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Abstract

In many multi-robot applications such as target search, environmental monitoring
and reconnaissance, the multi-robot system operates semi-autonomously, but under the
supervision of a remote human who monitors task progress. In these applications,
each robot collects a large amount of task-specific data that must be sent to the human
periodically to keep the human aware of task progress. It is often the case that the
human-robot communication links are extremely bandwidth constrained and/or have
significantly higher latency than inter-robot communication links, so it is impossible
for all robots to send their task-specific data together. Thus, only a subset of robots,
which we call the knowledge leaders, can send their data at a time. In this paper, we
study the knowledge leader selection problem, where the goal is to select a subset of
robots with a given cardinality that transmits the most informative task-specific data for
the human. We prove that the knowledge leader selection problem is a submodular op-
timization problem under some explicit conditions. We also present a novel distributed
submodular optimization algorithm that has the same approximation guarantees as the
centralized greedy algorithm for submodular function maximization. The effectiveness
of our approach is demonstrated using numerical simulations.
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1 Introduction

Networked distributed multi-robot systems employ local communication and collab-
orative decision making to carry out a wide variety of large-scale applications such
as search and rescue [23]], exploration and dynamic coverage of unknown environ-
ments [[12]][4]] and distributed environmental monitoring (e.g. water monitoring, flood
response) [22]]. However, for human supervised tasks where the human operator mon-
itors the robotic group remotely, bandwidth constraints between the human and the
robot team often make it impossible for all the robots to simultaneously communicate
all their data to the human [[13|]. The multi-robot system often obtains a significant
amount of redundant data such as a video streams and images, which motivates the
need to dynamically select a subset of the robots whose gathered information is most
informative (not overly redundant) for transmission to the human. Since the communi-
cation link to the human may also have significant latency [19]] , this further motivates
the need to perform the computation in a distributed manner on the multi-robot team.

Our work considers a scenario where a group of robots under the supervision of a
human operator is collecting data and have to coordinate among themselves via local
communication to periodically find a subset of k robots that have the most informative
information, and then let those robots transmit their sensed data to the human so that the
total environmental information available to the human is maximized. Note that we are
not seeking to compute configurations of the robots that will maximize the information
collected by the robots (as is traditionally done in either static or dynamic multi-robot
dynamic coverage problems [7]][[12]), but rather we are selecting the best subset of
robots to communicate the collected information at each configuration generated by
some external controller [3]] or planner [4], such that the overall information available
to the human is maximized. Due to possible latency issues on human-robot communi-
cation channel [1]], it is also desirous for the robotic group to be able to autonomously
and adaptively recalibrate the value of sensed information based on accumulative data
already reported to human (e.g. redundant data from the same area sent to human be-
fore becomes less valuable), such that no human feedback is needed for robot teams
after data transmission.

In evaluating the quality of sensed data, we should account for (1) diminishing
incremental gain due to overlapped sensing areas, (2) anisotropic sensor (e.g. camera)
performance variation over the limited sensed region, and (3) sensing limitations due to
occlusions from obstacles. The leader selection problem under such considerations is
NP-hard that requires suboptimal solutions. In this paper we propose a fully distributed
algorithm relying on local inter-robot communications that enables the robotic team to
elect effective knowledge leaders with guaranteed suboptimal performance accounting
for human operators’ dynamically accumulative knowledge. Note that different from
canonical understanding of robotic leaders such as formation leaders who control the
entire swarm formation, knowledge leader here only refers to the robots with most
knowledge who send their information back to human operator. The contributions
of this paper are (1) formal definition of the aforementioned coverage problem with
consideration for a diminishing information potential function (density function) and
visibility limitations due to obstacles, including a proof of submodularity under explicit
conditions, and (2) a distributed greedy algorithm to solve the formulated submodular
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Figure 1: Three robots explore the environment along their respective paths with
limited field-of-view (FOV) sensing (dark blue regions show FOV). In their final
poses, robots’ blind zones due to occlusion from obstacles are marked by dark red.

problem with proof of convergence that relies only on the local interaction among
robots but is still able to achieve the same performance as the centralized algorithms.

