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Abstract. We propose a novel algorithm for the joint refinement of
structure and motion parameters from image data directly without rely-
ing on fixed and known correspondences. In contrast to traditional bun-
dle adjustment (BA) where the optimal parameters are determined by
minimizing the reprojection error using tracked features, the proposed
algorithm relies on maximizing the photometric consistency and esti-
mates the correspondences implicitly. Since the proposed algorithm does
not require correspondences, its application is not limited to corner-like
structure; any pixel with nonvanishing gradient could be used in the es-
timation process. Furthermore, we demonstrate the feasibility of refining
the motion and structure parameters simultaneously using the photomet-
ric in unconstrained scenes and without requiring restrictive assumptions
such as planarity. The proposed algorithm is evaluated on range of chal-
lenging outdoor datasets, and it is shown to improve upon the accuracy
of the state-of-the-art VSLAM methods obtained using the minimization
of the reprojection error using traditional BA as well as loop closure.

1 Introduction

Photometric, or image-based, minimization is a fundamental tool in a myriad of
applications such as: optical flow [1], scene flow [2], and stereo [3,4]. Its use in
vision-based 6DOF motion estimation has recently been explored demonstrat-
ing good results [5,6,7,8]. Minimizing the photometric error, however, has been
limited to frame–frame estimation (visual odometry), or as a tool for depth
refinement independent of the parameters of motion [9]. Consequently, in un-
structured scenes, frame–frame minimization of the photometric error cannot
reduce the accumulated drift. When loop closure and prior knowledge about the
motion and structure are not available, one must resort to the Gold Standard:
minimizing the reprojection error using bundle adjustment.

Bundle adjustment (BA) is the problem of jointly refining the parameters
of motion and structure to improve a visual reconstruction [10]. Although BA
is a versatile framework, it has become a synonym to minimizing the repro-
jection error across multiple views [11,12]. The advantages of minimizing the

⋆ Corresponding author halismai@cs.cmu.edu.

ar
X

iv
:1

60
8.

02
02

6v
1 

 [
cs

.C
V

] 
 5

 A
ug

 2
01

6



2

reprojection error are abundant and have been discussed at length in the lit-
erature [11,12]. In practice, however, there are sources of systematic errors in
feature localization that are hard to detect and the value of modeling their un-
certainty remains unclear [13,14]. For example, slight inaccuracies in calibration
exaggerate errors [15], sensor noise and degraded frequency content of the image
affect feature localization accuracy [16]. Even interpolation artifacts play a non-
negligible role [17]. Although minimizing the reprojection is backed by sound
theoretical properties [11], its use in practice must also take into account the
challenges and nuances of precisely localizing keypoints [10].

Here, we propose a novel method that further improves upon the accuracy of
minimizing the reprojection error and, even state-of-the-art loop closure [18]. The
proposed algorithm brings back the image in the loop, and jointly refines the
motion and structure parameters to maximize photometric consistency across
multiple views. In addition to improved accuracy, the algorithm does not re-
quire correspondences. In fact, correspondences are estimated automatically as
a byproduct of the proposed formulation.

The ability to perform BA without the need for precise correspondences is
attractive because it can enable VSLAM applications where corner extraction is
unreliable [19], as well as additional modeling capabilities that extend beyond
geometric primitives [20,21].

1.1 Preliminaries and Notation

The reprojection error Given an initial estimate of the scene structure{
ξj

}N

j=1
, the viewing parameters per camera {θi}M

i=1, and xij the projection

of the jth point onto the ith the reprojection error is given by

ϵij(xij ; θi, ξj) =
∥∥∥xij − π

(
T(θi),X(ξj)

)∥∥∥ , (1)

where π(·, ·) is the image projection function. The function T(·) maps the vec-
torial representation of motion to a rigid body transformation matrix. Similarly,
X(·) maps the parameterization of the point to coordinates in the scene.

