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Confidence Preserving Machine
for Facial Action Unit Detection

Jiabei Zeng, Wen-Sheng Chu, Fernando De la Torre, Jeffrey F. Cohn and Zhang Xiong

Abstract—Facial action unit (AU) detection from video has
been a long-standing problem in automated facial expression
analysis. While progress has been made, accurate detection of fa-
cial AUs remains challenging due to ubiquitous sources of errors,
such as inter-personal variability, pose, and low-intensity AUs.
In this paper, we refer to samples causing such errors as hard
samples, and the remaining as easy samples. To address learning
with the hard samples, we propose the Confidence Preserving
Machine (CPM), a novel two-stage learning framework that com-
bines multiple classifiers following an “easy-to-hard” strategy.
During the training stage, CPM learns two confident classifiers.
Each classifier focuses on separating easy samples of one class
from all else, and thus preserves confidence on predicting each
class. During the testing stage, the confident classifiers provide
“virtual labels” for easy test samples. Given the virtual labels,
we propose a quasi-semi-supervised (QSS) learning strategy to
learn a person-specific (PS) classifier. The QSS strategy employs
a spatio-temporal smoothness that encourages similar predictions
for samples within a spatio-temporal neighborhood. In addition,
to further improve detection performance, we introduce two CPM
extensions: iCPM that iteratively augments training samples
to train the confident classifiers, and kCPM that kernelizes
the original CPM model to promote nonlinearity. Experiments
on four spontaneous datasets GFT [15], BP4D [56], DISFA
[42], and RU-FACS [3] illustrate the benefits of the proposed
CPM models over baseline methods and state-of-the-art semi-
supervised learning and transfer learning methods.

Index Terms—Transfer learning, semi-supervised learning,
support vector machine (SVM), confident classifiers, self-paced
learning, easy-to-hard, facial action unit (AU) detection.

I. INTRODUCTION

FACIAL expressions convey varied and nuanced meanings.
Small variations in the timing and packaging of smiles,

for instance, can communicate a polite greeting, felt enjoy-
ment, embarrassment, or social discomfort. To analyze infor-
mation afforded by facial expressions, the most widely used
approach is the Facial Action Coding System (FACS) [24].
FACS describes facial activities in terms of anatomically based
Action Units (AUs). AUs can occur alone or in combinations
to represent nearly all possible facial expressions. AUs have a
temporal envelope that minimally includes an onset (or start)
and an offset (or stop), and may include changes in intensity.
There has been an encouraging progress on automated facial
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AU detection during the past decades, especially for posed
facial actions [14], [20], [47], [52], [59].

Accurate detection of facial AUs remains challenging due
to numerous sources of errors, including quality and quantity
of annotations [40], head yaw [28], low intensity [29], and
individual differences [1], [13], [48], [54]. To address these
variabilities, one typical option is a nonlinear model, which,
yet, often leads to overfitting and thus impairs generalizability.
Standard supervised methods, such as a linear SVM [25]
or AdaBoosting [27], aim to separate positive and negative
samples using a single classifier. Single-classifier approaches
may perform well on AUs with high intensities and frontal
faces. However, they often fail on subtle AUs or AUs with
appearance changes caused by head poses or illumination.

Single-classifier approaches are limited due to the lack of
a hyperplane with confident separation. Fig. 1(a) illustrates a
linear SVM separating samples from two overlapped classes.
Most samples within the SVM margin consist of false positives
(FP) and false negatives (FN), which result in undesirable
ambiguities for training a reliable classifier. Throughout this
paper, we refer to these ambiguous samples as hard samples,
and the remaining as easy samples. To address the learning
with the hard samples, we propose to train two confident
classifiers. Fig. 1(b) depicts the confident classifiers learned
on the two overlapped classes. Unlike standard single-classifier
approaches, each confident classifier separates easy samples of
one class from all else, and thus is able to focus on predicting
one class with high confidence.

With the confident classifiers, this paper proposes the Confi-
dence Preserving Machine (CPM), a novel two-stage learning
framework that combines multiple classifiers following an
“easy-to-hard” strategy. Fig. 1(c) illustrates the CPM frame-
work. During the training stage, CPM learns two confident
classifiers, which identify hard samples as the ones lying
between the two hyperplanes and easy samples as the ones that
both classifiers give the same prediction. Given a test video in
the second stage, CPM learns a person-specific (PS) classifier
using a quasi-semi-supervised (QSS) learning strategy. We
term this classifier a PS-QSS classifier. Specifically, CPM
first uses confident classifiers to assign “virtual” labels to
easy test samples. Then, CPM learns the PS-QSS classifier
by propagating from the virtual labels to hard test samples
based on an assumption of spatio-temporal smoothness. That
is, frames that are closer in both the feature space and the
temporal space should share similar predictions.

In addition, we show that the proposed CPM can be further
extended to improve the detection performance. Specifically,
we propose two extensions of CPM: (1) iCPM learns the
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Fig. 1. The main idea of Confidence Preserving Machine (CPM): (a) A standard single-margin classifier identifies true positive (TP), true negative (TN),
false positive (FP) and false negative (FN). Data within the margin (dashed lines) consist of mostly FP and FN, producing undesired ambiguities for training
a classifier. (b) The proposed confident classifiers, two hyperplanes that are not necessarily parallel, reveal easy and hard samples for preserving confident
predictions in each class. (c) The proposed CPM, consisting of confident classifiers and a person-specific (PS) classifier using a quasi-semi-supervised (QSS)
learning strategy, is trained to propagate predictions from confident test samples (easy test samples) to hard ones.

confident and PS-QSS classifiers by iteratively adding easy
test samples into the training set. Confident classifiers retrained
on this augmented set can potentially yield improvement due
to extra information from the test domain. (2) kCPM learns
the classifiers in a kernelized manner. Unlike standard kernel
methods with complexity quadratic in the number of samples,
we develop a sample selection strategy that effectively reduces
the sample size for training confident classifiers. Evaluation
was performed on four benchmark datasets, namely GFT [15],
BP4D [56], DISFA [42], and RU-FACS [3]. Comprehensive
experiments show that both iCPM and kCPM outperformed the
regular CPM, baseline methods (e.g., SVM and AdaBoosting)
and state-of-the-art methods based on supervised learning,
semi-supervised learning, and transfer learning.

A preliminary version of this work appeared as [55]. In
this paper, we provide technical details in solving the PS-QSS
classifier, present extended results with more comparisons and
datasets, and offer an in-depth analysis of the hard samples
discovered by CPM. The rest of the paper is organized as
follows. We review the related work in Sec. II. Sec. III
introduces the framework of CPM and each of its components.
In Sec. IV, we present the two methods of iCPM and kCPM,
and provide detailed comparisons between CPM and other
related learning techniques. Sec. V experimentally evaluates
and compares CPM with alternative approaches. In Sec. VI,
we conclude and describe future direction.

II. RELATED WORK

Facial expression analysis is known challenging for numer-
ous sources of errors. Below we review previous efforts to
reduce such errors, and semi-supervised learning and transfer
learning that motivate the proposed CPM.

Errors reduction: There have been several efforts in facial
expression analysis to address previously identified or sus-
pected sources of error. To recognize subtle expressions, prior
studies have investigated various combinations of features

and classifiers, such as spatio-temporal directional features
extracted by robust PCA [51], and a temporal interpolation
{SVM,MKL,RF} classifiers [45]. Another source of error
involves head pose. For such cases, previous work sought to
model head pose and expression simultaneously, e.g., using
a particle filter with multi-class dynamics [19] or a variable-
intensity template [38]. Individual differences also cause er-
rors, and can be approached using domain adaption methods
[13], [48]. Other works seek to jointly recognize face identity
and facial expression using a dictionary-based component
separation algorithm [50]. However, other sources of error,
such as human aging [35], are possible, and others may be
unknown. Addressing specific sources of error individually
may impair generalizability and fails to address unknown
sources of error, which can further impair generalizability.