2 Related Work

The multi-robot environmental monitoring or sampling tasks are often modeled as the
multi-robot coverage problem that has received extensive attentions. Most of the ex-
isting related works addressed either static coverage problem or the dynamic coverage
problem. The static coverage problem is related to the locational optimization where
the main objective is to redeploy robots such that the given mission domain is covered
optimally and the agents therein end up at a final configuration to accomplish the cov-
erage objective [20]], while the goal of the dynamic coverage problem is to cover all
the points in the mission domain to some predefined coverage level over time based
on the mobility of the robot swarm [12]. The extensive versions of the related prob-
lem have been studied based on different assumptions of the considered environment
model, sensor models, density function and coverage metric, etc, to make the solution
more practical in real-world application. For example, for the robots’ sensing capabil-
ity, isotropic disc-like sensing model has been widely used since [[12]], while recently
the consideration of more realistic anisotropic sensors such as on-board cameras has
been taken into both static coverage problem [11]] and dynamic coverage problem [18]].
In this paper, however, we employ the modified incremental dynamic coverage metric
similar to that of 3] defined with anisotropic sensors as well as diminishing informa-
tion potential function to establish a different problem, the knowledge leader selection
that aims to maximizing the accumulated sensory information over time from a subset
of robots, which is proved in this paper to be a submodular maximization problem.
Although maximizing submodular functions is NP-hard, [[17] has proved that a



greedy algorithm could provide a solution with approximation ratio 1 — 1/e. The
greedy algorithm and the submodularity property have been studied recently in the
context of leader selection problems with different submodular metrics functions such
as information acquisition [2], sensor placement in networks [21]], and leader-follower
convergence in multi-agent systems [6]. However, since the standard greedy algorithm
is centralized and requires global information of all the nodes (robots), decentralized
optimization design is needed for solving our problem. Existing distributed submod-
ular function maximization algorithms assume one of the following: (a) the data can
be partitioned among the multiple computational nodes [[15[], (b) the communication
graph is complete or star-shaped [10]], and (c) global knowledge of current solution [5]]
is available at all the nodes. Other approaches such as [24] introduces local search in
optimizing shared sensor networks merely based on local node-to-node communica-
tion. However, approximation bounds here are not as good as the centralized greedy
algorithm, and there is a gap between the performance of the distributed algorithm and
the centralized algorithm. In this paper we propose a distributed submodular optimiza-
tion approach to address this problem and prove it to share the same optimality bound
as the centralized greedy algorithm.

3 Problem Statement

Consider n mobile robots moving in a planar bounded space A C R2, with the pose
of each robot i € {1,2,...,n} at time ¢ denoted by p; (t) = [z;(t),y:(t), 0:(t)]"
where [z;(t),:(t)]" € R2 represents the position of each robot and 6; (t) € [—m, )
represents the orientation. Areas occupied by obstacles are defined by closed set
B C A, so the traversable and observable space for robots is 7 = A\ B. At reg-
ularly spaced time intervals, we select a subset of the robots to transmit information
back to the human. For simplicity of exposition, assume the current selection time-
point is ¢ = %47, and hence the history of robot poses can be assumed to be recorded
as P(t) = {pi(t),...,pn(t)} for t € [to,tqs:]. Each robot in the scenario shown in
Figure[T|can evaluate the value of the collected data by considering the product of sens-
ing strength (sensing model) and importance of the sensed area (information potential)
that dynamically changes as the area is explored over time.