In this work, we assume known camera calibration parameters as is often
the case in VSLAM and parameterize the scene structure using the usual 3D
Euclidean coordinates, where X(ξ) := ξ, and

ξ
⊤
j =

(
xj yj zj

)
∈ R3. (2)

The pose parameters are represented using twists [22], where the rigid body pose
is obtained using the exponential map [23], i.e.

θ
⊤
i ∈ R6 and T(θ) := exp(θ̂) ∈ SE(3). (3)

Our algorithm, similar to minimizing the reprojection error using BA, does not
depend on the parameterization. Other representations for motion and structure
have been studied in the literature and could be used as well [24,25,26].
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Geometric bundle adjustment Given an initialization of the scene points
and motion parameters, we may obtain a refined estimate by minimizing the
squared reprojection error in Eq. (1) across tracked features, i.e.:

{
∆θ∗

i , ∆ξ∗
j

}
= argmin

θi,ξj

M∑

i=1

N∑

j=1

1

2
δijϵ

2
ij(xij ,∆θi,∆ξj), (4)

where δij = 1 if the jth point is visible, or tracked, in the ith camera. We call
this formulation geometric BA.

Minimizing the reprojection error in Eq. (4) is a large nonlinear optimization
problem. Particular to BA is the sparsity pattern of its linearized form, which
we can exploit for both large– and medium–scale problems [11].

1.2 The Photometric Error

The use of photometric information in computer vision has a long and rich
history dating back to the seminal works of Lucas and Kanade [27] and Horn
and Schunk [28]. The problem is usually formulated as a pairwise alignment of
two images. One is the reference I0, while the other is the input I1. The two
images are assumed to be related via a parametric transformation. The goal is
to estimate the parameters of motion p such that the squared intensity error is
minimized

p∗ = argmin
p

∑

u∈Ω0

1

2

∥∥I0(u) − I1(w(u; p))
∥∥2

, (5)

where u ∈ Ω0 denotes a subset of pixel coordinates in the reference image frame,
and w (·, ·) denotes the warping function [29]. Minimizing the photometric error
has recently resurfaced as a robust solution to visual odometry (VO) from high
frame-rate imagery [30,6,7]. Notwithstanding, minimizing the photometric error
has not yet been explored for the joint optimization of the motion and structure
parameters for VSLAM in unstructured scenes.

The proposed approach fills in the gap by providing a photometric formula-
tion for BA, which we call BA without correspondences.

2 Bundle Adjustment Without Correspondences

BA is not limited to minimizing the reprojection error [10]. We reformulate the
problem as follows. First, we assume an initial estimate of the camera poses θi

as required by geometric BA. However, we do not require tracking information
for the 3D points. Instead, for every scene point ξj , we assign a reference frame
denoted by r(j). The reference frame is used to extract a fixed square patch
denoted by ϕj ∈ RD over a neighborhood/window denoted by N . In addition,
we compute an initial visibility list indicating the frames where the point may
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be in view. The visibility list for the jth point excludes the reference frame and
is denoted by:

Vj =
{
k : k ̸= r(j) and ξj is visible in frame k

}
, for k ∈ [1, . . . , M ]. (6)

Given this information and the input images {Ii}M
i=1, we seek to estimate an

optimal update to the motion ∆θi
∗ and structure parameters ∆ξj

∗ that satisfy

{
∆θ∗

i , ∆ξ∗
j

}
= argmin

∆θi,∆ξj

N∑

j=1

∑

k∈V (j)

E(ϕj , Ik; ∆θk,∆ξj), (7)

where

E(ϕ, I′; θ, ξ) =
∑

u∈N

1

2

∥∥ϕ(u) − I′(π(θ, ξ) + u)
∥∥2

. (8)

The notation I′(π(·, ·)+u) indicates sampling the image intensities in a neighbor-
hood about the current projection of the point. Since image projection results
in subpixel coordinates, the image is sampled using an appropriate interpolation
scheme (bilinear in this work). The objective for a single point is illustrated
schematically in Fig. 1.

