
{
Rect roil, roi2;
//Mat Q;

bm = StereoBM::create(numberOfDisparities, SADWindowSize);
sgbm = StereoSGBM::create(0, numberOfDisparities, SADWindowSize);

if (alg == STEREO BM) {
wls_filter = ximgproc::createDisparityWLSFilter (bm);
right_matcher = ximgproc::createRightMatcher (bm);

}

else{
wls_filter = ximgproc::createDisparityWLSFilter (sgbm);
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right _matcher = ximgproc::createRightMatcher (sgbm);

}

wls_filter->setLambda(lambda) ;
wls_filter->setSigmaColor(sigma);

//numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width / 8) +
15) & -16;

bm->setROIl(roil);

bm->setROI2(roi2);

bm->setPreFilterCap(31l);

bm->setBlockSize (SADWindowSize > 0 ? SADWindowSize : 9);
bm->setMinDisparity(0);
bm->setNumDisparities (numberOfDisparities);
bm->setTextureThreshold(10);
bm->setUniquenessRatio(15);
bm->setSpeckleWindowSize (100);
bm->setSpeckleRange(32);
bm->setDispl2MaxDiff(1);

sgbm->setPreFilterCap(63);
int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
sgbm->setBlockSize(sgbmWinSize);

int cn = leftView.channels();

sgbm->setP1(8 * cn*sgbmWinSize*sgbmWinSize);
sgbm->setP2(32 * cn*sgbmWinSize*sgbmWinSize);
sgbm->setMinDisparity(0);
sgbm->setNumDisparities (numberOfDisparities);
sgbm->setUniquenessRatio(10);
sgbm->setSpeckleWindowSize (100);
sgbm->setSpeckleRange(32);
sgbm->setDispl2MaxDiff(1);
if (alg == STEREO HH)

sgbm->setMode (StereoSGBM: :MODE_HH) ;
else if (alg == STEREO_SGBM)

sgbm->setMode (StereoSGBM: : MODE_SGBM) ;
else if (alg == STEREO_3WAY)

sgbm->setMode (StereoSGBM: :MODE_SGBM_3WAY) ;

}

bool palmsight::generateUndistortRectifyMap(bool isLeft, string intrinsic_filename, string
extrinsic_filename)
{

/* Read intrinsic file */

FileStorage fs(intrinsic_filename, FileStorage::READ);

if (!fs.isOpened()) {
printf("Failed to open file %s\n", intrinsic_ filename.c_str());
return false;

}

Mat M1, D1, M2, D2;

fs["M1"] >> M1;

fs["D1"] >> D1;

fs["M2"] >> M2;

fs["D2"] >> D2;

// get average focal length for later use in generating depth info
f = (Ml.at<double>(0, 0) + Ml.at<double>(1l, 1) + M2.at<double>(0, 0) + M2.at<double>(1l, 1)) /
4;

//M1 *= scale;
//M2 *= scale;

/* Read extrinsic file */
fs.open(extrinsic_filename, FileStorage::READ);

if (!fs.isOpened()) {
printf("Failed to open file %s\n", extrinsic filename.c_str());
return false;

}
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Mat R, T, R1, P1, R2, P2, Q;
fs["R"] >> R;

fs["T"] >> T;
fs["R1"] >> R1;
fs["R2"] >> R2;
fs["P1"] >> P1;
fs["P2"] >> P2;
£s["Q"]1 >> Q;

// get baseline length for later use in generating depth info
B = T.at<double>(0);

/* Generate maps */
if (!usefisheye) {
initUndistortRectifyMap(M1, D1, R1l, Pl, viewsize, CV_16SC2, mapll, mapl2);
initUndistortRectifyMap(M2, D2, R2, P2, viewsize, CV_16SC2, map2l, map22);
}
else {
fisheye::initUndistortRectifyMap(M1, D1, R1l, Pl, viewsize, CV_16SC2, mapll, mapl2);
fisheye::initUndistortRectifyMap(M2, D2, R2, P2, viewsize, CV_16SC2, map2l, map22);
}

// store info of dominant camera into member variables
if (isLeft) {

K = M1;
D = D1;
R = R1;
P = P1l;
}
else {
K = M2;
D = D2;
R = R2;
P = P2;
}

return true;

}

// Update camera views
void palmsight::updateViews ()
{
leftCamera >> leftView;
rightCamera >> rightView;
if (useflip) {
flip(leftview, leftview, 0);
flip(rightvView, rightview, 0);

// get grayscale version for later use
cvtColor(leftview, leftView gray, CV_BGR2GRAY);
cvtColor(rightView, rightvView gray, CV_BGR2GRAY);

void palmsight::generateUndistortRectifyStereoImagePairs()
{
// get undistorted rectified camera images
remap(leftview, leftImg, mapll, mapl2, INTER LINEAR);
remap(rightvView, rightImg, map2l, map22, INTER_LINEAR);

// get grayscale version for later use
cvtColor(leftImg, leftImg_gray, CV_BGR2GRAY);
cvtColor(rightImg, rightImg gray, CV_BGR2GRAY);

// scale for stereo match procedure
int method = scale_for match < 1 ? INTER_AREA : INTER_CUBIC;
if (alg == STEREO BM) {
resize(leftImg_gray, leftImg grays, Size(), scale_for match, scale for_match, method);
resize(rightImg gray, rightImg _grays, Size(), scale for_match, scale_for match, method);
}
else {
resize(leftImg, leftImg_s, Size(), scale_for match, scale for_match, method);
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}

resize(rightImg, rightImg s, Size(), scale_for _match, scale_for match, method);

}

bool palmsight::detect(bool isLeft, float thr_color_ratio, float thr hist_ratio)

{

vector<Rect> found;
vector<double> weight;

Rect *boundingboxp;
Mat img;
if (isLeft) {

img

= leftImg_gray;

boundingboxp = &leftBox;

