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Abstract
Point clouds data, obtained from RGB-D cameras and laser scan-

ners, or constructed through structural from motion (SfM), are becom-
ing increasingly popular in the field of robotics perception. To allow
efficient robot interaction, we require not only the local appearance
and geometry, but also a higher level understanding of the scene. Such
semantic representation is also necessary for as-built Building Informa-
tion Model (BIM) creation and infrastructure inspection.

In this work, we present our discrete energy minimization based
approach for 3D scene parsing. First, we contribute to the understand-
ing of theoretical hardness of discrete energy minimization problems,
which are also known as the MAP inference for MRF/CRFs. This the-
ory explains why a previous scene parsing approach cannot have guar-
anteed optimality. Second, we propose a max-margin structural learn-
ing algorithm with performance guarantee. Finally, we demonstrate
the performance and efficiency of our algorithm in the application of
semantic labeling.
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1 Introduction

With the increased accessibility of 3D sensing, demand is increasing for efficient
methods to transform 3D data into higher level, semantically relevant representa-
tions. The work of this thesis is part of a larger project with such a goal. This project
is named the Aerial Robotic Infrastructure Analyst (ARIA). It aims to rapidly cre-
ate comprehensive, high-resolution, semantically rich 3D models of infrastructure
using unmanned aerial vehicles (UAVs). A semantic representation of the 3D scene
is important for reverse engineering the infrastructure. Such semantic representation
allows us to interact with the robot in a more natural way. For example, instead of
sending precise coordinates to the drone, the operator can now instruct the drone
to fly around a particular column and take some pictures of the abutment. Also, se-
mantic representation is necessary for structural analysis, which analyzes the loads
among different components of the bridge.

One of the key steps in the ARIA pipeline is 3D scene parsing, which is the
focus of this work. Many of the most popular and successful 3D scene parsing
algorithms can be reduced to some form of discrete energy minimization (or energy
minimization for short) [3, 5, 29, 61, 76, 78, 82, 100]. One of the benefits of energy
minimization methods is that they are able to capture contextual information or to
encode prior knowledge. These capabilities are particularly important in complex
3D scene parsing, where local cues may be insufficient. For example, in the task of
bridge component recognition (Figure 1), attached beams have similar appearance to
connecting beams. The difference is that attached beams are usually beneath the deck
and on top of connections whereas connecting beams are not. Therefore, to tell these

CAD model Point Cloud Ground Truth Labeling Algorithm Output

Fig. 1: Semantic labeling of a large-scale outdoor scene. We propose a generic structural learn-
ing algorithm with theoretical guarantees. When applied to scene parsing on the Cornell RGB-
D dataset [49, 3], it runs three times faster than the competing method while keeping the same
level of accuracy. On a larger scale problem of bridge component recognition, our algorithm
solves the scene parsing problem intractable to previous methods. The point cloud dataset
we created contains 11 domain-specific semantic class and is generated by merging several
simulated LiDAR scans taken from multiple locations in the CAD model scene.
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two classes apart, the scene parsing algorithms need to incorporate knowledge of how
a bridge is typically built, which governs the spatial relationships of the components.

For another example, in 3D indoor scene parsing [100], coplanarity of two planes
fitted on point clouds is a strong cue for them to be labeled as “wall.” In contrast, the
same coplanarity might not be useful if one of them is labeled as clutter. So the
existence of certain features on a pair of nodes in the graph encourages certain joint
labeling of the two nodes. These relationships can depend on the feature, the label
configuration, and the particular edge. In order to encode the interactions, we need a
parametrized energy function with a large parameter space 1. An immediate question
with such formulation is how to estimate these parameters autonomously.

Parameter estimation for energy minimization, also called structural learning,
fails when the input data becomes large and complex, due to the intractable inference
subroutine. Such intractability arises, for example, in 3D scene parsing of complex
structures, where a scene can be composed of hundreds or thousands of objects with
arbitrary connectivity. For these problems, it might not be possible to solve the infer-
ence subroutine exactly or even to approximate to a certain precision. However, the
inference subroutine, or the separation oracle to be precise, plays the important role
of finding the subgradients of the objective in a structural learning framework. Using
unbounded approximation for the separation oracle generates imperfect gradients,
causing the learning algorithm to fail, since the quality can be arbitrarily poor [25].
Two immediate questions would be why the separation oracle returns unbounded ap-
proximation and whether it would be possible to adopt a separation oracle with an
exact solution or bounded approximation in polynomial time.

To answer these questions, we delved into the theory of energy minimization.
Unfortunately, our theoretical investigation showed a negative result that the problem
is inapproximable in polynomial time. Therefore, the above problem of imperfect
gradients cannot be solved simply by adopting better inference subroutines. Such
practice is common in structural learning, since the inference subroutine is usually
treated as a modular “black box.” We work around this intractable formulation issue
by exploiting the properties of the joint problem of the overarching training and
the inference subroutine. This enables us to propose a theoretically sound structural
learning algorithm without the limitation of intractable inference.

We make three contributions in this thesis. First, we show the theoretical hardness
of energy minimization. We contribute to this theory by proving that energy mini-
mization, even in the pairwise 2-label case, and planar 3-label energy minimization
are in general exp-APX-complete. This implies that these problems are inapprox-
imable. As an auxiliary contribution, we summary existing complexity results of
energy minimization in an unified framework. Next, we present our structural learn-
ing algorithm. Exploiting the property of the max-margin structural learning frame-
work, we perform a series of binary submodular inferences to learn the weights in
the energy for multi-class classification. Lastly, we demonstrate our algorithm’s per-

1Note that the simple and popular smoothing prior model of energy minimization [17] is
unable to capture such sophisticated interactions.
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formance on the task of 3D scene parsing. Our algorithm runs much faster than our
competing method, with little sacrifice to the accuracy, and is able to solve problems
that are intractable to the competing methods.
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Part I

2 Energy Minimization and the Complexity Theory

Discrete energy minimization, also known as min-sum labeling [97] or weighted
constraint satisfaction (WCSP)1 [34], is a popular model for many problems in com-
puter vision, machine learning, bioinformatics, and natural language processing. In
particular, the problem arises in maximum a posteriori (MAP) inference for Markov
(conditional) random fields (MRFs/CRFs) [56]. In the most frequently used pair-
wise case, the discrete energy minimization problem (simply “energy minimization”
hereafter) is defined as

min
x∈LV

∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv), (1)

where xu is the label for node u in a graph G = (V, E). When the variables xu are
binary (Boolean):L = B = {0, 1}, the problem can be written as a quadratic polyno-
mial in x [14] and is known as quadratic pseudo-Boolean optimization (QPBO) [14].