? ?

?

Fig. 1. Schematic of the proposed approach. We seek to optimize the parameters of

motion θi and structure ξj such that the photometric error with respect to a fixed patch

at the reference frame is minimized. Correspondences will be estimated implicitly.

Linearization and sparsity The optimization problem in Eq. (7) is nonlinear
and its solution proceeds with standard techniques. Let θ and ξ denote the
current estimate of the camera and the scene point, and let the current projected
pixel coordinate in the image plane be given by

u′ = π(T(θ),X(ξ)), (9)
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then taking the partial derivatives of the 1st-order expansion of the photometric
error in Eq. (8) with respect to the motion and structure parameters we obtain:

∂E
∂θ

=
∑

u∈N
J⊤(θ)

∣∣ϕ(u) − I′(u′ + u) − J(θ)∆θ
∣∣ (10)

∂E
∂ξ

=
∑

u∈N
J⊤(ξ)

∣∣ϕ(u) − I′(u′ + u) − J(ξ)∆ξ
∣∣ , (11)

where J(θ) = ∇I(u′ +u)∂u′

∂θ , and J(ξ) = ∇I(u′ +u)∂u′

∂ξ . The partial derivatives
of the projected pixel location with respect to the parameters are identical to
those obtained when minimizing the reprojection error in Eq. (1), and ∇I ∈ R1×2

denotes the image gradient. By equating the partial derivatives in Eqs. (10)
and (11) to zero we arrive at the normal equations which can be solved efficiently
using standard methods [31].

We note that the Jacobian involved in solving the photometric error has a
higher dimensionality than its counterpart in geometric BA. This is because the
dimensionality of intensity patches (D ≥ 3 × 3) is usually higher than the di-
mensionality of feature projections (typically 2 for a monocular reconstruction
problem). Nonetheless, the Hessian remains identical to minimizing the repro-
jection error and the linear system remains sparse and is efficient to decompose.
The sparsity pattern of the photometric BA problem is illustrated in Fig. 2.

Another important note is that since the parameters of motion and structure
are refined jointly, the location of the patch at the reference frame ϕ(u) in Eq. (8)
will additionally depend on the pose parameters of the reference frame. Allowing
the reference patch to “move” during the optimization adds additional terms to
the Hessian (additional terms will appear in the motion parameters blocks of
the Hessian, these are shown at left hand corner of the Hessian in Fig. 2). In
terms of computational complexity, the additional runtime from allowing the
reference patch to move is minimal as the algorithm is implemented in a sliding
window fashion. However, including inter–pose dependencies is undesirable as,
depending on the initialization quality, the location of the reference patch might
drift. For instance, we might introduce a biased solution where the patches drift
to image regions with brighter absolute intensity values in an attempt to obtain
the minimum energy in low-texture areas.

To address this problem, we fix the patch appearance at the reference frame
by storing the patch values as soon as the reference frame is selected. This is
equivalent to assuming a known patch appearance from an independent source.
Under this assumption, the optimization problem now becomes: given a known
and fixed patch appearance of a 3D point in the world, refine the parameters of
the structure and motion such that photometric error between the fixed patch
and its projection onto the other frames is minimized. This assumption has two
advantages: (1) the Hessian sparsity pattern remains identical to the familiar
form when minimizing the reprojection error using traditional BA, and (2) we
can refine the three coordinates (or the full four projective coordinates [10]) of
the scene points as opposed to only refining depth along a fixed ray in space.
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In addition to improving the accuracy of VSLAM, the algorithm does not re-
quire extensive parameter tuning. This is now possible by allowing the algorithm
to determine the correct correspondences, hence eliminating the many steps re-
quired to ensure outlier-free correspondences with traditional BA. The current
implementation of the proposed algorithms is controlled by the three parameters
summarized in Table 1 and explained next.