}

else

img

{
= rightImg gray;

boundingboxp = &rightBox;

}

//Multiscale detection
hog.detectMultiScale(img, found, weight, O,

//Sort
int targetNum = found.size();
int *index = new int[targetNum];
for (int i = 0; i < targetNum; i++)
index[i] = 1i;
sort(index, index + targetNum, [&weight](int

//Compute bounding box
if (targetNum > 0) {//parameter

/ /NMS

int x01 = found[0].x;

int x02 = found[0].x + found[O0].width - 1;
int y01 = found[0].y;

int y02 = found[0].y + found[0O].height - 1;

Size(8, 8), Size(0, 0), 1.42, 0.8);

i, int j) {return weight[i] > weight[]];

double area0 = (x02 - x01 + 1) * (y02 - y01 + 1);

int
int
int
int
int
for

X1 = x01;

X2 = x02;

Y1l = y01;

Y2 = y02;

cnt = 0;

(int 1 = 1; i < targetNum; i++) {

int xil = found[i].x;
int yil = found[i].y;

int xi2

xil + found[i].width - 1;

int yi2 = yil + found[i].height - 1;

int xx1 = max(x01l, xil);

int yyl = max(y0l, yil);

int xx2 = min(x02, xi2);

int yy2 = min(y02, yi2);

int w = max(0, xx2 - xx1 + 1);

int h = max(0, yy2 - yyl + 1);

double inter = w * h;

double areai = found[i].width * found[i].height;

double o = inter / (area0 + areai - inter);

if (o > 0.7) {//parameter
X1 = min(X1, xil);

Y1

min(Yl, yil);

X2 = max(X2, xi2);
Y2 = max (Y2, yi2);
cnt++;

}
}

if (cnt > 0) {//parameter
*boundingboxp = Rect(X1l, Y1, X2 - X1 + 1,
bool color = true, hist = true;
if (useColor)
color = extractFeaturedColorRatio(isLeft
if (useHist)
hist = comparehist(isLeft) > thr_hist ra

Y2 - Y1 + 1);

) > thr_color_ratio;//parameter

tio;//parameter
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return coloré&hist

}
}

return false;

}

’

bool palmsight::detectLabel (bool isLeft) {

Rect *boundingboxp;
Mat img, img_gray;
Mat *templateImage;
if (isLeft) {
//img = leftImg;
img = leftvView;

img _gray = leftImg_gray;

templateImage =
boundingboxp =
}
else {
//img = rightImg;
img = rightview;
img_gray =
templateImage =
boundingboxp =
}

&leftTemplate;
&leftBox;

rightImg_gray;
&rightTemplate;
&rightBox;

vector<Point2f> pointBuf;

int chessBoardFlags
CALIB_CB_FAST CHECK;

if ( findChessboardCorners(img,
pointBuf[0];

Point2f corner =

Size(3, 3), pointBuf,

int xmin = corner.x;

int xXmax = xmin;

int ymin = corner.y;

int ymax = ymin;

int w, h;

for (int 1 = 1; i < 9; i++) {
corner = pointBuf[i];
xmin = xmin < corner.x ? xXmin corner.x;
Xmax = Xmax > corner.x ? Xmax corner.x;
ymin = ymin < corner.y ? ymin corner.y;
ymax = ymax > corner.y ? ymax corner.y;

}

w = round((xmax - xmin) * 2) + 1;

h = round((ymax - ymin) * 2) + 1;

xmin = round(2 * xmin - pointBuf[4].x);

ymin = round(2 * ymin - pointBuf[4].y);

*boundingboxp = Rect(xmin, ymin, w,h);

// handling cross-boundary situation

int Width =
int Height =

viewsize.width;
viewsize.height;

if (boundingboxp->x < 0) boundingboxp->x = 0;

if (boundingboxp->y < 0) boundingboxp->y =
if (boundingboxp->x + boundingboxp->width > Width) boundingboxp->width =

>x;

if (boundingboxp->y + boundingboxp->height > Height) boundingboxp->height =

boundingboxp->y;

// new code
//warp =
//*templateImage =

return true;

}

return false;

}

(Mat_<float>(2,

0;

3) << 1, 0, boundingboxp->x,
img_gray(*boundingboxp).clone();

0,

CALIB_CB_ADAPTIVE THRESH | CALIB CB NORMALIZE IMAGE |

chessBoardFlags) ) {

Width - boundingboxp-

Height -

initialize warp after each successful detection

1, boundingboxp->y);

int handleError(int status, const char* func_nae, const char* err_msg, const char* file name, int

line, void* userdata)

{
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return 0;

}

bool palmsight::track(bool isLeft, float thr corr, float thr_hw ratio max, float
thr_hw_ratio_min)
{

double corr;

int Width = viewsize.width;

int Height = viewsize.height;

Rect *boundingboxp, *boundingboxp u;

Mat templateImage, img;

if (isLeft) {
templateImage = leftTemplate;
//img = leftImg_gray;
img = leftview gray;
boundingboxp = &leftBox;
boundingboxp u = &leftBox_u;

}

else {
templateImage = rightTemplate;
//img = rightImg_gray;
img = rightview_gray;
boundingboxp = &rightBox;
boundingboxp u = &rightBox_u;

}

//Compute warp matrix based on initial warp(pure translation)

Mat warp = (Mat_<float>(2, 3) << 1, 0, boundingboxp->x, 0, 1, boundingboxp->y);
try {

corr = findTransformECC(templateImage, img, warp, MOTION_AFFINE,
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01));

catch (Exception &e){
corr = -1;

}

//Handling low correlation situation
if (corr < thr_corr) {

if (!recordvideo && !isExperiment)
cout << "Redetecting... since correlation is too small" << endl;
return false;
}

//Compute bounding box, may use different strategy

Mat vl = warp * (Mat_<float>(3, 1) << 0, 0, 1);