In computer vision practice, energy minimization has found its place in semantic
segmentation [69], pose estimation [102], scene understanding [76], depth estima-
tion [58], optical flow estimation [101], image in-painting [80], and image denoising
[11]. For example, tree-structured models have been used to estimate pictorial struc-
tures such as body skeletons or facial landmarks [102], multi-label Potts models have
been used to enforce a smoothing prior for semantic segmentation [69], and general
pairwise models have been used for optimal flow estimation [101]. However, it may
not be appreciated that the energy minimization formulations used to model these
vision problems have greatly varied degrees of tractability or computational com-
plexity. For the three examples above, the first allows efficient exact inference, the
second admits a constant factor approximation, and the third has no quality guarantee
on the approximation of the optimum.

The study of complexity of energy minimization is a broad field. Energy mini-
mization problems are often intractable in practice except for special cases. While
many researchers analyze the time complexity of their algorithms (e.g., using big
O notation), it is beneficial to delve deeper to address the difficulty of the underly-
ing problem. The two most commonly known complexity classes are P (polynomial
time) and NP (nondeterministic polynomial time: all decision problems whose solu-
tions can be verified in polynomial time). However, these two complexity classes are
only defined for decision problems. The analogous complexity classes for optimiza-
tion problems are PO (P optimization) and NPO (NP optimization: all optimization

1WCSP is a more general problem, considering a bounded plus operation. It is itself a
special case of valued CSP, where the objective takes values in a more general valuation set.



problems whose solution feasibility can be verified in polynomial time). Optimiza-
tion problems form a superset of decision problems, since any decision problem can
be cast as an optimization over the set {yes, no}, i.e., P ⊂ PO and NP ⊂ NPO. The
NP-hardness of an optimization problem means it is at least as hard as (under Turing
reduction) the hardest decision problem in the class NP. If a problem is NP-hard,
then it is not in PO assuming P 6= NP.

Although optimal solutions for problems in NPO, but not in PO, are intractable,
it is sometimes possible to guarantee that a good solution (i.e., one that is worse than
the optimal by no more than a given factor) can be found in polynomial time. These
problems can therefore be further classified into class APX (constant factor approxi-
mation) and class exp-APX (inapproximable) with increasing complexity (Figure 1).
We can arrange energy minimization problems on this more detailed complexity
scale, originally established in [7], to provide vision researchers a new viewpoint for
complexity classification, with a focus on NP-hard optimization problems.

Here we make three core contributions, as explained in the next three paragraphs.
First, we prove the inapproximability result of QPBO and general energy minimiza-
tion. Second, we show that the same inapproximability result holds when restricting
to planar graphs with three or more labels. In the proof, we propose a novel micro-
graph structure-based reduction that can be used for algorithmic design as well. Fi-
nally, we present a unified framework and an overview of vision-related special cases
where the energy minimization problem can be solved in polynomial time or approx-
imated with a constant, logarithmic, or polynomial factor.

Binary and multi-label case (Section 5). It is known that QPBO (2-label case)
and the general energy minimization problem (multi-label case) are NP-hard [15],
because they generalize such classical NP-hard optimization problems on graphs
as vertex packing (maximum independent set) and the minimum and maximum cut
problems [37]. In this thesis, we show a stronger conclusion. We prove that QPBO
as well as general energy minimization are complete (being the hardest problems) in
the class exp-APX. Assuming P 6= NP, this implies that a polynomial time method
cannot have a guarantee of finding an approximation within a constant factor of the
optimal, and in fact, the only possible factor in polynomial time is exponential in the
input size. In practice, this means that a solution may be essentially arbitrarily bad.

Planar three or more label case (Section 6). Planar graphs form the underlying
graph structure for many computer vision and image processing tasks. It is known
that efficient exact algorithms exist for some special cases of planar 2-label energy
minimization problems [74]. In this thesis, we show that for the case of three or
more labels, planar energy minimization is exp-APX-complete, which means these
problems are as hard as general energy minimization. It is unknown that whether a
constant ratio approximation exists for planar 2-label problems in general.

Subclass problems (Section 7). Special cases for some energy minimization al-
gorithms relevant to computer vision are known to be tractable. However, detailed
complexity analysis of these algorithms is patchy and spread across numerous pa-
pers. In Section 7, we classify the complexity of these subclass problems and il-
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Complexity Class
Label Space,

Interaction Type,

Graph Structure

NP-hard

NPO

APX

(Bounded 

Approximation)

exp-APX

(Unbounded 

Approximation)

PO

(Global 

Optimum)

Multi-label Potts

Logic MRF

Convex Interaction

Binary Outerplanar

Submodular

3-label Planar

Binary or Multi-label

Bounded Treewidth

Fig. 1: Discrete energy minimization problems aligned on a complexity axis. Red/boldface
indicates new results proven in this thesis. This axis defines a partial ordering, since problems
within a complexity class are not ranked. Some problems discussed in this thesis are omitted
for simplicity.

lustrate some of their connections. Such an analysis can help computer vision re-
searchers become acquainted with existing complexity results relevant to energy
minimization and can aid in selecting an appropriate model for an application or
in designing new algorithms.