Fig. 2. Shown on the left is the form of the Jacobian for a photometric bundle adjust-

ment problem consisting of 3 cameras, 4 points, and using a 9-dimensional descriptor,

with Nc = 6 parameters per camera, and Np = 3 parameters per point. The form of

the normal equations is shown on the right. The illustration is not up to scale across

the two figures.

Table 1. Configuration parameters for the proposed algorithm shown in Algorithm 1.

Parameter Value

Patch radius 1 or 2
Non maxima suppression radius 1
Max distance to update Vj 2

Selecting pixels While it is possible to select pixel locations at every frame
using a standard feature detector, such as Harris [32] or FAST [33], we opt to
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use a simpler and more efficient strategy based on the gradient magnitude of the
image. This is performed by selecting pixels with a local maxima in a 3×3 neigh-
borhood of the absolute gradient magnitude of the image. The rationale is that
pixels with vanishing intensity gradients do not contribute to the linear system
in Eqs. (10) and (11). Hence, pixels with larger gradients are preferable since
they indicate a measure of textureness [34]. Other strategies for pixel selection
could used [35,36], but we found that the current scheme works well as it ensures
an even distribution of coordinates across the field-of-view of the camera [37].
The proposed pixel selection strategy is also beneficial as it is not restricted to
corner-like structure and allows us to use pixels from low-texture areas. We note
that this pixel selection step selects pixels at integer locations; there is no need
to compute accurate subpixel positions of the selected points at this stage.

In image-based (photometric) optimization there is always a distinguished ref-
erence frame providing fixed measurements [38,39,9]. Selecting a single reference
in photometric VSLAM is unnecessary and may be inadvisable. It is unnecessary
as the density of reconstruction is not our main goal. It is inadvisable because
we need the scene points to serve as tie points [40] and form a strong network of
constraints [10]. Given the nature of camera motion in VSLAM selecting points
from every frame ensures the strong network of connections between the tie
points. For instance, typical hand-held and ground robots motions are mostly
forward with points leaving the field-of-view rapidly.

Selecting new scene points at every frame using the aforementioned non max-
ima suppression procedure has one caveat. If we always select pixels with strong
gradients between consecutive frames, then we are likely to track previous scene
points rather than finding new ones. This is because pixels with locally max-
imum gradient magnitude at the consecutive frame are most likely images of
previously selected points. Treating projections of previously initialized scene
points as new observations is problematic because it introduces unwanted de-
pendencies in the normal equations and superficially increases the number of
independent measurements in the linearized system of equations.

To address this issue, we assume that the scene and motion initialization
is accurate enough to predict the location of current scenes in the new frame.
Prior to initializing new scene points, we use the provided pose initialization
to warp all previously detected scene points that are active in the optimization
sliding window onto the new frame. After that, we mark a 3 × 3 square area
at the projection location of the previous scene points as an invalid location for
selecting new points. This step is illustrated in Fig. 3, and is best summarized
in our pseudo code shown in Algorithm 1.

The number of selected points per frame varies depending on the image
resolution and texture information in the image. In our experiments, this number
ranges between ≈ 4000–10000 points per image.

Determining visibility Ideally, we would like to assume that newly initialized
scene points are visible in all frames and to rely on the algorithm to reliably
determine if this is the case. However, automatically determining the visibility
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Fig. 3. Illustration of how we avoid reinitializing the same point at a new frame. Using

the pose initialization of the new frame θ, we project previous scene points and reserve

a 3 × 3 area where new scene points cannot be initialized.

information along with structure and motion parameters is challenging, as many
scene points quickly go out of view, or become occluded. Their inclusion in the
optimization problem incurs an unnecessary computational complexity, reduces
robustness, and increases the uncertainty of the estimated parameters.

An efficient and reliable measure to detect occlusions and points that cannot
be matched reliably is the normalized correlation. For all scene points that are
close to the current frame i, we use the pose initialization Ti to extract a 5 × 5
intensity patch. The patch is obtained by projecting the scene points to the new
frame and its visibility list is updated if the zero-mean normalized correlation
score (ZNCC) is greater than 0.6. We allow ±2 frames for a point to be con-
sidered close, i.e. |i − r(j)| ≤ 2. This procedure is similar to determining the
visibility information in multi-view stereo algorithms [4] and is best summarized
in Algorithm 1.