Instead of dealing with specific factors, CPM is a non-
specific method that copes with sources of error both rec-
ognizable and not. Regardless of the type of error, CPM is
able to automatically identify easy samples from hard ones,
preserve confident knowledge using confident classifiers, and
then transfer to a person-specific classifier.

Semi-supervised learning (SSL): SSL has emerged as a
promising approach to incorporate unlabeled data for training.
This approach makes one or more assumptions on relation-
ships between input and label space [9]. The smoothness
assumption enforces samples within a neighborhood to share
similar labels, and can be typically modeled by a graph-based
method [41]. The cluster assumption encourages clusters of
samples to obtain same labels. This assumption has been
shown to be equivalent to low-density separation [10], and
can be extended to entropy minimization [32]. The manifold
assumption considers that samples lie on a low-dimensional
manifold. As the closest approach to CPM, Laplacian SVM
(Lap-SVM) [5], [43] incorporated this assumption as a regu-
larization for learning an SVM. Other work explored the com-
bination of the three assumptions using a boosting framework
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Fig. 2. Illustration of CPM on identifying AU12 from a real video. Dashed
lines (light green) indicate the hard frames due to low intensities and head
pose; solid lines indicate the easy samples for positive (light yellow) and
negative (dark green) ones.

[12]. Interested readers are referred to [9], [58] for a more
extensive review.

Notwithstanding the progress that has been made by pur-
suing these assumptions, they could be insufficient. As noted,
many sources of error may not be modeled or even known.
In the AU detection scenario where feature distribution across
subjects could change significantly [13], [48], the smoothness
and manifold assumptions in standard SSL could be violated
because closer data may contain different labels. CPM uti-
lizes a quasi-semi-supervised approach that preserves spatial-
temporal smoothness on unlabeled test samples.

Transfer learning: Transfer learning considers discrepancy
caused by domain differences. Presuming that each domain
can be represented as a linear subspace, several studies pro-
posed to find intermediate spaces so that the domain mismatch
can be reduced. Techniques include subspace alignment [26],
and geodesic distances on a Grassmann manifold [30], [31].
The discrepancy between raw features can be alleviated by
learning a transformation [36], [44]. Some explore the idea
of importance re-weighting to adapt one or multiple training
domain(s) to a test domain [7], [34], [49]. Following this di-
rection, Selective Transfer Machine (STM) [13] was proposed
to personalize classifiers for facial AU detection by selecting
a subset of training samples that form a distribution close to
the test subject. Recently, there have been several studies that
describe a training domain as classifier parameters, and assume
that an ideal classifier for the test domain can be represented
as a combination of the learned classifiers [1], [21], [22], [53].

CPM differs from transfer learning in three ways. One,
most transfer learning methods emphasize errors caused by
individual differences, head pose or AU intensity; CPM has
no such assumption. Two, most transfer learning methods are
frame-based; CPM considers a spatial-temporal smoothness
for video data. Three, most transfer learning methods seek
multiple sources domains [21], [22], [48] or importance re-
weighting [13], [49], which could be computationally expen-
sive; CPM avoids so using a sample selection strategy.

III. CONFIDENCE PRESERVING MACHINE (CPM)

A. Overview of CPM for AU detection

Facial AU detection typically deals with data in the form of
videos, i.e., each subject has at least a clip of video instead of
a single image. Among these videos, some frames are easier
to tell an AU presence than others. Fig. 2 shows the easy and
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Fig. 3. The proposed two-stage CPM framework: Given training videos, the
confident classifiers are first trained, and then are passed to train a PS-QSS
classifier, which makes the final predictions on the test video. In iterative
CPM, easy test samples are selected to iteratively expand the training set.

hard frames from a particular video. Because hard samples
are intrinsically inseparable, treating easy and hard samples
equally would degrade the performance of a standard single-
hyperplane classifier (e.g., SVM [25]).

To address these issues, we propose the CPM, a two-stage
framework that exploits multiple classifiers with an easy-to-
hard strategy. Fig. 3 illustrates the CPM framework. The first
stage, training confident classifiers, aims to find a pair of
classifiers that distinguish easy and hard samples in training
subjects. We define the easy samples as the ones on which the
predictions of the confident classifiers agree with each other,
and the hard samples otherwise. Compared to the standard
approaches that use a single classifier, each confident classifier
focuses on predicting one class. The confident classifiers,
therefore, are able to identify whether an unseen sample is
easy or not, and predict confidently on it. In the second
stage, training a person-specific classifier, we first identify
easy test samples by applying the trained confident classifiers.
With confident predictions on easy test samples, we introduce
a quasi-semi-supervised approach to train a person-specific
classifier, which we term as a PS-QSS classifier. The PS-
QSS classifier determines the label of the hard samples by
propagating consistently the predictions in space and time.

B. Train confident classifiers

The first stage in CPM is to train the confident classifiers,
a pair of classifiers that aim to cooperatively identify and
separate easy and hard samples in the training set {xi, yi}ni=1

with index D = {1, 2, . . . , n}, where yi∈{+1,−1} denotes a
label and n is the size of the training set.

In this paper, we cast the AU detection problem as a binary
classification problem, although multi-label formulations have
been proposed (e.g.., [57]). We formulate CPM in the context
of maximum margin learning extending the support vector
machine (SVM), but it can be applicable to any other super-
vised learning paradigm. The intuition behind the confident
classifiers is to learn two classifiers, one for the positive class,
represented by a hyperplane w+, and will predict confidently
positive samples; similarly, w− is for the negative class. We
consider the easy samples E as the subset of training samples
where both classifiers make the same prediction and hard
samples H otherwise. It is important to note that w+ and w−
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Fig. 4. Illustration of two relabeling strategies. Data A and B are two synthetic
data without and with noisy instances, respectively. (a)∼(c) show the confident
classifiers learned on the relabeled data using holistic relabeling on A, holistic
relabeling on B, and localized relabeling on B, respectively.

classify the easy positive and negative samples respectively
and they are not necessarily parallel. Mathematically speaking,{

E = {i ∈ D|yiw>y xi > 0,∀yi ∈ {+,−}},
H = D \ E ,

(1)

where E and H denote the index sets of easy samples and hard
samples, and we denote the confident classifiers (w+,w−), or
wy . Learning the confident classifiers can be done iteratively
by maximizing the margin as:

min
wy,E

||wy||2 +
∑
i,j

(
ξ2i + ξ2j

)
(2)

s. t. yiw
>
y xi ≥ 1− ξi,∀i ∈ E ,

ηyjw
>
y xj ≥ 1− ξj ,∀j ∈ H,

where yi is the ground truth label, ηyj is a relabel of a hard
training sample xj that will be explained below. ξi and ξj
are non-negative slack variables for easy samples and hard
samples respectively, to take into account misclassification.
The easy samples will preserve the original labels yi, whereas
we will relabel the hard samples as η+j for w+ and as η−j for
w−, to make the classifiers as confident as possible.

Alg. 1 summarizes the alternating procedure of solving
(2), which involves the easy samples E , the hard samples H,
and the confident classifiers (w+,w−). Given E and H, the
confident classifiers (w+,w−) are solved as standard SVMs
[25]. Given (w+,w−), E and H are inferred using Eq. (1).

Note that the convergence of this alternating procedure is
not guaranteed; instead we set a maximum iteration. The set of
hard samples is initialized as empty. In the later iterations, hard
samples are updated as those misclassified by both w+ and
w−. The relabeling strategy enables w+ and w− to preserve
confident predictions in each class by adjusting the labels for
hard samples. Here, we explore two relabeling strategies:

1) Holistic relabeling: The most straightforward strategy
is to relabel all hard samples as +1 when training w−, and
−1 when training w+, i.e., ηyj = −y,∀xj ∈ H. We term this
strategy holistic relabeling. The main advantage of holistic
relabeling is its low computational complexity.