3.1 Sensing Model

For our work, the robots are equipped with limited field-of-view anisotropic sensors
(e.g. cameras) that are used to gather task-specific environmental data. In particular,
we adopt the limited field-of-view model utilized in [|18]] that incorporates degradation
of effective sensing close to the boundaries of the sensing footprint, which is realistic
for most sensors. Assume a homogeneous robotic team, where the sensing footprint of
robot i is defined by a circular sector S; with uniform radius » € R™ and subtended by
angle 2a, where o € (0, 7). If p; (t) = [:(t),5:(t),0;(t)]" is the pose of robot i in
world frame and ¢ € A : ¢ = [z, 7]T is an arbitrary to-be-sampled point of interest, let



¥;(t, q) represent the bearing to point ¢ in body frame of robot i.
Vi(t,q) = atan2(y — y;(t), & — xi(t)) — 0:(?) )]
We define the following functions for convenience.
it q) = 12 — (& — :(t))* — (5 — wi(1))°
C2i(t7 q) =0 — wz(t7 q) (2)
C34 (t7 q) =+ wz(ta q)

All functions c;;(t, ¢) monotonically decrease as the point of interest ¢ approaches the
sensor footprint boundaries. We define the sensing performance function as follows.

i 3 max ,¢jilt, 2
fi (pi(t), mi(t, q), q) = i(t, @) ITj—, max (0, ¢;i(¢, 9)) 3)

s

This function has range [0, 1] and monotonically increases as robot ¢ approaches point
q. It is minimized (evaluates to 0) when ¢ is on the boundary or outside the sensor
footprint of robot 7. The binary function m;(t,q) captures whether point ¢ can be
sensed by robot ¢ at time ¢. Specifically, if [p;(¢), a] is the line segment connecting
p;(t) and a, we can define m;(t, ¢) as follows.

mi(t,q):{l if L]G{CLEAHpi(t)’a]ErT}

0 else

“

This function captures the idea that environmental points that are occluded from a
robots’ view due to obstacles cannot be sensed. Initially, robots are unaware of obstacle
locations, so each robot ¢ cannot know m; (¢, ¢) a priori.

It is noteworthy that with (I)-(@) any robot’s sensing performance over time can
be obtained by others merely based on its path through the environment (captured by
p;i(t)) and the points it senses with in the environment along its path (captured by

mi(t, q)). Asbefore, P(t) = {py(¢). .., pu(t)} and M(t,q) = {ma(t,q),...,mu(t,q)}.

3.2 Information Potential of Points in the Environment

Each point ¢ € A in the environment potentially holds new information. As the robots
explore the environment, points that have not been previously sensed are expected
have more information potential than points that have already been sensed (i.e. re-
dundant sensing of a point results in less information gained each time it is sensed).
To capture this idea, we define ¢;(J, ¢) (a modification of the density function in [3]))
which measures the information potential at point g at time ¢ for a subset of the robots
J C{1,2,...,n}. Given Jp,. C {1,2,...,n} as the previous set of selected knowledge
leaders and and ¢, as the time at which they were selected, we can compute ¢ (J, q)
recursively. The base case of the recursive computation is ¢g (-, ¢) which represents the
initial information potential at each point. We assume ¢ (-, ¢) is given for all ¢ € A.

6 (J,q) = b1, (Jpre,q) e ArD

A=Y [ Km0 dr

jed tipre

&)



Here, k* € R™ is a design variable and the function A;(J,q) quantifies how well a
certain point ¢ has been geometrically explored by the subset of robots J since the
last time they were selected as knowledge leaders. Note that ¢; ... denotes the last
time robot j was selected as a knowledge leader. Since the computation of ¢ (J, q)
only depends on points sensed after time ¢, ., each robot j only needs to store data
collected since the last time it was selected as a knowledge leader and can discard all
data collected prior to ¢; ;.. The specification of k* will be discussed in Section IV.

3.3 Objective Functions

As the robots move through the environment, our objective at each selection time point
is to select a subset J of the robots that transmit their task-specific sensed data to the
human to maximize the incremental gain in information from the perspective of the
human. Our selection of the subset is subject to a predetermined cardinality constraint
(i.e. we can only pick at most k& knowledge leaders, so |J| < k). Then we have the
incremental information gain for a subset of robots J from an arbitrary point ¢ € A
over time interval ¢ € [tpyc, to ] defined as follows.