Algorithm 1 Summary of image processing in our algorithm

1: procedure ProcessFrame(Ii,Ti)
2: Step 1: establish connections to the new frame
3: mask = all valid(rows(I), cols(I))
4: for all scene points Xj in sliding window do
5: if reference frame r(j) is too far from i then
6: continue

7: x := projection of Xj onto image Ii using pose Ti

8: ϕ′ := patch at x and ϕ := reference patch for Xj

9: if zncc(ϕ, ϕ′) > threshold then
10: add frame i to visibility list Vj

11: mask(u) = invalid

12: Step 2: add new scene points
13: G := gradient magnitude of Ii

14: for all pixels u in Ii do
15: if u is a local maxima in G then
16: if location u is valid in mask then
17: initialize a new point X with reference patch at I(u)
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Optimization details We use the Ceres optimization library [41], designed
for BA problems, to optimize the objective in Eq. (7). We use the Levenberg-
Marquardt algorithm [42,43] to minimize a Huber loss function instead of squared
loss to improve robustness. Termination tolerances are set to 1 × 10−6, and au-
tomatic differentiation facilities are used. The image gradients used in the lin-
earized system in Eqs. (10) and (11) are computed using a central-difference filter
given by 1

2 [−1, 0, 1]. Finally, we make explicit use of the Schur complement to
obtain a more efficient solution.

Since scene points do not remain in view for an extended period in most
VSLAM datasets, the photometric refinement step is performed using a sliding
window of five frames [44]. The motion parameters of the first frame in the sliding
window is held constant to fixate the Gauge freedom [10]. The 3D parameters
of the scene points in the first frame, however, are included in the optimization.

3 Experiments

In this section, we evaluate the performance of the proposed algorithm on two
commonly used VSLAM benchmarks to facilitate comparisons with the state-of-
the-art. The first is the KITTI benchmark [45], which contains imagery from
an outdoor stereo camera mounted on a vehicle. The second is the Malaga
dataset [46], which is particularly challenging for VSLAM because the baseline
of the camera (12cm) is small relative to the scene structure.

3.1 The KITTI Benchmark

Initializing with geometric BA Torr and Zisserman [12] convincingly ar-
gue that the estimation of structure and motion should proceed by feature ex-
traction and matching to provide a good initialization for BA-based refinement
techniques. Here, we use the output of ORB-SLAM [18], a recently proposed
state-of-the-art VSLAM algorithm, to initialize our method. ORB-SLAM not
only performs geometric BA, but also implements loop closure to reduce drift.
The algorithm is currently one of the top performing algorithms on the KITTI
benchmark [45].

We only use the pose initialization from ORB-SLAM. We do not make use
of the refined 3D points as they are available at selected keyframes only. This is
because images in the KITTI benchmark are collected at 10Hz, while the vehicle
speed exceeds 80 km/h in some sections. Subsequently, the views are separated
by a large baseline, which violates the small displacement assumption required
for the validity of linearization in Eqs. (10) and (11).

Hence, to initialize 3D points we use the standard block matching stereo
algorithm implemented in OpenCV. This is a winner-takes-all brute force search
strategy based on the sum of absolute intensity differences (SAD). The algorithm
is configured to search for 128 disparities using a 7 × 7 aggregation window and
a left–right consistency check.
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The choice of initializing the algorithm with ORB-SLAM is intentional to
assess the accuracy of the algorithm in comparison to the Gold Standard solution
from traditional BA. We note, however, that we could use LSD-SLAM [5] to
obtain a VSLAM system without correspondences at all. In fact, initial pose
estimates could be provided by external sensors, such as low quality GPS.