2) Localized relabeling: Holistic relabeling may result in
some unnecessary hard samples if signal noise exists. To
gain more robustness against signal noise, we relabel an

Algorithm 1 Train confident classifiers
Input: Data {(xi, yi)}ni=1 and its index set D = {1, 2, . . . , n}
Output: Confident classifiers (w+,w−), easy samples E and

hard samples H
1: Init: E ← D; H ← ∅;
2: repeat
3: (w+,w−)← solve (2) with fixed E and H;
4: Update easy and hard samples (E ,H) using (1);
5: Update relabels η+j , η

−
j ∀j ∈ H;

6: until convergence or exceed max iteration

hard sample xj as +1 only when there exists a neighboring
support instance xk with positive ground truth label, and
similarly for relabeling xj as −1. We term this localized
relabeling. Denote the set of samples with support instances
as Sy = {j ∈ H|∃k ∈ H : d(xj ,xk) ≤ r, yk = y}, where r is
a threshold and d(xj ,xk) is the distance between xj and xk.
The relabeling is formulated as

η+j =

{
−1 xj ∈ S−
yj otherwise

, η−j =

{
+1 xj ∈ S+
yj otherwise

. (3)

For simplicity, both strategies use binary labels. Note that
other relabeling strategies are directly applicable, e.g., weight-
ing the relabels similar to those in DA-SVM [7], or introducing
the concepts of bags as in MIL [2]. Fig. 4 illustrates the
two relabeling strategies on synthetic examples. (a) and (b)
illustrate the confident classifiers learned using holistic rela-
beling on A and B, respectively. As can be seen, the confident
classifiers move toward the noisy instances in (b), showing that
the holistic relabeling is improper for the presence of noise.
Fig. 4(c) illustrates the result using localized relabeling, which
is more robust to noisy instances.

C. Train a person-specific (PS) classifier using a quasi-semi-
supervised (QSS) strategy

In the previous section, we have discussed how to train the
confident classifiers. As pointed out first by Chu et al. [13],
a generic classifier trained on many subjects is unlikely to
generalize well to an unseen subject because of the domain
discrepancy between the training and the test distributions
that vary according to camera model, intra-personal variability,
illumination, etc. Chu et al. [13] showed that person-specific
(PS) and a personalized model outperformed existing methods.
The distinction between PS and personalized models are as
follows. PS classifiers are referred to the ones trained in only
one subject. Personalized classifiers are generic classifiers that
are adapted to a particular subject.

Recall our goal is to train a PS classifier ft(x) = w>t x for a
test subject. To obtain such a classifier, CPM first collects “vir-
tual labels” from the predictions of confident classifiers w+

and w−. Since the confident classifiers are trained with many
subjects, they are likely to generalize well to easy samples.
However, there remain hard samples that CPM finds difficult
to identify. To disambiguate the hard samples, CPM adopts a
person-specific classifier using a quasi-semi-supervised (QSS)
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strategy. In particular, we adopt a Laplacian to enforce label
smoothness on spatially and temporally neighboring samples.

Let us assume that we have a m-frame test video denoted
by Xte = [x1,x2, . . . ,xm]> with index Dte = {1, 2, . . . ,m}.
CPM first identifies the easy test samples Et as the ones on
which the confident classifiers predict consistently, i.e., Et =
{i ∈ Dte| sign(w>+xi) = sign(w>−xi)}, and ŷi = sign(w>y xi)
is a virtual label for an easy test sample. Once these virtual
labels are obtained, CPM propagates labels to the hard samples
with a semi-supervised strategy minimizing:

min
wt

∑
i∈Et

`(ŷi,w
>
t xi) + γs||wt||2 + γIS(wt,X

te), (4)

where γs and γI control the importance of regularizations.
S(wt,X

te) is defined as the smoothness term. The intuition
behind S is to preserve spatial-temporal relations in the label
space, and we propose the smoothness regularizer as:

S(wt,X
te) =

∑
i∈Dte

ft(xi)− 1

Zi

i+T∑
j=i−T,

j 6=i

λijeijft(xj)


2

,

(5)

where ft(x) = w>t x is the PS classifier prediction on sample
x, Xte are the test samples, T controls the window size
for which frames to include in the smoothing, and λij is a
weight parameter that emphasizes closer temporal neighbors
than further ones (i.e., the closer in time two frames are the
more similar their decision values are). We determine λij using
a Gaussian distribution centered at the frame of interest, as
illustrated in Fig. 5(a) where T = 5. We define a selection

parameter eij =

{
1, dij < ε

0, otherwise
, excluding the frames that

are far away in feature space. dij is the distance of frame i
and j in feature space. Zi is the normalization term such that
1
Zi

∑i+T
j=i−T,j 6=i λijeij = 1. After some linear algebra, we can

rewrite Eq. (5) in matrix form as

S(wt,X
te) = (Xtewt)

>D>DXtewt, (6)

where D ∈ Rm×m, Dij =


1, i = j

− 1
Zi
λijeij , 0 < |i− j| ≤ T

0, otherwise
.

The sums of D’s rows equal zeros, i.e.,
∑
jDij = 0.

Therefore, the smoothness matrix D enforces the neighboring
samples in both the feature space and the temporal space to
have similar predictions. Please refer details for solving wt to
Appendix A.

Relations to Laplacian Matrix: Denote C = D>D for
notational convenience. Both C and Laplacian matrix L im-
posing smoothness on neighboring samples. They share several
properties, e.g., they are positive semidefinite, sum of each row
and column are zero. However, C considers both temporal
and spatial constrains while L only consider spatial con-
strains. Consequently, they have mathematically differences
in formulation. D assembles the incidence matrix ∇ where
L = ∇>∇. Both D and ∇ can be interpreted by a directed
graph, but in different ways. Let’s denote their corresponding
graphs as GD = {ED,VD} and G∇ = {E∇,V∇}, respectively.
The i-th row of ∇ ∈ Z|E∇|×|V∇| denotes a directed edge
〈j, k〉, with non-zero entries ∇ij = −1 and ∇ik = +1.
While D ∈ R|VD|×|VD|, a non-zero element Dij < 0, i 6= j
corresponds to a directed edge 〈j, i〉 in G. The absolute value
of Dij is the weight of edge 〈j, i〉. Note that if there exists
an edge 〈j, i〉, then edge 〈i, j〉 exists. But their weights are
not necessary the same, thus D is not symmetric. Differences
can also be found if we regard L and C as two operators.
Taking an operation on f = [f(x1), . . . , f(xm)]>, f>Lf =∑
i>j wij (f(xi)− f(xj))

2, where wij denotes the weight.
While, f>Cf = S(wt,X

te), as Eq. (5) shown, has a form of
f>Cf =

∑
i>j aij (f(xi)− f(xj))

2
+
∑
i>j bijf(xi)f(xj)+

c, where aij , bij , and c are coefficients. The extra item of
f(xi)f(xj) ascribes to the temporal constrain.

Fig. 5 shows the effectiveness of the smoothness term S on
3 AUs in the BP4D dataset [56]. To start the label propagation,
2.5% frames were randomly selected from each video as the
estimated labels of easy instances. We compare the prediction
on the rest 97.5% frames by training a linear SVM only using
the labeled frames, and one with the smoothness term S over
all the labeled and unlabeled data. As can be seen, compared
to the ground truth, the prediction with the smoothness term
performs more consistent result across three AUs.

In some cases, easy test samples are unavailable, and thus
cause Eq. (4) failing to learn wt. Most singular cases occur
in unbalanced AUs with few positive samples. For instance,
the appearance of AU1 in a test subject is relatively rare. In
such cases, the confident classifiers are unlikely to discover
easy positive samples from the test subject. We are unable to
learn wt by Eq. (4) because none easy positive samples are
detected. To address these cases, we found heuristically that
wt = 1

2 (w+ + w−) provides good predictions.

IV. EXTENSIONS OF CPM
While CPM has reported good results, this section describes

two extensions: (1) Iterative CPM (iCPM) incorporates a
progressive labeling strategy by gradually including test data
in the training set. (2) Kernel CPM (kCPM) extends CPM to
incorporate non-linear decision boundaries.