Q(J.q) = Z /t - fj (pj (1), mj (7,9), 0)9-(J, q) dT (6)

JEJ ¥ tipre

The integrand in Equation (6) gives the value of information obtained by a single robot
J with pose p;(t) sensing point ¢ at time ¢ = 7. This value depends on the sensing per-
formance denoted by the function f;(-) from Equation (3) and the information potential
¢+(-) in Equation (3). Thus Equation (6] represents the total incremental information
accumulated from point g by the robots J until time ¢, ¢ without “double-counting” the
information gained prior to the last time those robots were selected as knowledge lead-
ers. Then the incremental information gain over the entire environment A for robots .J
is given by

F(1) = [ Qo) dg ™)
and our objective at each selection time point may be written formally as follows.

argmax F(J)
7 (®)
subjectto  |J| < k

4 Leader Selection using Distributed Submodular Op-
timization

Considering that the problem in (B) is an NP-hard combinatorial optimization prob-
lem whose exact optimal solution cannot be found in polynomial time, in this section
we show the submodularity of the function F'(.J) problem and propose a distributed
submodular optimization approach to solve this problem with solutions as good as the
standard centralized submodular approach.



4.1 Submodularity Analysis
4.1.1 Definition of Submodularity

Definition 1 (Submodularity [9)]): Let V be a finite set. A function f : 2V 5 Ris
submodular if for every sets S and T'with S CT C V and every v ¢ T,

fFSU{v}) = f(S) = fF(TU{v}) — f(T) ©

4.1.2 Submodularity of Incremental Information Gain

In [9], it is shown that a nonnegative weighted sum of submodular functions is sub-
modular, which serves as a preliminary lemma used in the following analysis of sub-
modularity of the objective function F'(.J) (incremental information gain) in (8). The
condition for making F'(J) a submodular function is given in the following Theorem.

Theorem 1: At each selection time ¢t = .y, the function F'(J) is a monotone
submodular function of robot set J if the following condition holds (% is the maximum
number of knowledge leaders).

1
0, ———
kM (taft — to)
First we consider the submodularity of the integrand of F'(J), namely the infor-
mation gain function Q(J, ¢) on any point of interest ¢ defined in (6). Let I C I’ C
{1,2,...,n}andi € {1,2,...,n} \ I’, whichimplies i € {1,2,...,n} \ I. Then we
have

ke (10)

QI U {i},q) —Q(1,q)
= > /m fi(pj my, q)o-(I U {i}, q)dr

jeru{i} ” twre

taft

JEI Vtipre

Q' U{i},q) — Q(I',q)
= Z /aft fj(pjvmj’q)d’T(I/U{i}7Q)dT

jerufiy /tiere

taft
- Z[ fj(pjﬂmjvq)¢T(Il,q)dT

jeI Y tipre

It follows from (3) that the relation between ¢, (I U {i}, ¢) and ¢;(I, q) is

an

. —k* t i PRz dr
(T Ui},q) = du(I,q)e " e 1Pt (12)
The same relations hold for ¢, (I’ U {p}, q) and ¢+(I’, q). Hence we have

—(QUI'u{i},q) - Q(I',q)) 13)
=D, - Dy + D3



where
Dy =Q(I,q) — Q(I',q)
tafe
:Z/t fj(pj7mjaQ)¢'r(I,Q)dT

je[ J,pre

taft
- Z/ fi(pjmi, ) (I', q)dr (14)
‘.

il tipre

D, — e—k* f:_p fi(pismg,q)dr
5 = i,pre

—k* [ fi(pimi,q)dr
Ds = fulps,ma,q)e " Jeiore FOITONT (4 (1 0y 6(I, )

-1

Considering the non-negativity of f;(-) and the non-increasing function ¢.(.J, q), it is
straightforward that D» < 0 and D3 > 0.