3 Related Work on the Complexity of Energy Minimization
Problems

Much of the work on complexity in computer vision has focused on experimental or
empirical comparison of inference methods, including influential studies on choosing
the best optimization techniques for specific classes of energy minimization prob-
lems [85, 36] and the PASCAL Probabilistic Inference Challenge, which focused on
the more general context of inference in graphical models [1]. In contrast, our work
focuses on theoretical computational complexity, rather than experimental analysis.

On the theoretical side, the NP-hardness of certain energy minimization prob-
lems is well studied. It has been shown that 2-label energy minimization is, in gen-
eral, NP-hard, but it can be in PO if it is submodular [40] or outerplanar [74]. For
multi-label problems, the NP-hardness was proven by reduction from the NP-hard
multi-way cut problem [19]. These results, however, say nothing about the complex-
ity of approximating the global optimum for the intractable cases. The complexity
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involving approximation has been studied for classical combinatorial problems, such
as MAX-CUT and MAX-2SAT, which are known to be APX-complete [63]. QPBO
generalizes such problems and is therefore APX-hard. This leaves a possibility that
QPBO may be in APX, i.e., approximable within a constant factor.

Energy minimization is often used to solve MAP inference for undirected graph-
ical models. In contrast to scarce results for energy minimization and undirected
graphical models, researchers have more extensively studied the computational com-
plexity of approximating the MAP solution for Bayesian networks, also known as di-
rected graphical models [54]. Abdelbar and Hedetniemi first proved the NP-hardness
for approximating the MAP assignment of directed graphical models in the value of
probability, i.e., finding x such that

p(x∗)

p(x)
≤ r(n) (2)

with a constant or polynomial ratio r(n) ≥ 1 is NP-hard and showing that this
problem is poly-APX-hard [2]. The probability approximation ratio is closest to the
energy ratio used in our work, but other approximation measures have also been stud-
ied. Kwisthout showed the NP-hardness for approximating MAPs with the measure
of additive value-, structure-, and rank-approximation [52, 53, 54]. He also inves-
tigated the hardness of expectation-approximation of MAP and found that no ran-
domized algorithm can expectation-approximate MAP in polynomial time with a
bounded margin of error unless NP ⊆ BPP, an assumption that is highly unlikely to
be true [54].

Unfortunately, the complexity results for directed models do not readily transfer
to undirected models and vice versa. In directed and undirected models, the graphs
represent different conditional independence relations, thus the underlying family
of probability distributions encoded by these two models is distinct, as detailed in
Appendix B. However, one can ask similar questions on the hardness of undirected
models in terms of various approximation measures. In this work, we answer two
questions, “How hard is it to approximate the MAP inference in the ratio of energy
(log probability) and the ratio of probability?” The complexity of structure-, rank-,
and expectation-approximation remain open questions for energy minimization.

4 Definitions and Notation

There are at least two different sets of definitions of what is considered an NP op-
timization problem [62, 7]. Here, we follow the notation of Ausiello et al [7] and
restate the definitions needed for us to state and prove our theorems in Sections 5
and 6 with our explanation of their relevance to our proofs.

Definition 4.1 (Optimization Problem, [7] Def. 1.16). An optimization problem P
is characterized by a quadruple (I,S,m, goal) where

1. I is the set of instances of P .

7



2. S is a function that associates to any input instance x ∈ I the set of feasible
solutions of x.

3. m is the measure function, defined for pairs (x, y) such that x ∈ I and y ∈
S(x). For every such pair (x, y), m(x, y) provides a positive integer.

4. goal ∈ {min,max}.

Notice the assumption that the cost is positive, and, in particular, it cannot be zero.

Definition 4.2 (Class NPO, [7] Def 1.17). An optimization problemP = (I,S,m, goal)
belongs to the class of NP optimization (NPO) problems if the following hold:

1. The set of instances I is recognizable in polynomial time.
2. There exists a polynomial q such that given an instance x ∈ I, for any y ∈
S(x), |y| < q(x) and, besides, for any y such that |y| < q(x), it is decidable in
polynomial time whether y ∈ S(x).

3. The measure function m is computable in polynomial time.

Definition 4.3 (Class PO, [7] Def 1.18). An optimization problem P belongs to the
class of PO if it is in NPO and there exists a polynomial-time algorithm that, for
any instance x ∈ I, returns an optimal solution y ∈ S∗(x), together with its value
m∗(x).

For intractable problems, it may be acceptable to seek an approximate solution
that is sufficiently close to optimal.

Definition 4.4 (Approximation Algorithm, [7] Def. 3.1). Given an optimization prob-
lem P = (I,S,m, goal) an algorithm A is an approximation algorithm for P if, for
any given instance x ∈ I, it returns an approximate solution, that is a feasible solu-
tion A(x) ∈ S(x).

Definition 4.5 (Performance Ratio, [7], Def. 3.6). Given an optimization problem
P , for any instance x of P and for any feasible solution y ∈ S(x), the performance
ratio, approximation ratio or approximation factor of y with respect to x is defined
as

R(x, y) = max
{m(x, y)

m∗(x)
,
m∗(x)

m(x, y)

}
, (3)

where m∗(x) is the measure of the optimal solution for the instance x.

Since m∗(x) is a positive integer, the performance ratio is well-defined. It is a
rational number in [1,∞). Notice that from this definition, it follows that if finding
a feasible solution, e.g. y ∈ S(x), is an NP-hard decision problem, then there ex-
ists no polynomial-time approximation algorithm for P , irrespective of the kind of
performance evaluation that one could possibly mean.

Definition 4.6 (r(n)-approximation, [7], Def. 8.1). Given an optimization problem
P in NPO, an approximation algorithm A for P , and a function r : N→ (1,∞), we
say that A is an r(n)-approximate algorithm for P if, for any instance x of P such

8



that S(x) 6= ∅, the performance ratio of the feasible solutionA(x) with respect to x
verifies the following inequality:

R(x,A(x)) ≤ r(|x|). (4)

Definition 4.7 (F -APX, [7], Def. 8.2). Given a class of functions F , F -APX is the
class of all NPO problems P such that, for some function r ∈ F , there exists a
polynomial-time r(n)-approximate algorithm for P .