A. Iterative CPM (iCPM)
CPM learns in sequential fashion the confident classifiers

(Sec. III-B) and the PS-QSS classifier (Sec. III-C). So, the
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colors are easy samples, while those in green are hard ones. (This figure is best shown in color copies).

Algorithm 2 Iterative Confidence Preserving Machine
Input: labeled training data {xi, yi}ni=1 with index set D =
{1, 2, . . . , n}, unlabeled test data {xtei }mi=1 with index set
Dte = {1, 2, . . . ,m}

Output: person-specific classifier wt

1: E ← D, H ← ∅;
2: (w+,w−)← solve (2);
3: (E ,H) using (1);
4: repeat
5: Update relabels η+j , η

−
j ,∀j ∈ H;

6: (w+,w−)← solve (2) with fixed E and H;
7: Estimate virtual labels {ŷi}mi=1,

ŷi =


1 w>y x

te
i > 0,∀y ∈ {−1,+1},

−1 w>y x
te
i < 0,∀y ∈ {−1,+1},

0 otherwise.
8: Et = {i ∈ Dte| sign(w>+x

te
i ) = sign(w>−x

te
i )};

9: if ∃i, j ∈ Et, s.t. ŷi = −1, ŷj = 1 then
10: wt ← solve (4) given Xte and {ŷi}mi=1;
11: else
12: wt = 1

2 (w+ + w−);
13: end if
14: Update Et = {i ∈ Dte|ŷi = sign(w>t x

te
i )};

15: Update (E ,H)← (1);
16: E ← E ∪ Et;
17: until convergence

PS-QSS classifier depends indirectly on the training data
through confident classifiers. However, it is likely that there
is mismatch between the training and test data [13], [48], and
the confident classifiers might not generalize well even in the
easy samples. To address this issue, we propose iterative CPM
(iCPM) that jointly learns the confident and PS classifiers.

In iCPM, at each iteration, the easy test samples are selected
to be part of the training for the confident classifiers, so the
confident classifiers is trained with test data (but no labels of

test data are provided). Alg. 2 summarizes the steps for iCPM
algorithm. Fig. 6 illustrates a synthetic example. In Fig. 6, the
training and test distributions are different. In the initialized
step, all the training data are labeled as easy-samples, so the
confident classifiers are basically a standard SVM, and the
two confident classifiers are the same. This classifier achieves
97% accuracy on test data. In the first iteration, we update
the hard-samples (green triangles) and re-train the confident
classifiers. The confident classifiers identify easy samples (blue
and red diamonds) in test data, and the PS-QSS classifier
labels the hard-samples (green diamonds), and learns the PS-
QSS classifier (the black line), achieving 99% of accuracy.
Finally, in the second iteration, the easy and hard samples are
again updated to train the confident classifiers and the PS-QSS
classifier achieving 100% of classification accuracy.

Complexity: As in standard transfer learning methods [21],
[49], iCPM incorporates all the training data to compute a
PS-QSS classifier. In every iteration, iCPM learns each of the
two confident classifier from the union of training samples and
easy test samples, and learns a PS-QSS classifier from the test
samples. Despite the fact that every iteration involves learning
two confident classifiers and a PS-QSS classifier, iCPM is
relatively efficient in training due to the learning of linear clas-
sifiers . In Alg. 2, solving (2) with fixed E and H and solving
(4) are both linear with complexity O(max(n, d) min(n, d)2)
[8], where d is the dimension of features; n is the number of
samples in E ∪H in (2), or the number of test samples in (4).

B. Kernel CPM (kCPM)

CPM and iCPM are efficient to learn because they assume a
linear decision boundary. However, most practical cases would
require a non-linear decision boundary to separate real data.
Non-linear boundaries are likely to lead a better separation
between easy and hard samples. A simple approach to extend
our proposed CPM model is to directly apply kernel tricks
in (2) and (4). However, the directly kernelization of CPM is
time and memory consuming since the training of confident
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Algorithm 3 Sample selection for kCPM
Input: Positive training samples D+, negative training

samples D−, distance threshold r, order flag
positive_first.

Output: Selected points set S
1: S ← ∅;
2: if positive_first then
3: D = D+ ∪ D−, where D+ occur first.
4: else
5: D = D− ∪ D+, where D− occur first.
6: end if
7: for all xi in D in order do
8: if minxj∈S d(xi,xj) > r then
9: Add xi into S;

10: end if
11: end for

classifiers (2) involves around 100,000 samples. To reduce the
computational burden, we design a strategy to select samples
in the training of the confident classifiers. Below, we present
the details to kernelize the two steps of kCPM, i.e., training
confident classifiers and training PS-QSS classifier.

Train confident classifiers: Unlike the linear CPM men-
tioned in Sec. III, training nonlinear confident classifiers
involves an n × n kernel matrix that is expensive to store
and compute. Instead, we propose a sample selection strategy
to reduce the size of training samples.

Alg. 3 describes the sample selection algorithm. The in-
tuition is to reduce the training size by selecting only one
representative sample in a region with radius r. That is, a
sample is selected if and only if none of its r-radius neighbors
are selected. This process proceeds until all samples are
examined. The resulting distribution tends to be uniform, and
contains much less samples than the original distribution. De-
note the desired size of training samples as n′, we determined
the radius r according to an empirical distance estimation.
Specifically, we first randomly select n′ samples, compute for
each sample the distance to its nearest neighbor, and then
assign r as the average over n′ distances. The ordering of
sample selection varies for training the confident classifiers
(f+, f−). To get f+, we perform the sample selection process
for negative samples before positive samples. This ensures
that each selected positive sample has a neighborhood of
only positive samples in the original distribution. Thus, f+
trained on such selected samples is confident on its positive
predictions. To get f−, we apply the same strategy with a
reversed order (positive samples first).

Fig. 7 illustrates an example of the sample selection strategy.
As seen in Fig. 7(b), negative samples are selected in the
middle region where original positive and negative samples
are messed up. As a result, the learned f+ lies to the right side
of a typical kernel SVM (black line in Fig. 7(a)). Similarly,
in Fig. 7(c), f− lies to the left side. The selected samples in
Fig. 7(b)-(c) distribute uniformly, and are much less than those
in original dataset as shown in Fig. 7(a).

The sample selection algorithm shows its advantages on
two-folds. First, it is feasible to train kernel machines on

f
+(a) (b)

f
-

f
-

f
+

(c) (d)

Fig. 7. An illustration of kCPM: Easy negative, easy positive, and hard
samples are denoted as blue rectangles, red circles, and green triangles,
respectively. (a) A standard kernel SVM trained on original samples. (b)-(c)
Confident classifiers f+ and f− trained on selected points under positive-
first order and negative-first order, respectively. (d) Confident classifiers
cooperatively separate easy and hard samples.

the selected samples, which are much smaller in size than
the original dataset while well represent the kernel space.
Although other instance selecting algorithms can also reduce
the size of original dataset (e.g., sparse modeling representative
selection [18], multi-class instance selection [11]), they lack
the mechanisms to train two biased classifiers. The second
advantage of the proposed sample selection strategy is that
confident classifiers trained on the two sets of points are able
to predict confidently on opposite sides of the margin. Specif-
ically, the classifier is confident in its negative predictions if it
is trained on the samples selected under a positive-first order.
And similar is the other one.

Train the PS-QSS classifier: Using Alg. 3, we are able
to select a set of positive-first samples {x+

1 , . . . ,x
+
n+}, a

set of negative-first samples {x−1 , . . . ,x
−
n−}, and learn the

nonlinear confident classifiers (f+, f−). For notational con-
venience, we use the notation y ∈ {+,−} in Sec. III-B to
denote the selected samples as {xyi }n

y

i=1, and the confident
classifiers as fy . Given fy , the prediction on a test sample
xte becomes fy(xte) =

∑ny

i=1 α
>
yi〈x

y
i ,x

te〉H, where αy =

[αy1, . . . , αyny ]> ∈ Rny

are the parameters of fy , and 〈., .〉H
denotes the inner product in a reproducing kernel Hilbert
space. In this paper, we use 〈xi,xj〉H = exp

(
− ||xi−xj ||2

2σ2

)
.