To discuss the sign of Dy, we consider the continuous function g(z) = xe
whose monotonicity is identical to that of Q(.J, ¢) in Equation (6) (where z = >

—k*x
t ;L:l
L2 fi(pj,my,q)dt and e % ~ ¢4(J,q)). By taking the first derivative of g(z)

j.pre

w.r.t. T, we have

dg(x)
dx

=(1—k*z)e F® (15)

To that end, we have the following condition for dg(z)/dx > 0, namely Q(J, q) is
non-decreasing, which thus renders D; < 0 since I C I'.

0<k*< (16)

8=

Recalling the definition of x, we have max{z} = kM (tq s, —to) due to the cardinality
constraint |.J| < k and f;(-) € [0,m;], where M = max{ [, m;dg} fori =1,...,n.
Hence, the analytic upper bound for £* can be found as

1
ke |0, ———— 17
k./\/l(taft — t()) an

Then it follows from (I3)) that A > 0 under the condition and hence Q(J, q) is a
non-decreasing submodular function of J. Since the gain function F'(-) can be regarded
as the sum of Q(J,q) over all ¢ € A if A is discretized, then by the aforementioned
lemma from Definition 1, F(-) is a monotonially non-decreasing submodular function
of set .J, which concludes the proof.

Remark 1: The restriction on k* in Theorem I also ensures the other intuitive con-
straint that the decay rate of the information potential function ¢,(-), determined by k*,
from adding new robot’s information is constrained so that doing so will never decrease
the existing information gain F'(-) from the current robot set. This corresponds to the
fact of taking information from as many robots as possible is always beneficial for
increasing human operators’ knowledge over the map despite of diminishing returns.



4.2 Distributed Knowledge Leader Selection

Consider the communication graph of the robot team given as G = (V, £) with each
node v € V representing a robot in the graph. Assume each robot has the same limited
communication range, then for any pair of robot nodes v;, v; € V, the edge (v;,v;) € €
if they are located in each other’s commuincation range, leading to undirected commu-
nication graph (i.e. (v;,v;) € € = (vj,v;) € £). We also assume the system’s
communicating network is connected as one cluster without isolated robot. So the
whole data set is naturally partitioned and in a distributed scheme, and the robots have
to perform computations over partitioned data sets (since no robot will know the data
collected by all other robots).

Due to the proved submodularity of our objective function in (), it is convenient
to use standard greedy algorithm as subroutine for the computation described above.
In order to avoid the pitfalls of the distributed algorithms that work on partitioned data
sets, as suffered in [[15]], here we propose a novel distributed algorithm relying on local
inter-robot communications that 1) implicitly constructs a hop-optimal spanning tree
[16], and 2) uses standard greedy algorithm as subroutine to perform local leader com-
putation as well as repeated backtracking verification to retrieve the solutions that are
omitted during the greedy optimization over partitioned data until convergence as done
similarly in [14], with the exploitation of the spanning tree structure. Such algorithm
provides a solution that is as good as the centralized greedy algorithm on the whole
dataset.

4.2.1 Standard Greedy Algorithm

First we recall the subroutine centralized greedy (see Algorithm 1) as applied to our
problem. The input is the candidate robots’ index set J with cardinality of n, their
path set {p;};c, the corresponding value of point sets {m, } jc s over the map for the
considered time span, and the maximum number of knowledge leaders, k. The output
is the selected knowledge leader index set .J/, the corresponding path sets {p;} e/
and the value of point sets {m;};c ;. By iteratively considering all the robots for
evaluating the objective function F(+) in (8) with corresponding sensing model f(-)
and information potential function ¢(-) derived from {p; }jc; and {m; } jc -, the near-
optimal knowledge leader set J” will be constructed after at most & iterations.