The class of constant functions for F yields the complexity class APX. Together
with logarithmic, polynomial, and exponential functions applied in Definition 4.7,
the following complexity axis is established:

PO ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ exp-APX ⊆ NPO.

Since the measure m needs to be computable in polynomial time for NPO prob-
lems, the largest measure and thus the largest performance ratio is an exponential
function. But exp-APX is not equal to NPO (assuming P 6= NP) because NPO con-
tains problems whose feasible solutions cannot be found in polynomial time. For an
energy minimization problem, any label assignment is a feasible solution, implying
that all energy minimization problems are in exp-APX.

The standard approach for proofs in complexity theory is to perform a reduction
from a known NP-complete problem. Unfortunately, the most common polynomial-
time reductions ignore the quality of the solution in the approximated case. For ex-
ample, it is shown that any energy minimization problem can be reduced to a factor 2
approximable Potts model [65], however the reduction is not approximation preserv-
ing and is unable to show the hardness of general energy minimization in terms of
approximation. Therefore, it is necessary to use an approximation preserving (AP)
reduction to classify NPO problems that are not in PO, for which only the approx-
imation algorithms are tractable. AP-preserving reductions preserve the approxima-
tion ratio in a linear fashion, and thus preserve the membership in these complexity
classes. Formally,

Definition 4.8 (AP-reduction, [7] Def. 8.3). LetP1 andP2 be two problems in NPO.
P1 is said to be AP-reducible to P2, in symbols P1 ≤AP P2, if two functions π and σ
and a positive constant α exist such that 2:

1. For any instance x ∈ I1, π(x) ∈ I2.
2. For any instance x ∈ I1, if S1(x) 6= ∅ then S2(π(x)) 6= ∅.
3. For any instance x ∈ I1 and for any y ∈ S2(π(x)), σ(x, y) ∈ S1(x).
4. π and σ are computable by algorithms whose running time is polynomial.
5. For any instance x ∈ I1, for any rational r > 1, and for any y ∈ S2(π(x)),

R2(π(x), y) ≤ r implies (5)
R1(x, σ(x, y)) ≤ 1 + α(r − 1). (6)

2The complete definition contains a rational r for the the two mappings (π and σ) and it
is omitted here for simplicity.
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AP-reduction is the formal definition of the term ‘as hard as’ used in this thesis
unless otherwise specified. It defines a partial order among optimization problems.
With respect to this relationship, we can formally define the subclass containing the
hardest problems in a complexity class:

Definition 4.9 (C-hard and C-complete, [7] Def. 8.5). Given a class C of NPO prob-
lems, a problem P is C-hard if, for any P ′ ∈ C, P ′ ≤AP P . A C-hard problem is
C-complete if it belongs to C.

Intuitively, a complexity class C specifies the upper bound on the hardness of the
problems within, C-hard specifies the lower bound, and C-complete exactly specifies
the hardness.

5 Inapproximability for the General Case

In this section, we show that QPBO and general energy minimization are inapprox-
imable by proving they are exp-APX-complete. As previously mentioned, it is al-
ready known that these problems are NP-hard [15], but it was previously unknown
whether useful approximation guarantees were possible in the general case. The for-
mal statement of QPBO as an optimization problem is as follows:

Problem 1. QPBO
INSTANCE: A pseudo-Boolean function f : BV → N :

f(x) =
∑
v∈V

fu(xu) +
∑
u,v∈V

fuv(xu, xv), (7)

given by the collection of unary terms fu and pairwise terms fuv .
SOLUTION: Assignment of variables x ∈ BV .
MEASURE: min f(x) > 0.

Theorem 5.1. QPBO is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).
1. We observe that W3SAT-triv is known to be exp-APX-complete [7]. W3SAT-

triv is a 3-SAT problem with weights on the variables and an artificial, trivial
solution.

2. Each 3-clause in the conjunctive normal form can be represented as a polyno-
mial consisting of three binary variables. Together with representing the weights
with the unary terms, we arrive at a cubic Boolean minimization problem.

3. We use the method of [32] to transform the cubic Boolean problem into a
quadratic one, with polynomially many additional variables, which is an instance
of QPBO.

4. Together with an inverse mapping σ that we define, the above transforma-
tion defines an AP-reduction from W3SAT-triv to QPBO, i.e. W3SAT-triv ≤AP

QPBO. This proves that QPBO is exp-APX-hard.
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5. We observe that all energy minimization problems are in exp-APX and thereby
conclude that QPBO is exp-APX-complete.
This inapproximability result can be generalized to more than two labels.

Corollary 5.2. k-label energy minimization is exp-APX-complete for k ≥ 2.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing QPBO
≤AP k-label energy minimization for k ≥ 2.

We show in Corollary B.1 the inapproximability in energy (log probability) trans-
fer to probability in Equation (2) as well.

Taken together, this theorem and its corollaries form a very strong inapproxima-
bility result for general energy minimization 3. They imply not only NP-hardness,
but also that there is no algorithm that can approximate general energy minimization
with two or more labels with an approximation ratio better than some exponential
function in the input size. In other words, any approximation algorithm of the gen-
eral energy minimization problem can perform arbitrarily badly, and it would be
pointless to try to prove a bound on the approximation ratio for existing approxima-
tion algorithms for the general case. While this conclusion is disappointing, these
results serve as a clarification of grounds and guidance for model selection and algo-
rithm design. Instead of counting on an oracle that solves the energy minimization
problem, researchers should put efforts into selecting the proper formulation, trading
off expressiveness for tractability.

6 Inapproximability for the Planar Case

Efficient algorithms for energy minimization have been found for special cases of 2-
label planar graphs. Examples include planar 2-label problems without unary terms
and outerplanar 2-label problems (i.e., the graph structure remains planar after con-
necting to a common node) [74]. Grid structures over image pixels naturally give rise
to planar graphs in computer vision. Given their frequency of use in this domain, it
is natural to consider the complexity of more general cases involving planar graphs.