Similar to the regular linear CPM, test samples with consistent
predictions from the confident classifiers are identified as easy
test samples, i.e., Et = {i ∈ Dte|f+(xi)f−(xi) > 0}. Then,
we train a nonlinear person-specific (PS) classifier in a quasi-
semi-supervised (QSS) manner as discussed in Sec. III-C using
the nonlinear form of Eq. (4):

min
αt

∑
i∈Et

`(ŷi,α
t>Kt

i) + γsα
t>Ktαt + γIS(αt,Kt), (7)

where Kt ∈ Rm×m is a kernel matrix computed from m
test samples, and S(αt,Kt) is the nonlinear smoothness term
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TABLE I
COMPARISON OF PROPERTIES BETWEEN CPMS AND ALTERNATIVE METHODS (X: APPLICABLE, ×: INAPPLICABLE)

Method Multiple Identify Unlabeled Distribution Smoothness Non-parallel Progressive
classifiers easy/hard data mismatch assumption hyperplanes labeling

Boosting [27] X × × × × × ×
TW-SVM [37] X × × × × X ×
Self-paced learning [39] × X × × × × ×
RO-SVM [4], [33] × X × × × × ×
Self-training [46] × × X × × × X
Co-training [6] X × X × × × X
Lap-SVM [43] × × X × X × ×
DAM [21] X × X X X × X
CPM (proposed) X X X X X X X

defined as:

S(αt,Kt) = (Ktαt)>D>DKtαt. (8)

The prediction of a test sample x is then computed as ft(x) =∑m
i=1 α

t
i〈xi,x〉H, where αti is the i-th element of αt.

C. Discussion on related work

The proposed CPM and its extensions (referred as CPMs)
are related to existing methods that use multiple classifiers
[27], [37], methods that follow an “easy-to-hard” strategy [4],
[33], [39], semi-supervised learning [6], [43], [46], and transfer
learning [23]. Table I compares CPMs against related methods
in terms of their properties.

A crucial property of CPMs is the use of multiple classi-
fiers, which are also exploited in boosting methods [27] and
Twin SVMs (TW-SVMs) [37]. The goal of using multiple
classifiers is to generate multiple non-parallel hyperplanes that
yield better separation than standard methods with a single
hyperplane. Boosting methods train a set of weak classifiers
and sequentially combine them into a strong classifier. In TW-
SVMs, each hyperplane of the twin classifiers is close to one
class and far from the other. Similarly, CPM uses the confident
classifiers that form two non-parallel hyperplanes to preserve
confident predictions.

Other methods also employ the mechanism of identify
easy and hard samples, such as self-paced learning [39] and
SVM with reject options (RO-SVM) [4], [33]. Self-paced
learning models the “easiness” as latent variables, and assigns
less weights to samples that are potentially hard to classify.
RO-SVM designs new loss functions for hard samples in
the “rejection region”. However, all these methods focus on
classification without using unlabeled data.

Semi-supervised learning (SSL) is a technique known for
the use of unlabeled data. Examples include self-training [46],
co-training [6] and Laplacian SVM (Lap-SVM) [43]. Self-
training progressively adds unlabeled data with high confi-
dence to retrain the classifier. Co-training adopts unlabeled
data by training two or more classifiers so that the most confi-
dent samples from one classifier are used to train another. Lap-
SVM utilizes unlabeled data by propagating labeled samples
to unlabeled ones through a smoothness assumption. However,
common to these methods is the assumption that labeled and
unlabeled data are drawn from the same distribution.

Mismatches in data distribution can be addressed by transfer
learning approaches. Closest to CPM is DAM [23] due to
their common properties such as the use of multiple classifiers,
smoothness assumptions, the use of unlabeled test data, and
progressively labeling. One major difference between CPM
and DAM is how a test sample is identified as easy or hard.
DAM used a manually-determined threshold to reject a hard
test sample. On the contrary, CPM automatically identifies
easy and hard samples using a principled easy-to-hard strategy.
Compared to the aforementioned methods, CPMs possess all
properties as summarized in Table I.

V. EXPERIMENTS

In this section, we experimentally validate the proposed
CPM and its extensions. First, we describe the datasets and
settings used in the experiments. Then, we provide an ob-
jective evaluation on CPM components, and compare CPM
with alternative methods, including a baseline SVM, semi-
supervised learning methods, transfer learning methods, and
boosting methods. Finally, we provide hard sample analysis in
terms of AU intensities, head poses, and individual differences.

A. Datasets and settings

This section describes datasets and settings used throughout
the experiments. We chose to use four largest spontaneous
facial expressions datasets:

1. GFT [15] are recorded when three unacquainted young
adults sat around a circular table for a 30-minute conver-
sation with drinks. Moderate out-of-plane head motion
and occlusion are presented in the videos which makes
the AU detection challenging. In our experiments, 50
subjects are selected and each video is about 5000 frames.

2. BP4D [56] is a spontaneous facial expression dataset
in both 2D and 3D videos. The dataset includes 41
participants aging from 18 to 29 associating with 8 tasks,
which are covered with an interview process and a series
of activities to elicit eight emotions. Frame-level ground-
truth for facial actions are obtained using FACS. In our
experiments, we only use the 2D videos.

3. DISFA [42] recorded 27 subjects’ spontaneous expres-
sions when they were watching video clips. DISFA not
only codes the AUs, but also labels the intensities. In our
experiments, we use the frames with intensities equal or
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Fig. 8. Results of SVM, confident, CPM, iCPM, and kCPM. The values are
averaged over different AUs. In each dataset, different amounts of AUs are
involved: 11 in GFT, 12 in BP4D, 8 in DISFA, 7 in RU FACS. Note that the
scales in each dataset are different for display purpose.

greater than A-level as positive, the rest as negative. The
dataset consist of 27 videos with 4845 frames each.

4. RU FACS [3] consists of 100 subjects participating in
a “false opinion” paradigm that shows a wide rage of
emotional expressions. 33 subjects have been FACS-
coded. Like the other three, it includes spontaneous
behavior such as speech. We selected 28 of the coded 33
participants with sequence length of about 7000 frames.

All experiments were conducted under a same protocol
where each dataset was reorganized in 10 disjoint splits. Each
split designated numerous (5 in GFT, 4 or 5 in BP4D, 2 or 3
in DISFA and RU FACS) subjects as test data and the rest as
training data, i.e., each subject was treated as the test data in
turns during the 10 splits. For each frame, we tracked 49 facial
landmarks using IntraFace [16], and registered faces onto a
200×200 template. Then, SIFT descriptors were extracted on
32×32 regions centered at each facial landmark.

For evaluation, we reported both conventional frame-based
F1 score (F1-frame) and event-based F1 score (F1-event) [17].
The former is prevalent in binary classification problems,
while the latter can evaluate detection performance at event-
level. An “event” is defined as a max continuous period with
an AU presence. In this sense, F1-event captures the agreement
between the ground truth events and the predicted events, by
measuring the event-based recall ER as the fraction of true
events being correctly predicted, and the event-based precision
EP as the fraction of predicted events being true. An event-
level agreement holds true if an overlap score between a
ground truth event and a predicted event is above a certain
threshold. F1-event was computed as the area under the
2·ER·EP
ER+EP curve by adjusting the overlapping threshold in [0,1].