Algorithm 1 Greedy Algorithm

1: procedure GREEDY(J, {p;} e, {m;}es, k)
2 J' «+ NIL,i < 0

3 while (i < k) A (i < n) do
4 Jj+j€(J\J) argmax;c ;v F(J' U{5})
5: J — Ju{j}
6 14141
7 end while
8: end procedure




Algorithm 2 Distributed Greedy Algorithm

1: procedure DISTRIBUTEDGREEDY (u, Cy,, Ny
Cs < Cy,l + u, h < 0, m < NIL

3 for all i € NV, do

4 SENDMSG(%, u, h,l,Cs)

5: end for

6: while {n, h',1l’,Cg:} < RECVMSsG() do
7

8

it (1> 1)V ((I=0U)A(h>h'+1)) then
I+ U,h+h +1,m<+n,Cs + Cy

9: for all ; € N, do
10: SENDMSG(4, u, h,1,Cs)
11: end for
12: elseif (Il =1') A (h < h’) then
13: Cs + GREEDY(Cs UCg/ UCy)
14: SENDMSG(n,u, h,1,Cs)
15: if m # NIL then
16: SENDMSG(m, u, h,l,Cs)
17: end if
18: elseif (I =1") A (m =n) A (Cs # Cs/) then
19: Cs < GREEDY(Cy UCgr)
20: for all ; € NV, do
21: SENDMSG(4, u, h,1,Cs)
22: end for
23: end if

24: end while
25: end procedure

4.2.2 Distributed Greedy Algorithm

By using the standard greedy algorithm as our subroutine, the distributed greedy algo-
rithm of selecting k& knowledge leaders is proposed in the Algorithm 2, which contains
three asynchronous stages of data processing for each robot node such as spanning tree
construction (line 7-11), information propagation (line 12-17) and backtracking pro-
cess (line 18-22). Assume each robot v; in communication graph has unique identifiers
(UIDs) with UID(v;)= 7. The UIDs of communication graph neighbors of robot v; are
denoted by N; = {j | v; € V : (v;,v;) € E}. The algorithm 2 takes as inputs the
robot’s own UID u, its own UID-stamped information C,, = {u, p,,, m, } and set of
its direct neighbour UIDs A/, within its communication range. On line 2, it initializes
its current leader information set Cg, leader UID [, number of hops & from leader and
master UID m, and then send them to its direct neighbors on line 3-5. The robots won’t
start to perform the subroutine greedy algorithm until reaching the consensus of lowest
UID [ as the root/leader of the spanning tree and has been assigned the lowest possible
number of hops (line 7). Although a root node is identified by every robot, we do not
assume it to collect every robot’s information and then compute the leader set in a cen-
tralized manner, which has no bound on message size and not applicable in bandwidth
constrained environment. Instead, with the structure of the constructed spanning tree in
which each robot has a unique master, we utilize each robot’s dual roles on processing
the incoming messages as either the non-child node (line 12) or the child node (line
18) to switch between the information propagation process and the verification pro-
cess, which repeatedly conduct the standard greedy algorithm (Algorithm 1) and send



the updated information to different kinds of nodes as necessary to collaboratively and
efficiently obtain the final solution in a decentralized manner.

It is also noted that the output of each robot following this protocol is always its
current estimates of leader set with cardinality of k or less (when input set cardinality is
less than k), which ensures that the message size will never exceed the one containing k
robots and their essential information of path sets and value of point sets. The algorithm
2 will always converge to the identical leader set obtained from the standard greedy
algorithm 1 over the entire robotic swarm whenever all the robots in the network stop
sending messages.

Proof: Assuming the leader set J’ is obtained by running standard greedy Algo-
rithm 1 over the entire robot set [n] in a centralized manner and denoting its members
by j1,J2,-...,jk robots, where the order of robots preserve as j; is the first selected
leader and jj, is the last. Then we have j; = argmax{F(j;)} fori = 1,...,n,
jo = argmax{F(J; U ji)} fori = 2,...,n, etc. Since algorithm 1 functions as
the subroutine of Algorithm 2 whenever the information of current robot and its direct
neighbors are merged by running line 13 or line 19 in Algorithm 2, the gain func-
tion F'(-) of robot j; will always be the maximum among any local cluster in the first
round computation of Algorithm 1 as well, making j; remain in the leader set flowing
through the networks. Recursively, all the members in j1, ..., j; will be included in
each child node when they runs line 19, and after each robot agrees to this identical
leader set, the network stops communication since the child node will directly discards
the information containing the same leader set.