Planar 2-label

Special Cases

PO

Planar 2-label

The General Case

APX-hard

Planar 3 and More Labels

The General Case

exp-APX-complete (This Paper)

Fig. 2: Complexity for planar energy minimization problems. The “general case” implies no
restrictions on the pairwise interaction type. This thesis shows that the third category of prob-
lems is not efficiently approximable.

3These results automatically generalize to higher order cases as they subsume the pairwise
cases discussed here.
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Figure 2 visualizes the current state of knowledge of the complexity of energy min-
imization problems on planar graphs. In this section, we prove that for the case of
planar graphs with three or more labels, energy minimization is exp-APX-complete.
This result is important because it significantly reduces the space of potentially effi-
cient algorithms on planar graphs. The existence of constant ratio approximation for
planar 2-label problems in general remains an open question 4.

Theorem 6.1. Planar 3-label energy minimization is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).
1. We construct elementary gadgets to reduce any 3-label energy minimization

problem to a planar one with polynomially many auxiliary nodes.
2. Together with an inverse mapping σ that we define, the above construction

defines an AP-reduction, i.e., 3-label energy minimization ≤AP planar 3-label
energy minimization.

3. Since 3-label energy minimization is exp-APX-complete (Corollary 5.2) and
all energy minimization problems are in exp-APX, we thereby conclude that
planar 3-label energy minimization is exp-APX-complete.

Corollary 6.2. Planar k-label energy minimization is exp-APX-complete, for k ≥ 3.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing planar
3-label energy minimization ≤AP planar k-label energy minimization, for k ≥ 3.

These theorems show that the restricted case of planar graphs with 3 or more
labels is as hard as general case for energy minimization problems with the same
inapproximable implications discussed in Section 5.

The most novel and useful aspect of the proof of Theorem 6.1 is the planar re-
duction in Step 1. The reduction creates an equivalent planar representation to any
non-planar 3-label graph. That is, the graphs share the same optimal value. The re-
duction applies elementary constructions or “gadgets” to uncross two intersecting
edges. This process is repeated until all intersecting edges are uncrossed. Similar el-
ementary constructions were used to study the complexity of the linear programming
formulation of energy minimization problems [66, 65]. Our novel gadgets have three
key properties at the same time: 1) they are able to uncross intersecting edges, 2) they
work on non-relaxed problems, i.e., all indicator variables (or pseudomarginals to be
formal) are integral; and 3) they can be applied repeatedly to build an AP-reduction.

The two gadgets used in our reduction are illustrated in Figure 3. A 3-label node
can be encoded as a collection of 3 indicator variables with a one-hot constraint. In
the figure, a solid colored circle denotes a 3-label node, and a solid colored rectan-
gle denotes the equivalent node expressed with indicator variables (white circles).
For example, in Figure 3, a = 1 corresponds to the blue node taking the first label
value. The pairwise potentials (edges on the left part of the figures) can be viewed as
edge costs between the indicator variables (black lines on the right), e.g., fuv(3, 2)

4The planar 2-label problem in general is APX-hard, since it subsumes the APX problem
planar vertex cover [10].
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f g

a b c

d e

SPLIT UNCROSSCOPY

Fig. 3: Gadgets to represent a 3-label variable as two 2-label variables (SPLIT) and to copy the
values of two diagonal pairs of 2-label variables without edge crossing (UNCROSSCOPY).

is placed onto the edge between indicator c and e and is counted into the overall
measure if and only if c = e = 1. In our gadgets, drawn edges represent zero cost
while omitted edges represent positive infinity5. While the set of feasible solutions
remains the same, the gadget encourages certain labeling relationships, which, if not
satisfied, cause the overall measure to be infinity. Therefore, the encouraged rela-
tionships must be satisfied by any optimal solution. The two gadgets serve different
purposes:

SPLIT A 3-label node (blue) is split into two 2-label nodes (green). The shaded
circle represents a label with a positive infinite unary cost and thus creates a simu-
lated 2-label node. The encouraged relationships are
• a = 1⇔ d = 1 and f = 1.
• b = 1⇔ g = 1.
• c = 1⇔ e = 1 and f = 1.

Thus (d, f) encodes a, (d, g) and (e, g) both encode b and (e, f) encodes c.
UNCROSSCOPY The values of two 2-label nodes are encouraged to be the same

as their diagonal counterparts respectively (red to red, green to green) without cross-
ing with each other. The orange nodes are intermediate nodes that pass on the values.
All types of lines represent the same edge cost, which is 0. The color differences vi-
sualize the verification for each of the 4 possible states of two 2-label nodes. For
example, the cyan lines verify the case where the top-left (green) node takes the
values (1, 0) and the top-right (red) node takes the value (0, 1). It is clear that the
encouraged solution is for the bottom-left (red) node and the bottom-right (green)
node to take the value (0, 1) and (1, 0) respectively.

These two gadgets can be used to uncross the intersecting edges of two pairs of
3-label nodes (Figure 4, left). For a crossing edge (xu, xv), first a new 3-label node
xv′ is introduced preserving the same arbitrary interaction (red line) as before (Fig-
ure 4, middle). Then, the crossing edges (enclosed in the dotted circle) are uncrossed

5A very large number will also serve the same purpose, e.g., take the sum of the absolute
value of all energy terms and add 1. Therefore, we are not expanding the set of allowed energy
terms to include ∞.
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Fig. 4: Planar reduction for 3-label problems

by applying SPLIT and UNCROSSCOPY four times (Figure 4, right). Without loss
of generality, we can assume that no more than two edges intersect at a common
point except at their endpoints. This process can be applied repeatedly at each edge
crossing until there are no edge crossings left in the graph [66].