Mat v2 = warp * (Mat_<float>(3, 1) << 0, (boundingboxp->height - 1), 1);

Mat v3 = warp * (Mat_<float>(3, 1) << (boundingboxp->width - 1), 0, 1);

Mat v4 = warp * (Mat_<float>(3, 1) << (boundingboxp->width - 1), (boundingboxp->height - 1),

1);

Mat Pl = (Mat_<float>(3, 1) << (vl.at<float>(0, 0) + v2.at<float>(0, 0)) / 2, (vl.at<float>(1,
0) + v3.at<float>(1, 0)) / 2, 1);

Mat P2 = (Mat_<float>(3, 1) << (v3.at<float>(0, 0) + vé4.at<float>(0, 0)) / 2, (v2.at<float>(1,
0) + vd.at<float>(1l, 0)) / 2, 1);

boundingboxp->x = (int)(Pl.at<float>(0, 0) + 0.5);//Attention: must round to nearest integer,
or error may cumulate.

boundingboxp->y = (int)(Pl.at<float>(1l, 0) + 0.5);//Here we use "plus 0.5 and force convert to
int" strategy to realize rounding

boundingboxp->width = (int) (P2.at<float>(0, 0) - Pl.at<float>(0, 0) + 0.5) + 1;

boundingboxp->height = (int)(P2.at<float>(1l, 0) - Pl.at<float>(1l, 0) + 0.5) + 1;

//Compute bounding box for undistorted image
Mat points(2, 1, CV_32FC2);
Mat points_u(2, 1, CV_32FC2);

points.at<vVec2f>(0)[0] = Pl.at<float>(0);

points.at<Vec2f>(0)[1] = Pl.at<float>(1l);

points.at<Vec2f>(1)[0] = P2.at<float>(0);

points.at<Vec2f>(1)[1l] = P2.at<float>(1l);

undistortPoints(points, points_u, K, D, R, P);

boundingboxp u->x = (int) (points_u.at<vec2f>(0)[0] + 0.5);

boundingboxp u->y = (int)(points_u.at<vVec2f>(0)[1] + 0.5);

boundingboxp u->width = (int) (points_u.at<Vec2f>(1)[0] - points_u.at<vVec2f>(0)[0] + 0.5) + 1;
boundingboxp u->height = (int)(points_u.at<Vec2f>(1)[1] - points_u.at<vec2f>(0)[1] + 0.5) + 1;
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//Handling cross boundary situation

if (boundingboxp->x < 0) boundingboxp->x = 0;

if (boundingboxp->y < 0) boundingboxp->y = 0;

if (boundingboxp->x + boundingboxp->width > Width) boundingboxp->width = Width - boundingboxp-
>xX;

if (boundingboxp->y + boundingboxp->height > Height) boundingboxp->height = Height -
boundingboxp->y;

if (boundingboxp u->x < 0) boundingboxp u->x = 0;

if (boundingboxp u->y < 0) boundingboxp u->y = 0;

if (boundingboxp u->x + boundingboxp u->width > Width) boundingboxp u->width = Width -
boundingboxp u->x;

if (boundingboxp u->y + boundingboxp u->height > Height) boundingboxp u->height = Height -
boundingboxp u->y;

if (boundingboxp u->width < 1 || boundingboxp u->height < 1 || boundingboxp->width < 1 ||
boundingboxp->height < 1) {
return false;

}

//Determine whether is close enough
/* float Radio = ((float)boundingboxp->height * (float)boundingboxp->width) / ((float)Width =*
(float)Height);

if (Radio > 0.9){

//cout << "\nYou hand is close enough to the pepsi can, just grap it!!!" << endl;
return 1;
y*/
//Handling distorted height-to-width radio situation
float radio = (float)boundingboxp->height / (float)boundingboxp->width; //Attention: must
convert to float before do division
if ((radio > thr_hw ratio_max || radio < thr_hw_ratio_min) /*&& (boundingboxp->height <
0.9*Height)*/) {
if (!recordvideo && !isExperiment)
cout << "Redetecting... since distorted height-to-width radio..." << endl;
return false;
}

return true;

}

bool palmsight::track2(bool isLeft, float thr_corr, float thr_hw ratio max, float
thr_hw_ratio_min)
{
double corr;
Mat *templateImage, img;
Rect *boundingboxp;
if (isLeft) {
templateImage = &leftTemplate;
img = leftImg gray;
boundingboxp = &leftBox;
}
else {
templateImage = &rightTemplate;
img = rightImg gray;
boundingboxp = &rightBox;
}

//Compute polygon pts

Mat vl = warp * (Mat_<float>(3, 1) << 0, 0, 1);

Mat v2 = warp * (Mat_<float>(3, 1) << 0, (boundingboxp->height - 1), 1);

Mat v3 = warp * (Mat_<float>(3, 1) << (boundingboxp->width - 1), (boundingboxp->height - 1),
1);

Mat v4 = warp * (Mat_<float>(3, 1) << (boundingboxp->width - 1), 0, 1);

vector<Point> contour;

contour.push_back(Point(vl.at<float>(0), vl.at<float>(1
contour.push_back(Point(v2.at<float>(0), v2.at<float>(1
contour.push_back(Point(v3.at<float>(0), v3.at<float>(1
contour.push_back(Point(v4.at<float>(0), vé4.at<float>(1

)))
))) i
))) i
)))

’

pts = Mat(contour);
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try {
corr = findTransformECC(*templateImage, img, warp, MOTION_AFFINE,
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01));

}

catch (Exception &e){
corr = -1;

}

//Handling low correlation situation
if (corr < thr_corr) {

if (!recordvideo && !isExperiment)
cout << "Redetecting... since correlation is too small" << endl;
return false;

}

// update template

warpAffine(img, *templateImage, warp, templateImage->size(), INTER_LINEAR WARP_INVERSE_MAP,
BORDER_CONSTANT) ;