Bound on Optimality: In [17] it has been proved that the standard greedy algorithm
(Algorithm 1) is able to obtain a solution at least a constant fraction of (1 — 1/e) of the
optimal value for solving the maximization of submodular function with cardinality
constraint, and in [8]] such bound was proved to be tight and improving this bound of
approximation is NP-hard. As a byproduct of the above proof, the solutions obtained
from the proposed distributed greedy algorithm shares the same optimality bound.

5 Results

5.1 Example

In the first simulation shown in Figure [2, we consider a homogeneous swarm con-
sisting of 5 mobile robots equipped with cameras moving in a rectangular region
[—2, 35] x [—8, 30] with four static obstacles over A maneuver time span ¢ € [0,40s].
The task is to select 2 robots every 20s as knowledge leaders whose accumulated
sensed information is currently maximum and send it to the operator. The leader se-
lection time-points are then specified by t = 20s and ¢ = 40s respectively. Each robot
is able to recognize the selection time-points, memorize its traveled path and exchange
this information with the corresponding information gain along its path with its direct
neighbors within the limited communication range through their communication graph
(grey) given in Figure 2b] At ¢ = 0 each robot can get access to the initial value
of the information potential (density function) over the entire environment shown in
Figure |3a and use it to evaluate their coverage over time. At the first selection time-

10



point ¢ = 20s, robots will communicate their accumulated sensed information gain,
construct the spanning tree rooted at robot 1, and then converge to the selected knowl-
edge leader set (robot 2 and 5 in black circle) in Figure [2b| by running Algorithm 2.
Since each robot will be able to know the leaders’ information after convergence, their
information potential (density function) will be updated by (5) in which the value of
areas covered by selected leaders decreases as shown in Figure[3b] Following the same
process, in the next selection round at ¢ = 40s robot 3 and 4 are selected as new knowl-
edge leaders and each robot’s information potential value over map is updated again as
shown in Figure[3c] Each robot’s respective information gain evaluated by the updated
information potential at t = 20s and ¢ = 40s are shown in Figure[dal{4j] It is noted that
at ¢ = 40s since the information of robot 2 and 5 have already been sent to human at
a previous selection time-point, their information gain before ¢ = 20s is reset to zero,
as shown in Figure gland Figured]] In Table I the resulting performance comparison
of different combinations among robots with highest map coverage area are given at
each selection time-point, which validates the selected leaders by Algorithm 2 are the
optimal solution.

5.2 Numerical Study

To further analyze the performance and computation cost of the proposed distributed
greedy algorithm with other existing work, we conduct 50 simulation trials with each
trial consisting of a randomly distributed robotic swarm containing 40 mobile robots.
For each trial we conduct our proposed distributed greedy algorithm, the distributed
algorithm GREEDI in [15]], the standard greedy algorithm, random selection and opti-
mum selection algorithm to pick up the knowledge leaders. The comparisons on per-
formance and computation time are shown in Figure[3] It is noted in Figure[5a] that the
proposed distributed greedy algorithm can converge to the solution from the standard
centralized greedy algorithm, which is not ensured for the GREEDI algorithm and ran-
dom selection algorithm, especially when the error accumulates as the required number
of leaders increases. It should also be noted that although for the 50 trials our proposed
distributed greedy algorithm can always reach the optimal solution, as the property of
standard greedy algorithm, it can only ensure an approximation of (1 — 1/e) to the
optimal performance in general cases. The computation time comparison is given in
Figure[5b] and it is straightforward that the computational cost for optimal selection al-
gorithm grows exponential as number of leaders increases, which makes it impractical
in large scale swarm application. For the GREEDI algorithm, since it always performs
two-stage standard greedy algorithms on each subset of dataset and then the union of
the solution set, in dealing with small scale problem it may not be more efficient than
the standard greedy algorithm. For our distributed greedy algorithm, however, since
the cardinality of total inputs to the subroutine greedy algorithm at each iteration will
never exceed 2k, where k is the required number of knowledge leaders and indepen-
dent of the robotic swarm scale, the computation cost is hence ensured to significantly
decrease compared to the standard greedy algorithm. The communication-related met-
rics results are reported in Fig. [6] in which the centralized algorithms represent any
algorithms that requires global information of all the nodes sent to the root robot of the
tree. It is noted that although the distributed greedy algorithm consumes more number
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of messages, the total amount of data floating within the networks is much less due to
the bounded message size.