7 Complexity of Subclass Problems

In this section, we classify some of the special cases of energy minimization ac-
cording to our complexity axis (Figure 1). This classification can be viewed as a
reinterpretation of existing results from the literature into a unified framework.

7.1 Class PO (Global Optimum)

Polynomial time solvability may be achieved by considering two principal restric-
tions: those restricting the structure of the problem, i.e., the graph G, and those
restricting the type of allowed interactions, i.e., functions fuv .

Structure Restrictions. WhenG is a chain, energy minimization reduces to find-
ing a shortest path in the trellis graph, which can be solved using a classical dynamic
programming (DP) method known as the Viterbi algorithm [26]. The same DP prin-
ciple applies to graphs of bounded treewidth. Fixing all variables in a separator set
decouples the problem into independent optimization problems. For treewidth 1, the
separators are just individual vertices, and the problem is solved by a variant of
DP [64, 73]. For larger treewidths, the respective optimization procedure is known
as junction tree decomposition [56]. A loop is a simple example of a treewidth 2
problem. However, for a treewidth k problem, the time complexity is exponential in
k [56]. When G is an outer-planar graph, the problem can be solved by the method
of [74], which reduces it to a planar Ising model, for which efficient algorithms ex-
ist [81].

Interaction Restrictions. Submodularity is a restriction closely related to prob-
lems solvable by minimum cut. A quadratic pseudo-Boolean function f is submod-
ular iff its quadratic terms are non-positive. It is then known to be equivalent with
finding a minimum cut in a corresponding network [28]. Another way to state this

14



condition for QPBO is ∀(u, v) ∈ E , fuv(0, 1) + fuv(1, 0) ≥ fuv(0, 0) + fuv(1, 1).
However, submodularity is more general. It extends to higher-order and multi-label
problems. Submodularity is considered a discrete analog of convexity. Just as convex
functions are relatively easy to optimize, general submodular function minimization
can be solved in strongly polynomial time [75]. Kolmogorov and Zabin introduced
submodularity in computer vision and showed that binary 2nd order and 3rd order
submodular problems can be always reduced to minimum cut, which is much more
efficient than general submodular function minimization [45]. Živný et al. and Ra-
malingam et al. give more results on functions reducible to minimum cut [96, 67].
For QPBO on an unrestricted graph structure, the following dichotomy result has
been proven by Cohen et al. [22]: either the problem is submodular and thus in PO
or it is NP-hard (i.e., submodular problems are the only ones that are tractable in this
case).

For multi-label problems Ishikawa proposed a reduction to minimum cut for
problems with convex interactions, i.e., where fuv(xu, xv) = guv(xu − xv) and
guv is convex and symmetric [31]. It is worth noting that when the unary terms are
convex as well, the problem can be solved even more efficiently [30, 41]. The same
reduction [31] remains correct for a more general class of submodular multi-label
problems. In modern terminology, component-wise minimum x∧ y and component-
wise maximum x ∨ y of complete labelings x, y for all nodes are introduced (x, y ∈
LV ). These operations depend on the order of labels and, in turn, define a lat-
tice on the set of labelings. The function f is called submodular on the lattice if
f(x∨ y) + f(x∧ y) ≤ f(x) + f(y) for all x, y [92]. In the pairwise case, the condi-
tion can be simplified to the form of submodularity common in computer vision [67]:
fuv(i, j + 1) + fuv(i+ 1, j) ≥ fuv(i, j) + fuv(i+ 1, j + 1). In particular, it is easy
to see that a convex fuv satisfies it [31]. Kolmogorov [43] and Arora et al. [6] pro-
posed maxflow-like algorithms for higher order submodular energy minimization.
Schlesinger proposed an algorithm to find a reordering in which the problem is sub-
modular if one exists [72]. However, unlike in the binary case, solvable multi-label
problems are more diverse. A variety of problems are generalizations of submodular-
ity and are in PO, including symmetric tournament pair, submodularity on arbitrary
trees, submodularity on arbitrary lattices, skew bisubmodularity, and bisubmodular-
ity on arbitrary domains (see references in [90]). Thapper and Živný [89] and Kol-
mogorov [44] characterized these tractable classes and proved a similar dichotomy
result: a problem of unrestricted structure is either solvable by LP-relaxation (and
thus in PO) or it is NP-hard. It appears that LP relaxation is the most powerful and
general solving technique [104].

Mixed Restrictions. In comparison, results with mixed structure and interaction
restrictions are rare. One example is a planar Ising model without unary terms [81].
Since there is a restriction on structure (planarity) and unary terms, it does not fall
into any of the classes described above. Another example is the restriction to super-
modular functions on a bipartite graph, solvable by [72] or by LP relaxation, but not
falling under the characterization [90] because of the graph restriction.
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Algorithmic Applications. The aforementioned tractable formulations in PO
can be used to solve or approximate harder problems. Trees, cycles and planar prob-
lems are used in dual decomposition methods [46, 47, 12]. Binary submodular prob-
lems are used for finding an optimized crossover of two-candidate multi-label solu-
tions. An example of this technique, the expansion move algorithm, achieves a con-
stant approximation ratio for the Potts model [19]. Extended dynamic programming
can be used to solve restricted segmentation problems [24] and as move-making sub-
routine [95]. LP relaxation also provides approximation guarantees for many prob-
lems [8, 21, 38, 48], placing them in the APX or poly-APX class.