//imwrite("templateImge.jpg", *templateImage);

return true;

}
void palmsight::generateDepthInfo(float scale, int numberOfDisparities)
{
// stereo match computation(Pay attention to the order of images!!!)
if (alg == STEREO BM) {
bm->compute (rightImg grays, leftImg_grays, disp);
right_matcher->compute(leftImg grays, rightImg grays, disp_right);
else if (alg == STEREO_SGBM || alg == STEREO_HH || alg == STEREO_3WAY) {
sgbm->compute(rightImg s, leftImg_ s, disp);
right _matcher->compute(leftImg s, rightImg_s, disp right);
}

// post-process filtering

wls_filter->filter(disp, rightImg, filtered disp, disp right);//left disp map, left view,
filtered disp map, right disp map

// compute camera-to-target distance
divide(B * £ * 16, filtered disp, depth);//baseline length * focal length, multiplied by 16 to
match filtered disp that was scaled by 16
//Mat target = depth(rightBox);
Mat target = depth(rightBox u);
Mat mask = (target > 0);
double minvVal; double maxVal;
Point minLoc, maxLoc;
minMaxLoc(target, &minVal, &maxVal, &minLoc, &maxLoc, mask);

targetDepth = minvVal*scale / 10.0;//convert from mm to cm

// get visualized disparity map
if (alg != STEREO VAR) {
disp.convertTo(visualized disp, CV_8U, 255 / (numberOfDisparities*16.));
filtered disp.convertTo(visualized filtered_disp, CV_8U, 255 / (numberOfDisparities*16.));
}
else {
disp.convertTo(visualized _disp, CV_8U);
filtered disp.convertTo(visualized filtered disp, CV_8U);
}
}

void palmsight::display()
{
Point tOrigin(leftvView.cols / 2, 20);

// put text and show original stereo pairs
if (isDetected)

rectangle(rightview, rightBox, CV_RGB(0, 255, 0), 3);
putText(leftview, String("L"), tOrigin, 1, 1.5, Scalar(0, 255, 0), 1.5);
putText(rightview, String("R"), tOrigin, 1, 1.5, Scalar(0, 255, 0), 1.5);
hconcat (leftview, rightvView, bothvView);
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imshow("Original View", bothvView);

// draw bounding box, put text and show undistorted rectified stereo pairs

if (isDetected)

rectangle(rightImg, rightBox u, CV_RGB(0, 255, 0), 3

//polylines(rightImg, pts, true, Scalar(O0,

putText (leftImg,
putText(rightImg,
hconcat(leftImg,

String("L"),
String("R"),

tOrigin,
tOrigin,

rightImg, bothImg);

1,
1,

1.

1.

)i
255, 0), 3);
5, Scalar (0,

5, Scalar(0,

imshow("Undistorted Rectified View", bothImg);

// show depth img

//putText(visualized filtered disp, String("F"), tOrigin, 1, 1.5, Scalar(255, 255, 255),

//imshow("disparity", disp8);
if (isTracking) {

cvtColor(visualized filtered_disp, color_ visualized filtered_disp, CV_GRAY2BGR);
rectangle(color_visualized filtered_disp, rightBox_u, CV_RGB(0, 255,

255, 0
255,

1.5);

)
0), 1.5);

0),

imshow("Filtered Depth View", color visualized filtered disp);

}

else

imshow("Filtered Depth View", Mat::zeros(viewsize, CV_8UC3));

}

BYTE palmsight::generateCommand(float ratioH,
{

int Width = viewsize.width;
int Height = viewsize.height;

int X

float ratiow,

rightBox.x + rightBox.width / 2 - Width / 2;

int Y = rightBox.y + rightBox.height / 2 - Height / 2;

BYTE command = 0;
string position =

nu o,
’

bool grab = false;

if (Y > Height * ratioH) {
command |= flip ? BOTTOM:TOP;
position = "Bottom";

}

else if (Y < -Height * ratioH) {
command |= flip? TOP:BOTTOM;
position = "Top";

}

if (X > Width * ratioW) {
command |= !flip ? RIGHT:LEFT;
position += "Right";

}

else if (X < -Width * ratiowW) {
command |= !flip ? LEFT:RIGHT;
position += "Left";

}

if (!command) {

if (targetDepth > 45){
command = CENTER4;
position = "Center 1";

}

else if (targetDepth > 25) {
command = CENTER3;
position = "Center 2";

}

else if (targetDepth > 15) {
command = CENTER2;
position = "Center 3";

}

else if (targetDepth > thr grab) {
command = CENTER1;
position = "Center 4";

}

else if (targetDepth != 0)

{//close enough to grab it

command = CENTER4 | RIGHT | LEFT | BOTTOM | TOP;
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position = "Please Grab It!";
grab = true;
}
}

info.append(position);

info.append(" target depth: ");
info.append(to_string(targetDepth));
info.append(" cm");

if (!recordvideo && !isExperiment) {
if (!grab)
cout << position << ":[X = " << X << ", ¥ = " << Y << "]" << '"\t' << "targetDepth:
targetDepth << " cm" << endl;
else

cout << position << endl;

}

return command;

}

double palmsight::extractFeaturedColorRatio(bool isLeft)

{
Mat SplittingChannel[3], BlendImage, mask, templateImage;
double thres = 0.45;
int cnt, size;

if (isLeft)

templateImage = rightImg(leftBox);
else

templateImage = rightImg(rightBox);

split(templateImage, SplittingChannel);

SplittingChannel[0].convertTo(SplittingChannel[0], CV_32FCl);
SplittingChannel[1l].convertTo(SplittingChannel[1], CV_32FCl);
SplittingChannel[2].convertTo(SplittingChannel[2], CV_32FCl);

BlendImage = SplittingChannel[0] + SplittingChannel[l] + SplittingChannel[2] + 1;