B. Objective evaluation on CPM components

Recall that two major components in CPM are the confident
classifiers and the person-specific (PS) classifier learned with
quasi-semi-supervised (QSS) learning strategy. To validate
their effectiveness, we conducted comparisons with a baseline
linear SVM [25], confident classifiers only (Conf), and CPM
(i.e., Conf+QSS). In Conf, we trained confident classifiers us-
ing Alg. 1, and then passed them to train a PS classifier without
a smoothness assumption. Conf checks whether the confident
classifiers are effective when compared with a standard single-
hyperplane SVM. CPM differs from Conf by learning the PS

classifier with the spatial-temporal smoothness as discussed
in Sec. III-C. In this way, CPM verifies the effectiveness of
the PS-QSS classifier on propagating labels with smoothness
assumptions. We also conducted iCPM to validate the iterative
integration in CPM, and kCPM see how a non-linear boundary
would influence the performance.

Fig. 8 reports the results of the above four experiments
on GFT, BP4D, DISFA, and RU-FACS datasets, respectively.
The values of F1-frame and F1-event were reported as the
average over all AUs. Comparing the results between SVM
and Conf, confident classifiers showed positive affects on
the performance. The effectiveness of applying smoothness
assumptions was indicated by the results between Conf and
CPM. Out of the results, iCPM outperformed CPM in most
cases, validating the effectiveness of the proposed iterative
integration. kCPM shows its advantages over CPM because
non-linear boundaries are more accurate than linear ones.
When compared with iCPM, kCPM only has a better F1-frame
performance. An explanation is that iCPM has an iterative
mechanism, which iteratively strengthens the spatiotemporal
smoothness. Thus, a better F1-event is achieved.

C. Comparisons with alternative methods

This section compares the proposed CPM with alternative
methods discussed in Sec. IV-C, including baseline methods,
semi-supervised learning (SSL), and transfer learning. Note
that typical transfer learning methods treat each dataset as a
domain, while this subject treats each subject as a domain.
For baselines, we used LibLinear [25] and Matlab toolbox
for Adaboost [27]. For SSL, we implemented a linear version
of Laplacian SVM (Lap) [43]. Its kernel version is compu-
tationally prohibitive because our experiments contain more
than 100,000 samples. For transfer learning, we compared
to state-of-the-art methods including Geodesic Flow Kernel
(GFK) [30], Domain Adaption Machine (DAM) [21], and
Multi-source Domain Adaptation (MDA) [49]. GFK computed
the geodesic flow kernel from training to test sample, and
then used it as a kernel in SVM. DAM fitted a classifier for
test subject as a linear combination of classifiers of training
subjects. Note that DAM is able to tackle with unlabeled
test data. We did not use its extended version DSM [22]
because DSM requires to enumerate all the possible selec-
tions of source domains, which are as much as 245 in our
experiment. MDA performed unsupervised domain adaptation
by re-weighting both source domains and training instances.
All methods, except for SVM and Ada, learned a specific
classifier for each test subject. Codes of other competitive
methods were either downloaded from author’s web page or
provided by the authors. To show a more fair comparison,
we also implemented Hidden Markov Model (HMM) as a
post-processing for smoothing the prediction of SVM, Lap,
and Ada. Note that HMM was not directly applicable for
DAM, MDA, and GFK because their scores of the frame-level
labeling output were available only for test data.

Table II∼V show the results reported with the best pa-
rameters. SVM and Ada outperformed well in some AUs.
Despite this, the overall performances of Ada were worse
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TABLE II
F1 SCORES ON THE GFT DATASET [15]. “H” STANDS FOR AN EXTRA POST-PROCESSING WITH HMM.

F1-frame F1-event

AU SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM

1 30.3|16.8 20.3|15.4 12.1|16.4 1.7 29.2 30.9 29.9 30.4 20.3|17.9 15.3|28.2 5.4| 9.7 2.1 21.3 21.6 27.1 23.4
2 25.6|18.4 14.8|21.8 26.0|19.3 5.3 25.8 29.3 25.7 28.0 20.2|21.1 12.2|30.7 18.2|16.6 4.7 21.3 22.5 24.8 26.0
6 66.2|66.4 62.1|47.3 2.7|40.7 58.0 63.8 66.1 67.3 70.2 49.1|56.8 47.5|43.4 4.4|37.5 50.0 47.0 50.2 56.8 57.3
7 70.9|72.2 69.6|50.0 24.0|50.3 66.0 66.6 72.2 72.5 74.4 50.4|59.8 50.7|44.0 21.6|48.3 41.7 49.2 52.1 60.1 58.1
10 65.5|65.5 65.5|43.7 56.7|61.2 64.9 65.4 67.5 67.0 70.7 50.2|57.8 50.2|46.6 46.5|57.5 53.1 51.6 54.3 58.1 55.6
12 74.2|75.9 73.0|54.5 64.8|69.0 72.9 71.9 72.7 75.1 78.3 56.3|65.0 54.7|59.9 54.9|64.4 61.9 52.0 54.3 65.0 65.3
14 79.6|78.1 77.7|59.2 76.7|51.2 79.5 74.0 79.8 80.7 82.1 63.8|70.8 62.3|59.9 81.5|61.2 64.6 63.7 64.8 74.7 71.4
15 34.1|17.5 20.3|20.5 19.3|13.9 1.4 31.8 31.7 43.5 38.9 28.1|20.1 17.7|41.8 15.9|20.2 2.3 25.4 26.8 32.2 32.0
17 49.2|50.6 48.2|38.6 42.5|21.2 34.6 47.4 48.9 49.1 57.1 42.9|53.1 37.1|38.5 36.4|25.9 29.6 41.4 41.3 52.3 50.2
23 28.3|29.8 19.4|20.7 27.1|25.1 2.8 26.0 26.7 35.0 28.6 27.7|35.9 16.8|36.7 9.5|19.5 4.4 26.7 27.1 25.9 31.5
24 31.9|21.0 22.3|25.8 25.7|16.9 3.0 31.8 33.0 31.6 43.6 30.3|21.8 20.8|26.4 21.7|13.9 4.9 30.0 30.5 31.8 34.6

Av. 48.7|46.6 44.8|36.1 32.8|35.0 35.5 48.5 48.6 52.5 54.8 38.6|43.7 35.0|41.5 27.3|34.1 29.0 39.1 38.9 46.3 45.9

TABLE III
F1 SCORES ON THE BP4D DATASET [56]. “H” STANDS FOR AN EXTRA POST-PROCESSING WITH HMM.

F1-frame F1-event

AU SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM

1 46.0|43.4 41.5|37.7 43.8|29.0 38.2 39.6 42.4 46.6 48.2 29.2|38.1 29.8|41.7 29.2|27.8 26.7 30.5 29.7 35.3 38.9
2 38.5|38.4 12.4|25.5 17.6|27.8 27.3 37.0 35.8 38.7 40.8 29.3|36.1 12.9|32.4 24.8|27.1 12.3 28.2 28.9 32.5 32.6
4 48.5|41.6 39.4|30.4 27.2|26.1 29.1 45.7 47.3 46.5 53.2 33.5|37.4 28.9|28.3 30.5|26.5 22.3 32.8 32.8 39.4 35.4
6 67.0|62.0 71.7|61.2 71.5|26.1 67.5 69.2 71.2 68.4 76.0 53.7|37.4 54.4|58.5 53.7|26.5 55.4 52.9 54.4 60.9 51.7
7 72.2|56.5 74.7|53.7 71.6|52.2 72.6 70.2 72.5 73.8 77.3 59.0|55.3 55.2|49.2 56.2|57.6 61.1 58.4 54.9 62.1 57.2
10 72.7|54.6 75.7|62.1 72.8|55.3 74.4 71.0 74.2 74.1 80.9 61.3|52.8 59.3|67.8 60.7|60.6 68.6 57.5 59.7 65.1 58.6
12 83.6|65.4 84.3|62.6 84.3|55.3 76.4 81.8 83.9 84.6 87.5 62.5|52.8 63.9|60.8 64.2|60.6 60.8 59.9 65.6 71.4 69.3
14 59.9|49.2 61.0|50.9 62.6|26.3 59.9 57.8 57.2 62.2 62.0 49.5|46.3 51.7|56.7 51.9|26.9 53.3 50.2 48.7 55.9 57.1
15 41.1|39.9 30.6|30.4 35.2|25.5 15.9 41.4 40.6 44.3 44.3 33.7|39.0 24.4|39.0 25.4|25.4 12.7 28.2 31.1 37.4 36.3
17 55.6|57.8 56.6|47.8 59.1|46.3 52.9 50.1 55.4 57.5 60.7 46.0|56.1 44.0|51.5 44.0|41.7 51.5 39.6 44.0 49.9 53.3
23 40.8|39.4 33.0|32.8 33.6|27.6 3.9 36.2 39.9 41.7 41.1 36.4|44.0 28.2|41.4 27.2|22.2 5.8 30.7 33.3 41.9 41.0
24 42.1|19.3 34.2|26.7 40.5|16.9 4.9 41.1 41.7 39.7 43.1 37.7|16.0 30.9|35.7 34.8|13.8 3.6 35.4 35.6 38.7 34.3