Performance of the algorithm is shown in Fig. 4 and not only does it out-
perform the accuracy of (bundle adjusted and loop closed) ORB-SLAM, but
also it outperforms other top performing algorithms, especially in the accuracy
of estimating rotations. Compared algorithms include: ORB-SLAM [18], LSD-
SLAM [30,5], VoBA [47], and MFI [48].

We note that sources of error in our algorithm are correlated with faster
vehicle speeds. This is to be expected as the linearization of the photometric error
holds only in a small neighborhood. This could be mitigated by implementing
the algorithm in scale-space [49], or improving the initialization quality of the
scene structure (either by better stereo, or better scene points obtained from
a geometric BA refinement step). Interestingly, however, the rotation error is
reduced at high speeds which can be explained by lack of large rotations. The
same behavior can be observed with LSD-SLAM’s performance as both methods
rely on the photometric error, but our rate of error reduction is higher due to
the joint refinement of pose and structure parameters.

Initializing with frame–frame VO Surprisingly, and contrary to other image-
based optimization schemes [15,51], our algorithm does not require an accurate
initialization. Fig. 6 demonstrates a significant improvement in accuracy when
the algorithm is initialized using frame–frame VO estimates with unbounded
drift. Here, we used a direct method to initialize the camera pose without using
any feature correspondences [50].

Interestingly, however, when starting from a poor initialization our algorithm
does not attain the same accuracy as when initialized using a better quality start-
ing point as shown in Fig. 4. This leads us to conclude the algorithm is sensitive
to the initialization conditions more so than traditional BA. Importantly, how-
ever, the algorithm is able to improve upon a poor initialization.

Convergence characteristics and runtime As shown in Fig. 7 most of the
photometric error is eliminated in the first five iterations of the minimization
problem. While this is by no means a metric of quality, it is reassuring as it
indicates a well-behaved optimization procedure.

After the first five iterations, the rate of the relative reduction in error slows
down. This may be related to using linear interpolation to evaluate the photo-
metric error, or the use of central differences to estimates gradients. Higher order
interpolation methods [52] or more accurate image gradients [53] could have an
influence on the rate of convergence and remain to be explored.

The number of iterations and cumulative runtime per sliding window of 5
frames is shown in Fig. 8. The median number of iterations is 34 with a stan-
dard deviation of ≈ 6. Statistics are computed on the KITTI dataset frames. The
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Fig. 4. Comparison to state-of-the-art algorithms on the KITTI benchmark. Our ap-

proach performs the best. Error in our approach correspond to segments of the data

when the vehicle is driving at a high speed, which increases the magnitude of motion be-

tween frames and affects the linearization assumptions. No loop closure, or keyframing

is performed using our algorithm. Improvement is shown qualitatively in Fig. 5.
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Fig. 5. Magnitude of improvement starting from a poor initialization shown on the

first sequence of the KITTI benchmark. Quantitative evaluation is shown in Fig. 4.

We used a direct (correspondence-free) frame–frame VO method to initialize the pose

parameters [50].
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Fig. 6. Improvement in accuracy starting from a poor initialization using a frame–

frame direct VO method with unbounded drift.
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Fig. 7. Rate of error reduction at every iteration shown for the first 10 sliding windows,

each with 5 frames. The thicker line shows the first bundle, which has the highest error.

Most of the error is eliminated with the first 5 iterations.

runtime is ≈ 2s per sliding window (400ms per frame) using a laptop with a dual
core processor clocked at 2.8 GHz and 8 GB of RAM, which limits parallelism.
We note that it is possible to improve the runtime of the proposed method signif-
icantly using the CPU, or the GPU. The bottleneck of the proposed algorithm is
image interpolation (which can be done efficiently with SIMD instructions) and
the reliance on automatic differentiation (which limits any code optimization as
the code must remain simple for automatic differentiation to work).