7.2 Class APX and Class log-APX (Bounded Approximation)

Problems that have bounded approximation in polynomial time usually have cer-
tain restriction on the interaction type. The Potts model may be the simplest and
most common way to enforce the smoothness of the labeling. Each pairwise interac-
tion depends on whether the neighboring labellings are the same, i.e. fuv(xu, xv) =
cuvδ(xu, xv). Boykov et al. showed a reduction to this problem from the NP-hard
multiway cut [19], also known to be APX-complete [7, 23]. They also proved that
their constructed alpha-expansion algorithm is a 2-approximate algorithm. These re-
sults prove that the Potts model is in APX but not in PO. However, their reduction
from multiway cut is not an AP-reduction, as it violates the third condition of AP-
reducibility. Therefore, it is still an open problem whether the Potts model is APX-
complete. Boykov et al. also showed that their algorithm can approximate the more
general problem of metric labeling [19]. The energy is called metric if, for an ar-
bitrary, finite label space L, the pairwise interaction satisfies a) fuv(α, β) = 0, b)
fuv(α, β) = fuv(β, α) ≥ 0, and c) fuv(α, β) ≤ fuv(β, γ) + fuv(β, γ), for any
labels α, β, γ ∈ L and any uv ∈ E . Although their approximation algorithm has
a bound on the performance ratio, the bound depends on the ratio of some pairwise
terms, a number that can grow exponentially large. For metric labeling with k la-
bels, Kleinberg et al. proposed an O(log k log log k)-approximation algorithm. This
bound was further improved to O(log k) by Chekuri et al. [20], making metric label-
ing a problem in log-APX 6.

We have seen that a problem with convex pairwise interactions is in PO. An
interesting variant is its truncated counterpart, i.e., fuv(xu, xv) = wuv min{d(xu −
xv),M}, where wuv is a non-negative weight, d is a convex symmetric function
to define the distance between two labels, and M is the truncating constant [94].
This problem is NP-hard [94], but Kumar et al. [51] have proposed an algorithm that
yields bounded approximations with a factor of 2 +

√
2 for linear distance functions

6An O(log k)-approximation implies an O(log |x|)-approximation (see Corollary C.1).
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and a factor ofO(
√
M) for quadratic distance functions7. This bound is analyzed for

more general distance functions by Kumar [50].
Another APX problem with implicit restrictions on the interaction type is logic

MRF [9]. It is a powerful higher order model able to encode arbitrary logical relations
of Boolean variables. It has energy function f(x) =

∑n
i wiCi, where each Ci is

a disjunctive clause involving a subset of Boolean variables x, and Ci = 1 if it
is satisfied and 0 otherwise. Each clause Ci is assigned a non-negative weight wi.
The goal is to find an assignment of x to maximize f(x). As disjunctive clauses
can be converted into polynomials, this is essentially a pseudo-Boolean optimization
problem. However, this is a special case of general 2-label energy minimization, as
its polynomial basis spans a subspace of the basis of the latter. Bach et al. [9] proved
that logic MRF is in APX by showing that it is a special case of MAX-SAT with
non-negative weights.

8 Practical Implications

The algorithmic implications of our inapproximability have been discussed above.
Here, we focus on the discussion of practical implications. The existence of an
approximation guarantee indicates a practically relevant class of problems where
one may expect reasonable performance. In structural learning for example, it is ac-
ceptable to have a constant factor approximation for the inference subroutine when
efficient exact algorithms are not available. Finley and Joachims proved that this
constant factor approximation guarantee yields a multiplicative bound on the learn-
ing objective, providing a relative guarantee for the quality of the learned parame-
ters [25]. An optimality guarantee is important, because the inference subroutine is
repeatedly called, and even a single poor approximation, which returns a not-so-bad
worst violator, will lead to the early termination of the structural learning algorithm.

However, despite having no approximation ratio guarantee, algorithms such as
the extended roof duality algorithm for QPBO [71] are still widely used. This gap
between theory and application applies not only to our results but to all other com-
plexity results as well. We list several key reasons for the potential lack of correspon-
dence between theoretical complexity guarantees and practical performance.

Complexity results address the worst case scenario. Our inapproximability
result guarantees that for any polynomial time algorithm, there exists an input in-
stance for which the algorithm will produce a very poor approximation. However,
applications often do not encounter the worst case. Such is the case with the sim-
plex algorithm, whose worst case complexity is exponential, yet it is widely used in
practice.

Objective function is not the final evaluation criterion. In many image pro-
cessing tasks, the final evaluation criterion is the number of pixels correctly labeled.

7In these truncated convex problems, the ratio bound is defined for the pairwise part of the
energy (1). The approximation ratio in accordance to our definition is obtained assuming the
unary terms are non-negative.
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The relation between the energy value and the accuracy is implicit. In many cases,
a local optimum is good enough to produce a high labeling accuracy and a visually
appealing labeling.

Other forms of optimality guarantee or indicator exist. Approximation mea-
sures in the distance of solutions or in the expectation of the objective value are likely
to be prohibitive for energy minimization, as they are for Bayesian networks [52, 53,
54]. On the other hand, a family of energy minimization algorithms has the property
of being persistent or partial optimal, meaning a subset of nodes have consistent
labeling with the global optimal one [13, 14]. Rather than being an optimality guar-
antee, persistency is an optimality indicator. In the worst case, the set of persistent
labelings could be empty, yet the percentage of persistent labelings over the all the
nodes gives us a notion of the algorithm’s performance on this particular input in-
stance. Persistency is also useful in reducing the size of the search space [39, 79].
Similarly, the per-instance integrality gap of duality based methods is another form of
optimality indicator and can be exponentially large for problems in general [48, 84].
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Part II

9 An Alternative to the Inapproximable Inference Subroutine

Now we have seen that energy minimization is in general inapproximable. Therefore,
without limiting the label set, the potential type or the graph structure, we cannot
expect to solve the imperfect gradient problem in structural learning with a better in-
ference algorithm. However, an alternative is to modify the structural learning frame-
work. In the next few sections, we show that considering together the joint problem
of the overarching training and the inference subroutine enables us to exploit prop-
erties that would not be possible otherwise. First, we propose a theoretically sound
structural learning algorithm without the limitation of intractable inference. We re-
view and exploit the properties of the joint problem of training time inference and
learning. By modifying the training procedure, we can perform a training time in-
ference corresponding to a binary submodular problem that is much easier than the
original one while keeping the testing time inference problem almost the same. This
method can be extended to learn higher order potentials as well. Second, while mak-
ing no assumptions on the structure of the graph or on the potential type, we prove
that our algorithm returns a solution within a given absolute error relative to the
global optimal within the feasible parameter space. In addition, we demonstrate our
algorithm’s performance on two 3D scene parsing datasets. On one dataset, our al-
gorithm runs three times faster than the competing method [3] and achieves the same
level of accuracy. Our algorithm finds a solution efficiently on the second, more com-
plex problem, which is intractable for competing methods. Also, we show that what
is learned by the model captures domain knowledge and is easily interpretable.