SplittingChannel[0] = SplittingChannel[0] / BlendImage;
SplittingChannel[1l] = SplittingChannel[l] / BlendImage;
SplittingChannel[2] = SplittingChannel[2] / BlendImage;

threshold(SplittingChannel[0], mask, thres, 255, THRESH_BINARY);

cnt = countNonZero(mask);
size = mask.total();

double ratio = (double)cnt / (double)size;

return ratio;

}

void palmsight::calculatehist()
{
Mat image;
float range[] = { 0, 255 };
const float* histRange = range;
string positivePath = "C:\\Users\\FingerSight\\Pictures\\pepsi\\positive\\";
char imgName[16];
Mat SplittingChannel[3];

for (int 1 = 0; i < 50; i++) {
sprintf s(imgName, "img%d.jpg", i + 1);
image = imread(positivePath + (string)imgName);
split(image, SplittingChannel);
calcHist(&SplittingChannel[0], 1, 0, Mat(), BlueHist[i], 1, &histSize, &histRange);
calcHist(&SplittingChannel[l], 1, 0, Mat(), GreenHist[i], 1, &histSize, &histRange);
calcHist(&SplittingChannel[2], 1, 0, Mat(), RedHist[i], 1, &histSize, &histRange);

}

}

double palmsight::comparehist(bool isLeft)
{
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float range[] = { 0, 255 };

const float* histRange = range;

Mat b_hist, g hist, r_hist, templateImage;
Mat SplittingChannel[3];

if (isLeft)

templateImage = rightImg(leftBox);
else

templateImage = rightImg(rightBox);

split(templateImage, SplittingChannel);

calcHist(&SplittingChannel[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange);
calcHist(&SplittingChannel[1l], 1, 0, Mat(), g_hist, 1, &histSize, &histRange);
calcHist(&SplittingChannel[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange);

double Comp = 0;

double b_comp, g comp, r_comp;

for (int 1 = 0; i < 50; i++) {
b_comp = compareHist(b_hist, BlueHist[i], HISTCMP_CORREL);
g_comp = compareHist(g_hist, GreenHist[i], HISTCMP_CORREL);
r_comp = compareHist(g_ hist, RedHist[i], HISTCMP_CORREL);
Comp = max(Comp, (b_comp + g comp + r comp) / 3);

}

return Comp;

}

void palmsight::videoRecord()

{

binocularvVideo << bothImg;
depthVideo << color_visualized filtered_disp;
fprintf s(logfile, "%s\n", info.c_str());

}
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6.2.3 main.cpp

/* main.cpp */
/* Zhixuan Yu */
/* 12/5/2016 */

#include "palmsight.h"
#include "conio.h"
#include "myserial.h"
#include "tchar.h"
#include <stdio.h>
#include <ctime>

int myrandom(int i) {
srand(time (NULL));
return rand() % 1i;

}

int main(int argc, char** argv)
{
// check input arguments
string subject, block, mode;
if (argc == 4) {
subject = argv[1l];
block = argv[2];
mode = argv[3];
}
else if (argc == 1) {
subject = "";
block = "";
mode = "";
}
else {
cout << "invalid command...";
return -1;

}

//create palmsight object

palmsight obj(1, 0);

if (!obj.isCamerasOpen)
return -1;

if (argc == 4)
obj.isExperiment = true;

[**k% kkkkkkkkkkkkkkkx*x Modifiable parameters start **x***kkkkkkkkkhkkkkkkhkhkkkkhkhkhkkkkkkkkkkk* /

//set object attribute

obj.useBuzzer = true; // choose whether to use the haptic feedback

obj.useLabel = true; // choose whether to use checkboard label as the detection target or pepsi
can

obj.useColor = true; // choose whether to use color info as assistant detection method(used
only when pepsi can is the target)

obj.useHist = true; // choose whether to use color histogram for detection purpose(used only
when pepsi can is the target)

// paths of files to read

const string intrinsic_filename = "intrinsics.yml"; // intrinsics of the cameras

const string extrinsic_filename = "extrinsics.yml"; // extrinsics of the binocular camera

char detectorSavePath[32] = "svmdet pepsi.txt"; //svm parameters of the trained pepsi can
detector

// parameters of generateCommand function

const float ratioH = 0.1; // If the coordinates X,Y of target center(wrt right camera view
center) satisfy |X/H| < ratioH and |X/W|<ratioW,

const float ratioWw = 0.1; // where H and W are height and width of camera view respectively, we
think the target is in the camera view center.

const float thr_grab = 6;// distance threshold to invoke "grab it" commond

// parameters of detect function

const float thr_color_ratio = 0.06; // threshold of featured pepsi color ratio, below which
would cause detector to ignore the candidate patch
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const float thr_hist ratio = 0.3; // threshold of histogram similarity, below which would cause

detector to ignore the candidate patch

// parameters of track function
const float thr_corr = 0.5; // correlation threshold to keep tracking, below which would cause

switching back to detection mode

const float thr_hw ratio_max = 2; // upper and lower threshold of height-to-width ratio to

keep tracking, outside

const float thr_hw ratio min = 0.5; // which would cause switching back to detection mode

// parameter of iniStereoMatchObject and generateDepthInfo function
obj.alg = palmsight::STEREO_BM;
const int SADWindowSize = 9;

const int numberOfDisparities = 64;

const double lambda = 8000;

const double sigma = 1.5;

const float scale = 5.0 / 8.0; // a scale factor meatured in practial to correct the calculated

target depth

// COM port number
WCHAR comport[16] = _T("COM3");

// choose whether camera to use for detection and tracking
bool dominantCamera = RIGTH_CAMERA;

JRxKkkkkkkhkkhkhkhkhhhhkkkkhhkxkk*x* Tnitialization start ***kkkkkkkkkkkkhhhhhhkhhhhhkkkkkhkk /

// paths of video files to write

string dir = "./record/" + subject; wstring wdir = wstring(dir.begin(), dir.end());