3.2 The Málaga Stereo Dataset

The Málaga dataset [48] is a particularly challenging dataset for VSLAM. The
dataset features driving in urban areas using a small baseline stereo camera at
resolution 800 × 600. The baseline of the stereo is 12 cm which provides little
parallax for resolving distal observations. In addition, the camera is pointed
upward towards the sky to avoid imaging the vehicle, which limits using points
on the ground plane and closer to the camera. We use extracts 1, 3, and 6 in our
evaluation.

Our experimental setup is similar to the KITTI dataset. However, we esti-
mate the stereo using the SGM algorithm [54], as implemented in the OpenCV
library. The stereo is used to estimate 16 disparities with a SAD block size of
5 × 5. The quality of stereo is low due to the difficulty of the dataset as shown
in Fig. 9. We did not observe a significant difference in performance when using
block matching instead of SGM.
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Fig. 8. Histogram of the number of iterations (on the left) and runtime (on the right).

The median number of iterations is 34, with a standard deviation of 6.02. The median

run time is 1.89, mean 1.98 and standard deviation of 0.69. The runtime is reported

for sliding window of 5 frames on the KITTI benchmark.

Fig. 9. Quality of stereo use to initialize our algorithm on the Malaga dataset. The

pixels marked in black indicate missing disparity estimates.

Fig. 10. Our algorithm (magenta) compared with ORB-SLAM (dashed) against GPS

(yellow) on extracts 3 and 6 of the Malaga dataset. For extract 3 ORB-SLAM loses

tracking during the roundabout, where our algorithm continues without an initializa-

tion. Results for extract 6 are shown up to frame 3000 as ORB-SLAM loses tracking.

The figure is best viewed in color. (Maps courtesy of Google Maps.)
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The Malaga dataset provides GPS measurements, but they are not accurate
enough for quantitative evaluation. The GPS path, however, is sufficient to qual-
itatively demonstrate precision. Results are shown in Fig. 10 in comparison with
ORB-SLAM [18], which we used its pose output to initialize our algorithm. We
note that in extract 3 of the Malaga dataset (shown on the left in Fig. 10),
ORB-SLAM loses tracking during the turn and our algorithm continues without
initialization.

To assess the quality of pose estimates, we demonstrate results on a dense
reconstruction procedure shown in Fig. 11. Using the estimated camera trajec-
tory, we chain the first 6m of the disparity estimates to generate a dense map.
As shown in Fig. 11, the quality of pose estimates appears to be good.

Fig. 11. Dense map from Malaga dataset extract 1. The map is computed by
stitching together SGM disparity with the refined camera pose.

4 Related Work

Geometric BA BA has a long and rich history in computer vision, photogram-
metry and robotics [10]. BA is a large geometric minimization problem with
the important property that variable interactions result in a sparse system of
linear equations. This sparsity is key to enabling large–scale applications [55,56].
Exploiting this sparsity is also key to obtaining precise results efficiently [57,58].
The efficiency of BA has been an important research topic especially when han-
dling large datasets [59,60] and in robotics applications [61,62,63]. Optimality
and convergence properties of BA have been studied at length [64,65,11] and
remain of interest to date [66]. All the aforementioned research in geometric BA
could be integrated into the proposed photometric BA framework.

Direct multi-frame alignment By direct alignment we mean algorithms that
estimate the parameters of interest from the image data directly and without re-
lying on sparse features as an intermediate representation of the image [67]. The
fundamental differences between direct methods (like the one proposed herein)
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and the commonly used feature-based pipeline is how the correspondence prob-
lem is tackled and is not related to the density of the reconstruction.

In the feature-based pipeline [12], structure and motion parameters are es-
timated from known, pre-computed and fixed correspondence. In contrast, the
direct pipeline to motion estimation does not used fixed correspondences. In-
stead, the correspondences are estimated as a byproduct of directly estimating
the parameters of interest (e.g . structure and motion).

The use of direct algorithms for SFM applications was studied for small–scale
problems [68,69,70,39], but feature-based alignment has proven more successful
in handling wide baseline matching problems [12] as small pixel displacements
is an integral assumption for direct methods. Nonetheless, with the increasing
availability of high frame-rate cameras, video applications, and increasing com-
putational power, direct methods are demonstrating great promise [5,6,9]. For
instance, direct estimation of motion from RGB-D data was shown to be robust,
precise and efficient [6,71,7].