Av. 55.7|47.3 51.3|43.5 54.7|36.9 42.6 53.4 55.2 56.5 59.6 44.3|44.8 40.3|46.9 41.9|36.5 36.2 42.0 43.2 49.2 47.2

TABLE IV
F1 SCORES ON THE DISFA DATASET [42]. “H” STANDS FOR AN EXTRA POST-PROCESSING WITH HMM.

F1-frame F1-event

AU SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM

1 26.5|14.4 17.1|12.4 13.1|16.2 7.9 19.0 23.2 29.5 30.7 14.5|17.6 16.1|21.2 9.6|11.6 5.4 11.6 18.1 18.7 13.0
2 24.0|15.3 20.1|10.5 6.4|12.6 13.1 9.5 16.3 24.8 23.7 10.8|17.6 17.3|17.0 11.4|11.0 12.1 16.4 17.4 19.2 19.6
4 56.1|48.5 59.8|26.4 21.1|23.4 40.4 59.3 60.3 56.8 65.7 31.6|37.2 32.5|27.7 15.9|16.2 32.4 28.6 28.3 41.8 39.0
6 40.9|34.9 31.9|22.1 22.1|19.9 19.2 21.1 41.9 41.7 41.0 30.3|29.2 28.3|25.9 23.7|13.5 22.6 30.8 30.6 36.9 34.3
9 30.5|10.9 29.3|17.4 12.1|10.9 11.9 7.6 30.3 31.5 26.4 23.4|13.2 22.7|39.9 7.8| 8.3 14.3 27.4 14.6 31.7 16.2
12 65.6|70.1 69.4|46.3 33.7|32.2 50.9 63.1 69.6 71.9 70.5 49.9|57.1 51.9|61.6 33.2|20.7 44.3 42.1 46.2 56.6 53.7
25 78.3|84.1 83.9|70.5 35.3|30.3 56.2 81.3 80.0 81.6 85.4 31.9|76.7 38.0|58.8 42.5|21.2 56.4 46.5 36.1 76.7 52.5
26 50.0|51.5 59.6|50.5 18.9|25.5 43.2 51.1 54.6 51.3 58.0 38.6|51.7 38.7|49.5 48.7|18.4 38.4 36.4 37.3 47.7 45.1

Av. 46.5|41.2 46.6|32.0 20.3|21.4 30.4 39.0 47.0 48.6 50.2 28.9|37.5 30.7|37.7 24.1|15.1 28.2 30.0 28.6 41.2 34.2

TABLE V
F1 SCORES ON THE RU-FACS DATASET [3]. “H” STANDS FOR AN EXTRA POST-PROCESSING WITH HMM.

F1-frame F1-event

AU SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM SVM|H Ada|H Lap|H DAM MDA GFK iCPM kCPM

1 26.8|25.8 23.0|15.9 21.2|15.0 18.9 27.3 23.5 26.7 32.4 30.5|31.9 27.1|30.7 17.7|36.7 24.8 26.0 30.9 40.7 36.0
2 22.2|17.8 14.0|14.4 16.5|14.0 16.7 17.7 19.7 22.5 26.9 17.8|14.9 12.5|13.0 10.1| 3.4 16.3 16.3 17.5 21.7 22.2
6 36.5|17.3 35.1| 9.9 27.6|10.1 26.6 30.8 32.7 41.1 44.5 21.9| 9.5 22.8|16.1 13.4| 4.3 19.9 18.3 20.2 25.0 34.1
12 64.3|58.4 59.1|24.5 48.9|25.8 39.4 59.8 63.7 67.6 65.0 39.9|36.5 36.7|24.9 30.5| 7.5 30.8 36.4 35.2 45.1 46.2
14 17.4|10.6 13.7|12.0 1.3| 9.4 12.8 15.9 18.7 15.4 19.9 14.3|12.2 10.6|19.4 2.3|13.4 9.7 14.0 13.5 19.2 18.7
15 12.7| 6.6 8.2| 7.8 1 .3| 5.0 6.8 12.1 12.6 16.9 14.7 9.2| 8.5 7.4|12.2 2.1| 4.2 5.2 10.9 9.8 15.7 14.2
17 41.2|12.9 47.8|48.4 10.0| 9.5 20.7 36.9 36.3 43.8 48.8 26.6|10.5 34.3|32.1 9.7| 5.1 23.8 18.3 19.6 37.5 35.7

Av. 31.6|21.3 28.7|19.0 18.1|12.7 20.3 28.6 29.6 33.4 36.1 22.9|17.7 21.6|21.2 12.3|10.7 18.6 20.0 21.0 29.3 29.6
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Fig. 9. Analysis on CPM-selected hard samples in terms of AU intensities using the DISFA dataset: (Upper) the percentage of hard samples within each
intensity; (lower) the percentage of each AU intensity within positive hard samples.

than iCPM, because Adaboost is a supervised method without
investigating unlabeled test data. Overall, Lap had the worst
performance due to its unsuitable assumption for spontaneous
facial expression detection, which enforced the data to have
similar decision values with their neighbors. Such assumption
was not guaranteed across training and test subjects drawn
from different distributions. Lap achieved better results on one
or two AUs in BP4D. This is because most frames in BP4D
dataset were frontal and thus had less appearance differences.

Both DAM and MDA assumed the person-specific classifier
is a linear combination of multiple source classifiers. When
positive and negative data were extremely imbalanced, e.g.,
AU1 on GFT, DAM performed poorly because each source
classifier was unreliable. MDA performed better than DAM
because MDA learned the weights for training data and source-
domains instead of using fixed weights, meanwhile, MDA had
a smooth assumption over test data. GFK performed similarly
to SVM, although it did not provide a way to deal with
multiple sources. GFK regarded all the training videos as a
domain and represented data on the Grassmann manifold from
training data to the test data. Across three datasets, iCPM
consistently outperformed three transfer learning methods.

With few exceptions, iCPM consistently outperformed the
alternative methods in both metrics. Because iCPM incorpo-
rated the spatial-temporal smoothness term (Sec. III-C), it
showed an obvious increase on F1-event compared to F1-
frame. Recall that AU detection aims for detecting temporal
events, we believe this spatial-temporal smoothness would
significantly improve the detection result. Note that the ex-
periments with HMM did not show consistent improvements
on either F1-frame or F1-event as iCPM did. A possible ex-
planation is that a trivial enforcement of temporal consistency
is likely to make some frames similar to their misclassified
neighbors, or over-smooth some short events. It indicated that
the performance edge of iCPM was given by both separating
easy/hard samples and its temporal-spatial smoothness.

D. Hard sample analysis

Automated facial AU detector could fail due to various
sources of errors. These errors are ubiquitous in AU de-
tection, but few existing studies address or systematically
identify them. In this section, we utilize CPM’s nature to
identify the errors as “hard samples”, in hope to provide a
better understanding in challenges of automated AU detection.
Specifically, we rigorously investigate the properties of hard
samples using the original CPM (Section III). The properties

for investigation include AU intensity, head pose, and propor-
tions of hard samples in different individuals or AUs.