CreateDirectory(wdir.c_str(), NULL);

const string binocularVideo_ filename = "./record/" + subject + "/binocular_block " + block +
" _mode_ " + mode;

const string depthvVideo filename = "./record/" + subject + "/depthvVideo block " + block +
" _mode_ " + mode;

int fourcc = VideoWriter::fourcc('X', 'V', 'I', 'D');

const string logfilename = "./record/" + subject + "/logfile.txt block " + block + " mode " +
mode;

// initialize experiment variables

long framecnt = 0; // frame counter

int trial = 0; // trial counter

vector<int> targetID; // target location sequence

for (int i = 1; i<9; ++i) targetID.push back(i); // 1-8

random_shuffle(targetID.begin(), targetID.end(), myrandom); //randomize

// print out content

std::cout << "targetID contains:";

for (vector<int>::iterator it = targetID.begin(); it != targetID.end(); ++it)
cout << ' ' << *it;

cout << '\n';

// acquire size of camera view
obj.getvViewSize();

// generate undistort rectified map(mapll, mapl2, map2l, map22) according to camera intrinsics

and extrinsics

if (!obj.generateUndistortRectifyMap(dominantCamera, intrinsic_filename, extrinsic_filename))
return -1;

// load pepsi can detector if we do not use checkboard label as the target
if (!obj.useLabel)
obj.setDetector (detectorSavePath);
// calculate the color histogram of pepsi if we do not use checkboard label as the target
if (!obj.useLabel && obj.useHist)
obj.calculatehist();

// initiate block matcher object(bm/sgbm)
obj.iniStereoMatchObject();

// open COM port for communication with haptic feedback part
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BYTE command;
HANDLE hComm = 0;
if (obj.useBuzzer)
if (!Open(&hComm, comport)) {
cout << "Open COM Port error!" << endl;
return 0;

}

// initialzie opencv windows

namedWindow("Undistorted Rectified View", WINDOW_NORMAL | WINDOW_KEEPRATIO | CV_GUI_EXPANDED);
namedWindow("Filtered Depth View", WINDOW_NORMAL | WINDOW KEEPRATIO | CV_GUI_EXPANDED);
namedWindow("Original View", WINDOW_NORMAL | WINDOW KEEPRATIO | CV_GUI_EXPANDED);

// prevent some error from terminating the program
redirectError (handleError);

if (argc == 4) {
cout << "This is block " << block << ", mode " << mode << ", for subject with identifier " <<
subject << "." << endl;
cout << "Place the target in Location " << targetID[0] << " and press R to start the first
trial." << endl;

}
/% ettt ettt Initialization ends
........................................ */
/® et e e et e e e e e ee e eeeataeeeataeeaeatetaaatateeaateteaaaeectaaceeaaattaaaaaan
* /

/************************************** Start while loOP
*******************************************/
while (1) {
/* press key detection */

if (_kbhit()) {
char key = _getch();
if (key == '\r') // press return key to terminate the program
break;
else if (key == 'r' || key == 'R') { // press R/r to start recording
if (arge == 1) {//test mode

if (!obj.recordvideo) {
obj.recordvideo = true;
obj.binocularvVideo.open(binocularVideo_filename +

obj.viewsize.width, obj.viewsize.height));

obj.depthvVideo.open(depthvideo filename + ".avi", fourcc, 30, obj.viewsize);
fopen_s(&obj.logfile, (logfilename + ".txt").c_str(), "w");

}

else
break;

.avi", fourcc, 30, Size(2 *

else {//experiment mode

obj.recordvideo = !obj.recordvideo;//toggle obj.recordvideo
if (obj.recordvideo && trial != 0)
cout << "Trial " << trial << " starts...... " << endl;
if (!obj.recordvideo || trial == 0) {
if (trial == 0)
cout << "Trial 1 starts...... " << endl;
else

cout << "Trial " << trial << " ends!";

if (trial == 8) {
cout << "\nThis block is finished. Thank you! " << endl;
break;

else if (trial != 0)

cout << " Move the target to Location "<< targetID[trial] << " and press R to start
next trial." << endl;

trial++;
// name the corresponding videos and log file.
string suffix = " trial " + to_string(trial) + " targetID " + to_string(targetID[trial-

11);

obj.binocularvVideo.open(binocularvVideo_filename + suffix +
obj.viewsize.width, obj.viewsize.height));

'.avi", fourcc, 30, Size(2 *
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obj.depthvVideo.open(depthvideo filename + suffix + ".avi", fourcc, 30, obj.viewsize);
fopen_s(&obj.logfile, (logfilename + suffix + ".txt").c_str(), "w");

}
}
}
else if (key == "' ") // press space key to pause/resume the while loop
while (_getch() != " ");

}
waitKey(1l);

/* clear command and info */
command = 0;
obj.info = "Frame " + to_string(framecnt) + ": ";

/* Acquire new undistorted rectified images pairs */
obj.updatevViews();
obj.generateUndistortRectifyStereoImagePairs();

/* Detection mode */
if (!obj.isDetected) {
if (obj.useLabel) {
if (obj.detectLabel(dominantCamera))
obj.isDetected = true; //Spot target!
}
else {
if (obj.detect(dominantCamera))
obj.isDetected = true; //Spot target!