Table 1: Comparison of accumulated information gain and selecting 2 knowledge

leaders
Robot Index # Leaders, Gain
1 2 3 4 5
Info. Gainat 20s 1.03 1.07 1.11 1.12 1.26 [2,5],2.34
(x10%) 1.06 1.17 1.11 1.01 1.26 [4,5],2.27
Info. Gain at 40s 2.13 0.99 2.11 2.07 1.19 [3,4],4.18
(x10%) 206 101 221 207 1.18 [1,4],4.13
30 304
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Figure 2: Simulation of 5 mobile robots exploring the environment with 4 static obstacles (black) over
time [0, 40s]. The time-points for leader selection is set to be 20s and 40s respectively. (a) Robot’s
trajectories (dashed line), visible range examples (blue sectors) and snapshots of their positions and

orientations at starting time ¢ = Os (blue) and the two leader selection time-points ¢ = 20s (black) and

t = 40s (red). (b) Inter-robot communication graph (grey) and constructed spanning tree (red) at leader

selection time-points ¢ = 20s and ¢t = 40s. Selected leaders are marked by circles.
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Figure 3: Heat map of diminishing information potential (density function) changes over time. (a) Initial
interest distribution at ¢ = 0s. Information on the magenta area gives robots higher value than the
surrounding light blue area. (b) Information potential updates at ¢ = 20s after robot 2 and 5 are selected as
leaders. (c) Information potential updates again at ¢ = 40s after robot 3 and 4 are selected as new leaders.
Polygons with black edges marks the positions of static obstacles in the heat maps.
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Figure 4: Snapshot of accumulated information gain of robots at sampling time-points ¢+ = 20s and
t = 40s. (a)-(e) Information gain of robot 1-5 at ¢ = 20s computed with updated information potential
(density function) from robot 2 and 5. (f)-(j) Information gain of robot 1-5 at t = 40s computed with
updated information potential from robot 3 and 4.
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Figure 5: Performance comparison of the proposed distributed greedy algorithm and other submodular
optimization algorithms from 50 independent trials on randomly generated swarms of 40 robots with their
paths. (a) The maximum, minimum and average ratio of performance for global objective functions in (8)
of proposed distributed greedy, standard greedy, random leader selection and GREEDI, which is another
distributed greedy algorithm proposed in [[15] vs. the benchmark performance of centralized combinatorial
optimization algorithm (NP hard). (b) The average computation time (log(sec)) among the four algorithms.
Note that for GREEDI algorithm the cardinality of each subset is chosen to be 8.
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Figure 6: Communication-related simulation results from 50 independent trials on different number of
robots/leaders using the proposed distributed greedy algorithm and centralized algorithms. (a) Average
number of messages transmitted. (b) Average amount of data transmitted, as computed by the
multiplication of number of messages and average message size.
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6 Conclusion

We formulated the knowledge leader selection problem as an optimization problem
of a submodular function and provided a distributed greedy algorithm to find the best
knowledge leaders. Our proposed distributed submodular optimization approach is
guaranteed to provide the same approximate solution as the centralized greedy algo-
rithm. Numerical simulations is given to compare our distributed knowledge leader
selection algorithm to GREEDI algorithm [15]], standard greedy algorithm and random
leader selection algorithm on computational time and performance with respect to an
optimal selection strategy, which validates the effectiveness of the proposed algorithm.
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