AU intensity: AU intensity measures the strength of an AU,
telling if an AU is obvious or not. Because annotations of
AU intensity is available only in the DISFA dataset, we used
DISFA for this investigation. Intensity ranges from ‘A’ to ‘E’;
‘E’ reflects the most obvious AU. Fig. 9 illustrates the statistic
analysis in terms of AU intensity. We consider hard samples in
two cases. First, we investigate the percentage of hard samples
from each of 8 AUs in every intensity, as shown in the upper
row of Fig. 9. As can been seen, in almost all cases, the
lower the intensity, the more hard samples are discovered. This
observation is the most clear when we average over all AUs,
confirming that low-intensity AUs tend to be hard samples
with high probability. Second, we investigate the percentage
of each intensity within positive hard samples, as shown in the
lower row. As can be seen, most positive hard samples (those
with present AUs) have low level intensities, and no E-level
AUs were identified as hard samples. This finding suggests that
AUs in hard samples have relatively low intensities, providing
a proof that most hard positive samples come from low-
intensity AUs, while all E-level AUs are identified as easy
samples. Note that each figure in lower row does not sum
to 1, because we have excluded the ones with intensity ‘0’
(negative samples) from the statistic.

Low-intensity AUs v.s. head poses: Given above AU
intensity analysis, our findings suggest that subtle AUs (AU
with low intensities) are the majority of hard samples. In
addition, we have known that head pose could influence the
performance [19], [38]. Here we investigate the effects of
AU subtleness and head poses on GFT, BP4D, and DISFA
datasets. Because intensity annotations were unavailable in
these datasets, we measured the subtleness of an AU at frame
xi by its similarity to onset or offset frames:

s(xi) =
1

z
exp

(
−βmin

j∈I
d(xi,xj)

)
, (9)

where I denotes the index set of onset/offset frames, d(xi,xj)
is the distance (we used Euclidean distance) between frames xi
and xj , z and β are parameters that normalize the similarity to
(0, 1]. The head pose of a frame was measured by its rotation
angle to the frontal face. In particular, given a rotation matrix
R ∈ R3×3, the angle θ(R) between the face axis and the
optical axis of the camera is calculated as

θ(R) = arccos
R33

||u(R)||
, (10)
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Fig. 11. A proportion of hard training samples that CPM selected from the GFT dataset. (Left) Each bar denotes an averaged portion of hard samples over
11 AUs for a subject. (Right) Each bar denotes an averaged proportion over 50 subjects for each AU.

where u(R) =
[
0 0 1

]
R is the projection of rotation on

the optical axis of camera (z-axis). R33 is the element of R in
the third row and third column. Denote s̄I = 1

|I|
∑
i∈I s(xi)

as an averaged similarity over a set of frames I, and θ̄I =
1
|I|
∑
i∈I θ(xi) as an averaged pose angle. Let frames with

high similarities with onset/offset frames be Ih = {s(xi) ≥
τ s̄E ,∀i ∈ H}, and frames with low similarity I` = H \ Ih. τ
is a scaling factor controlling the factor, which we empirically
set τ = 1.5. For each AU, we computed their statistics in
AU subtleness and head poses as s̄Ih and θ̄I` , respectively.
Generally, subtle AUs in frontal faces lead to large values
in similarities, while large head poses could lead to small
values in similarities. Fig. 10 illustrates the CPM-identified
hard and easy training samples in the similarity-angle space
of (s̄Ih , θ̄I`). For three datasets, each AU is represented as two
points in the 2D space: one for easy samples and the other for
hard samples. As can be seen, easy samples consistently lie on
the bottom-left corner in the similarity-angle space, showing
that easy sample typically comes from frontal faces with low
similarity to onset/offset frames. On the other hand, hard
samples consistently lie on the right-up of the similarity-angle
coordinates. This justifies that sources of “sample hardness”
can be traced back to subtleness of an AU or large head poses.

Biases in individuals and AUs: We validated biases in
individual and AUs by investigating the proportions of hard
samples in different subjects or different AUs. We employed
GFT dataset for this experiment because it contains the
most frames and subjects of all considered datasets. Fig. 11
illustrates the proportions of hard samples in GFT dataset.
The left figure shows an average proportion of hard samples
in different subject. As can been seen, the proportions vary

between different subjects. For instance, some contains about
three times more hard samples than others. The right figure
shows the average proportion for each AU. The dark green bars
denote the proportions of hard positive samples computed as
#hard pos. samples
#all pos. samples , and similarly did the hard negative samples

were computed (light green bars). As can be seen, the pro-
portion differs across AUs. Note that for all AUs except 14,
proportion of hard positive samples are higher than those for
negative ones. That is because only AU14 has more positive
samples than negative ones.

VI. CONCLUSION

In this study, we proposed confidence preserving machine
(CPM) for facial AU detection. CPM exploits an easy-to-
hard strategy that first recognizes easy samples by a pair
of confident classifiers, and then tackles hard samples by
propagating predictions from easy samples to hard ones.
Considering that the confident classifiers could be influenced
by different distributions between training and test data, we
designed an iterative CPM (iCPM) that iteratively adds easy
test samples to the training process of confident classifiers.
We also developed an efficient kernel CPM (kCPM) to capture
non-linear boundaries between easy and hard samples. Results
on four spontaneous facial expression datasets show that our
methods outperform state-of-the-art semi-supervised learning,
transfer learning methods, and a boosting method. Current
CPM and its extensions are offline AU detectors. Future
work includes an “online” extension of CPM by incrementally
updating the confident classifiers and the QSS classifier, e.g.,
augmenting the easy training samples E for every t frames.
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APPENDIX A
SOLUTION TO PS-QSS CLASSIFIER wt

This appendix provides details about the derivation of solv-
ing the PS-QSS classifier in Problem (4), Sec. III-C. Without
loss of generality, we multiply Problem (4) by 1

2 to ease a
multiple of 2 during the derivation:

min
wt

1

2

∑
i∈Et

`(ŷi,w
>
t xi)+

γs
2
||wt||2

+
γI
2
w>t (DXte)>DXtewt, (11)

where Et is the index set of easy test samples, `(y, t) =
max(0, 1 − yt)2 is a quadratic loss, ŷi is the virtual label
that confident classifiers assign to a easy test sample, and
w>t (DXte)>D(Xte)wt is the smooth regularizer detailed in
Sec. III-C. We use ŷ ∈ R|Et| interchangeably to denote a
vector of ŷi. To solve Eq. (11), we use the Newton’s method
for solving the convex optimization problem. We denote the
Hessian matrix of Eq. (11) as H and the step size as α. A
Newton step at iteration (τ + 1) for wt follows the update:

w
(τ+1)
t = w

(τ)
t − αH−1∇wt

, (12)

where the first order Jacobian function ∇wt
and the second

order Hessian matrix H are computed as:

∇wt
= X>E EsvXEwt −EsvXE ŷ

+ γI(DXte)>DXtewt + γswt (13)

H = X>E EsvXE + γI(DXte)>DXte + γsId, (14)

where XE ∈ R|Et|×d denotes the samples in Et, Id is an
d × d identity matrix, and Esv ∈ R|Et|×|Et| is a diagonal
matrix that indicates support vectors in XE , i.e., Esv,ii = 1 if
the i-th sample of Et is the support vector, and 0 otherwise.
Specifically, support vectors are the frames with non-zero loss.
From Eqs. (13) and (14), we obtain:

∇wt = Hwt −EsvXE ŷ. (15)

Substituting Eq. (15) into the Newton step in Eq. (12), we
obtain the update for solving wt:

w
(τ+1)
t = (1− α)w

(τ)
t + αH−1EsvXE ŷ. (16)

Note that the second term in Eq. (16) involves an expensive
computation of matrix inverse. We avoid such inversion by
computing (H−1EsvXE ŷ) as the solution to the linear system
Hx = EsvXE ŷ.
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