}
}
/* Track mode */
else {
obj.isTracking = true;
if (!obj.track(dominantCamera, thr_ corr, thr_hw ratio max, thr hw_ratio_min)) {
obj.isDetected = false; //Failed to continue tracking target...
obj.isTracking = false;
}
}

/* Execute if target has been locking */

if (obj.isDetected) {
//obj.rightTemplate = obj.rightImg gray(obj.rightBox).clone();//update tracking template
obj.rightTemplate = obj.rightView gray(obj.rightBox).clone();

if (obj.isTracking) {
obj.generateDepthInfo(scale); //generate depth map
command = obj.generateCommand(ratioH, ratioW, thr grab); //analyze target position and
generate command
if (mode.compare("1") != 0 && argc == 4)
command = command & 0x0F;
}
}

/* Display undistort rectified image pairs and depth img */
obj.display();

/* Send command to haptic feedback part */
if (obj.useBuzzer)
SendCommand (hComm, &command);

/* Recording */
if (obj.recordvideo) {
obj.videoRecord();
if (argc == 1)
cout << obj.info << endl;
framecnt++;

}
}
/% ettt ittt End while loop
........................................ */
/F e et et e et e et et e ettt ettt ettt ettt sttt
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// close logfile
if (obj.recordvideo)
fclose(obj.logfile);

// mute tactors
command = 0;
SendCommand (hComm, &command);
if (!Close(hComm))
cout << "Close COM Port error!"
return 0;

<< endl;
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6.3 Wixel Software

/* my_usb_com.c */
/* Zhixuan Yu */
/* 12/6/2016 */

#include <wixel.h>
#include <usb.h>
#include <usb_com.h>
#include <stdio.h>

#define BUZZERO (V) {((v) 2 (PO_O =1) : (PO_O0O =0));}
#define BUZZER1 (V) {((v) 2 (PO_1 =1) : (PO_1 =10));}
#define BUZZER2(V) {((v) 2 (P0O_2 =1) : (P0O_2 =10));}
#define BUZZER3 (V) {((v) 2 (P0O_3 =1) : (P0O_3 =10));}

/* VARIABLES ******************************************************************/

[/ **
BIT
/**

BIT

True if the yellow LED should currently be on. */
yellowLedOn = 1;

True if the red LED should currently be on. */
redLedOn = 0;

uint8 command = 0;

/* FUNCTIONS ******************************************************************/

void timer3Init()

{

}

// Reset the timer tick speed
CLKCON |= 0b00111000; //1:128

// Start the timer in free-running mode and set the prescaler.
T3CTL = 0b11110000; // Prescaler 1:128, frequency = (24000 kHz)/128/128 = 1465Hz

// Set the duty cycles to zero.
//T3CCO0 = 250;

// Enable PWM on both channels. We choose the mode where the channel
// goes high when the timer is at 0 and goes low when the timer value
// is equal to T3CCn.
T3CCTLO = 0b00100100;

// Configure Timer 3 to use Alternative 1 location, which is the default.
PERCFG &= ~(1<<5); // PERCFG.T3CFG = 0;

// Configure P1_3 and Pl _4 to be controlled by a peripheral function (Timer 3)
// instead of being general purpose I/0.
PISEL |= (1<<3);

// After calling this function, you can set the duty cycles by simply writing
// to T3CCO and T3CCl. A value of 255 results in a 100% duty cycle, and a
// value of N < 255 results in a duty cycle of N/256.

void update()

{

BUZZERO (command & 0x01);
BUZZERI1 (command & 0x02);
BUZZER2 (command & 0x04);
BUZZER3 (command & 0x08);

switch(command & 0xf0) {
case 0x10: {
T3CCO = O0x1f;
break;

case 0x20: {
T3CCO = 0x3f;

break;

case 0x40: {
T3CCO = 0x7f;
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break;
}
case 0x80: {
T3CCO = Oxff;
break;
}
default: {
T3CCO = 0;
//T3CTL &= ~(1<<4); //suspend timer
//return;

}

}
//T3CTL |= 1<<4; //start timer
}

void updateleds()

{
usbShowStatusWithGreenLed();
LED_YELLOW(yellowLedOn) ;
LED_RED(redLedOn) ;

}

/** Checks for new bytes available on the USB virtual COM port
* and processes all that are available. */
void processBytesFromUsb()

{
uint8 dataBytesReceived;
uint8 byteLeft = usbComRxAvailable();
while(byteLeft)
{
dataBytesReceived = usbComRxReceiveByte();
//update only when command received 1is different from the previous one
if (command != dataBytesReceived) {
command = dataBytesReceived;
yellowLedOn "= 1;
redLedOn "= 1;
update();
}
byteLeft--;
}
}
void main()
{
systemInit();
usbInit();
timer3Init();
PODIR |= 0x0f; //Attention: must configure corresponding pin to output mode
update();
while(1)
{
boardService();
updateleds();
usbComService();
processBytesFromUsb() ;
}
}
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6.4 Experimental Protocol

6.4.1 PalmSight Experiment Document

PalmSight Experiment Document

1 INDEPENDENT VARIABLES

1.1 MobEes (NEED SEARCH INSTRUCTIONS FOR EACH):

1. PS5 —PalmSight, five tactor design with distance info (dominant hand)

2. PS4 — PalmSight, four tactor design without distance info (dominant hand)

3. PHN - Phone mounted camera with four tactor design on phone hand, no distance info
(non-dominant hand)

4. Subjects are always grasping with dominant hand

1.2 TARGETS:
Targets are arranged over distance and depth. Target locations are labeled with an
identifying letter/number

Need to determine min and max distances.

Subject should never see target configuration. Place a drape over it when the blindfold is off
and remove to start a block.

Possible Target Locations

O

Subject arm location

2 DEPENDENT VARIABLES

1. Time from start of trial to whisker contact
2. Time to first detection
3. Percent of time after 1* detection that object is in frame
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3 BLOCK DESIGN

L.
2.
3.

Each block will use only one device mode
Each block will contain all targets, randomized (multiple reps)
Block order will be counterbalanced across subjects

4 EXPERIMENTAL PROCEDURES:

4.1 SUBJECT PROCEDURE:

4.1.1

L=

4.1.2

Start of block:

Experimenter assists with putting on the device (mode specific configuration).
Experimenter gives search instructions for the mode.

Experimenter assists with putting on blindfold and placing arm(s) on the starting rests.
Experimenter removes drape from target array.