To date, however, the use of direct methods in VSLAM has been limited
to frame–frame motion estimation (commonly referred to as visual odometry).
Approaches that make use of multiple frames are designed for dense depth esti-
mation only and multi-view stereo [9,4], which assume a correct camera pose and
only refine the scene structure. Other algorithms can include measurements from
multiple frames, but rely on the presence of structures with strong planarity in
the environment [38,72] (or equivalently assuming a rotation only motion such
that the motion of the camera can be represented as a homography [73]).

In this work, in contrast to previous research in direct image-based align-
ment [9,39], we show that provided good initialization, it is possible to jointly
refine the structure and motion parameters by minimizing the photometric error
and without restricting the camera motion or the scene structure.

The LSD-SLAM algorithm [5] is a well-known recently proposed direct al-
gorithm for vision-based motion estimation. In comparison to our work, the
fundamental difference is that we refine the parameters of motion and structure
jointly in one large optimization problem. In LSD-SLAM, the photometric error
is used to estimate the motion, while scene (inverse) depth is estimated using
small baseline stereo with fixed camera fixed. The joint optimization of motion
and structure proposed herein is important in future work concerning the opti-
mality and convergence properties of photometric structure-from-motion (SFM)
and photometric, or direct, VSLAM. Our work can be regarded as an extension
of LSD-SLAM where the parameters of motion and structure are refined jointly.

Dense multi-view stereo (MVS) MVS algorithms aim at recovering a dense
depth estimate of objects or scenes using many images with known pose [4].
To date, however, research on simultaneous refinement of motion and depth
from multiple frames remains sparse. Furukawa and Ponce [15] were among the
first to demonstrate that relying on minimizing the reprojection error is not
always accurate enough. The work demonstrates that calibration errors could
have a large impact on accuracy. Furukawa and Ponce address this problem
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by refining the correspondences using photometric information and visibility
information from an intermediate dense reconstruction in a guided matching
step. The process is then interleaved with traditional geometric BA using the
improved correspondences to obtain a better reconstruction accuracy. In our
work, however, we show that interleaving the minimization of the photometric
error with the reprojection error may be unnecessary and solving the problem
directly is feasible.

Recently, Delaunoy and Pollefeys [51] proposed a photometric BA approach
for dense MVS. Starting from a precise initial reconstruction and a mesh model
of the object, the algorithm is demonstrated to enhance MVS accuracy. The
imaging conditions, however, are ideal and brightness constancy is assumed [51].
In our work, we do not require a very precise initialization and can address
challenging illumination conditions. More importantly, the formulation proposed
by Delaunoy and Pollefeys requires the availability of an accurate dense mesh,
which is not possible to obtain in VSLAM scenarios. Furthermore, initialization
requirements appear to be much higher than our approach.

5 Conclusions

In this work, we show how to improve on the accuracy of the state-of-art VS-
LAM methods by minimizing the photometric error across multiple views. In
particular, we show that it is possible to improve results obtained by minimizing
the reprojection error in a bundle adjustment (BA) framework. We also show,
contrary to previous image-based minimization work [39,9,7,5,30], that the joint
refinement of motion and structure is possible in unconstrained scenes without
the need for alternation or disjoint optimization.

The accuracy of minimizing the reprojection using traditional BA is limited
by the precision and accuracy of feature localization and matching. In contrast,
our approach — BA without correspondences — determines the correspondences
implicitly such that the photometric consistency is maximized as a function of
the scene structure and camera motion parameters.

Finally, we show that accurate solutions to geometric problems in vision are
not restricted to geometric primitives such as corners and edges, or even planes.
We look forward to more sophisticated modeling of the geometry and photometry
of the scene beyond the intensity patches used in our work.
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