Each trial:

Subject hears a tone/beep that signals start of the trial

At signal, subject lifts hand(s) off of rests and begins to search for the object

The subject should search for the object until they feel/hear the whisker make contact.
or hear a beep signaling experimenter-observed contact

Once they make contact, they should stop moving, until they hear another beep/tone
At this beep/tone, they should return their hand(s) to the starting rests (guided by
experimenter if necessary)

After a short wait, the experiment continues on to the next trial at step 1.

End of block:

The experimenter drapes the targets and informs the subject when the block is over
Blindfold and device are removed
Rest break before starting next block

4.2 EXPERIMENTER PROCEDURE:

4.2.1

Start of block:

Experimenter launches the software with the parameters for the block (Subject#,
Block#, and Mode). Also possibly number of targets and number of reps.

Software initializes, and then waits for signal from experimenter (e.g. enter key press)
to start the block.
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3. While software is initializing, the experimenter prepares the subject for the block:
a. Assist the subject with putting on the device
b. Give search instructions for the current mode
c. Put blindfold on subject and place their hand(s) on the starting rests
4. Once preparation and initialization in complete, the experimenter presses a key to
signal the software to start the block. The software will display where the target
should be placed for the first trial.

4.2.2 Each Trial:

Experimenter places object on target indicated by software.

Experimenter presses key to start trial

Experimenter waits as the subject explores, monitoring the status of the whisker
When the experimenter determines that the whisker has made contact, they press a
key to signal the end of the trial.

. The software beeps, indicating that the subject should return to the rests.

The experimenter waits while the software saves all of the relevant trial data.

7. When the software is finished saving, it displays the target for the next trial. If this is
the last trial, it displays “Block complete” and exit.

L=

N L

4.2.3 End of block

Tell subject that the block is complete

Help remove blindfold

Help remove device

Rest break before starting next block.

During the rest period, verify experiment data files

hAEE bl

4.3 SOFTWARE PROCEDURE:
The software will be launched/run for each block.

4.3.1 Command line parameters:
1. Subject #
2. Block #
3. Device Mode

4.3.2 Start of block:
1. Software is launched with appropriate parameters
2. Software initialization procedure;
a. Cameras are initialized
b. Any package/toolkit initialization is done
c. Basically anything that can be done before the trial actually starts
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3.

d. Trial order is hardcoded
i. List of target IDs
Software pauses for key signal to start block

The code then iterates over the trial list

433

434

Each Trial:

Display the target object for the current trial (current value of trial list)

. Wait for start signal from experimenter

At start signal:

a. Record start time

b. Begin recording camera data to memory.

c. Start object detection and haptic feedback

d. Beep/tone start signal for subject
Continue object detection, feedback and video recording until stop signal.
At stop signal

a. Record stop time

b. Stop recording video

c. Stop object detection and haptic feedback

d. Beep/tone stop signal for subject
Save data to disk

a. Save video as Subject# Block# Mode Trial# TargetID vid.(whatever

format)
b. Save key details to text file named Subject# Block# Mode Trial# TargetID.
(txt or cvs)
c. Key details:
i. All trial parameters on first line (subject, block, mode, trial#, targetID)
ii. Start time
iii. Stop time
d. Save tactor activation data
i. Each line is a frame number, with the activated tactors listed
afterwards.

Once all data is saved, move to next iteration. If this was the last trial, Display “trial
complete” and continue to clean up

End of block:

1. Close cameras

2. Deinit any packages that need it
3. Free memory, etc.

4. Exit
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6.4.2  PalmSight Subject Instructions

1.1 SUBJECT PROCEDURE:

1.1.1 Start of block:

1. Experimenter assists with putting on the device (mode specific configuration).

2. Experimenter gives search instructions for the mode (see below).

3. Experimenter assists with putting on blindfold and placing arm(s) on the starting rests.
4. Experimenter removes drape from target array.

2

Each trial:

Subject hears a tone/beep that signals start of the trial

. At signal, subject lifts hand(s) off of rests and begins to search for the object

3. The subject should search for the object until they feel/hear the whisker make contact.
or hear a beep signaling experimenter-observed contact

4. Once they make contact, they should stop moving, until they hear another beep/tone

5. At this beep/tone, they should return their hand(s) to the starting rests (guided by
experimenter if necessary)

6. After a short wait, the experiment continues on to the next trial at step 1.

[N

1.1.3 End of block:

1. The experimenter drapes the targets and informs the subject when the block is over
2. Blindfold and device are removed
3. Rest break before starting next block

The experimenter will assist you with putting a device. It consists of a camera and some
vibration dots. There is also a strap with a whisker. The camera and dots will sometimes be
placed on your dominant hand, the one you use for eating and writing, and sometimes on the
non-dominant hand. The device will stay on the same hand for a series of trials. The whisker
is always on your dominant hand, which you will use to approach a target object that will be
placed in different locations from trial to trial.

You will try to reach the target object with your hand held upright, palm facing forward. The
camera tracks where your hand is relative to the target object. The vibration dots tell you
how to move your hand to approach the object. You should follow the signals of the dots
until you hit the target with the whisker.

Now let me tell you how to interpret the vibration dots. There are four dots arranged around
the back of your hand at top, bottom, left and right. They tell you what direction to shift your
hand in, to stay on track toward the target. So, for example, if the right dot buzzes, you
should move slightly to the right until it stops, then move forward. Similarly, a buzz on the
top means move your hand upward slightly before moving forward, and so on. If two
vibrator buzz at the same time, like top and right, it means move on an angle in between the
two.
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When you first start a trial, you may have to move your hand around to put the object into the
camera view. A vibration will tell you it’s been picked up, and how to move.

Some trials will provide you with one extra vibration point at the center of your hand. It tells
you how far you are from the object. A stronger buzz means you are farther away; as you
approach the object the buzz will get weaker, and you will be very close to hitting the target
with the whisker.
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