10 Related Work on Structural Learning

Most existing literature on structural learning is based on the max-margin formula-
tion proposed by Taskar et al. [70]. Directly minimizing the negative log-likelihood
is NP-hard for many problems, and approximation must be used. The max-margin
formulation uses a convex surrogate loss, removing the need for computing the par-
tition function. Joachims et al. [35, 93] generalized this max-margin formulation
to arbitrary structural outputs, a method known as structural SVM. The concept of
max-margin structural learning has been successfully applied to many problems in
computer vision. These works usually have limiting assumptions: tree-like or spe-
cial structure output [59, 76, 102], small structural space [29, 100], or restricted
potential type [4, 60, 87, 86]. Under these assumptions, exact inference is possible.
However, we don’t make these assumptions, yet we can still apply exact inference
during training. Other works adopt approximate inference for the separation oracle



[3]. These methods have no guarantee of the solution quality. Notably, a common ap-
proximation scheme is convex programming relaxation [33]. Our early experiments
show that methods based on this type of relaxation produce results with undesirably
low accuracy.

The most similar work to our approach is [25], in which they point out the prob-
lem of training structural SVMs when exact inference is not possible and proposed
two workarounds. The first one is to assume a constant factor approximation of the
inference procedure. However, it was shown in [57] that such an assumption is not
reasonable, as the problem cannot be approximated with any meaningful guarantee.
The second workaround is to use the persistency property of binary MRFs, yet there
is no quality guarantee of the learned parameters. In addition, we find the approach
often fails in practice. Many works [55, 68, 77] focus on improving the performance
of structural SVM itself, but still they face the problem of an imperfect separation
oracle.

Similar to previous works, our algorithm is based on the max-margin formulation
[70]. We adopt non-negative constraints to restrict the parameter space [86, 87], but
in combination with a different loss and a different separation oracle for tractability.

The separation oracle in structural learning is frequently solved by energy mini-
mization. Here, we highlight energy minimization algorithms used in this work and
refer readers to [36] for a complete overview. Boykov and Kolmologrov (BK) [18]
solved MAP inference for binary MRFs with a specially optimized max-flow al-
gorithm. Rother et al. [71] proposed the Quadratic Pseudo-Boolean Optimization
(QPBO) algorithm for binary problems of arbitrary potentials. They first created a
different auxiliary graph, in which each original node corresponds exactly to two
non-terminal nodes in the new graph. Then they ran the BK algorithm on this aux-
iliary graph. Note that some nodes will remain unlabeled if the corresponding non-
terminal node pair has conflicting assignments. For multi-class problems of arbitrary
potentials, Kolmologrov [42] built a convergent version of the tree-reweighted max-
product message passing algorithm (TRW-S). By creating a proper local polytope, an
energy minimization problem can be reduced to an integer linear programming (ILP)
problem [98], and the integral constraint can be removed to derive an approximation
algorithm (LP).

11 Our Structural Learning Algorithm

We propose a max-margin structural learning algorithm for a pairwise model with
a linear discriminant function. Our algorithm enables tractable exact training time
inference through our submodular formulation, which leads to a guaranteed solu-
tion quality. Submodularity cannot be easily enforced because it requires a binary
problem and limits the potential type. As adopted in standard machine learning al-
gorithms, multi-class classification can be solved by training a set of 1-vs-all binary
classifiers and post-processing the classifier output to make a final one-hot prediction
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where only a single class is labeled for each example. We adopt a similar idea. Dur-
ing training, we solve a set of binary classification problems but without resolving
the conflicts among the binary classifiers. This setup can still learn the desired pa-
rameters, since the loss will encourage the parameters to make one-hot predictions.
During testing, we enforce one-hot prediction by adding a hard constraint to the in-
ference problem. Because we are enforcing the submoduarity on the transformed
binary problems, the potential type of the original energy is not constrained. The rest
of this section introduces the desired theoretical properties of the inference proce-
dure and the learning framework before showing our modifications to exploit these
properties to build to our structural learning algorithm.

11.1 Problems and Properties

In this subsection, we first review the energy minimization formulation and the sub-
modular property. Then we introduce our testing and training formulation.

Problem 1. Discrete Energy Minimization
• Given a graph G = (V, E), define the energy function

U(y) =
∑
u∈V

Uu(yu) +
∑

(u,v)∈E

Uuv(yu, yv) (1)

where Uuv(yu, yv) = Uvu(yv, yu)
• Energy minimization assigns to each node a label from a finite label set L to

minimize the energy

y∗ = argmin
y∈L|V|

U(y) (2)

Definition 11.1 ([71]). A binary (two-class) energy minimization problem is sub-
modular if and only if ∀u, v ∈ V

Uuv(0, 1) + Uuv(1, 0) ≥ Uuv(0, 0) + Uuv(1, 1) (3)

It is well-known that if the energy is submodular, the global minimum can be
found in polynomial time using graph cut. For multi-class problems, submodularity
[67] is hard to exploit due to the order dependency and magnitude constraint. The
definition of submodularity requires the label set to be a totally ordered set, e.g.,
a depth value from 0 to 255. This definition also constrains the relative magnitude
of potentials on the same edge as in the binary case. These two conditions are not
generally applicable.

Another interesting property, which is exploited by [25], is persistency, or partial
optimality. Comparing to submodularity, persistency is an optimality indicator rather
than an optimality guarantee. If we run the QPBO algorithm [71] on binary problems
with arbitrary potentials, some nodes will be left unlabeled, but labelled nodes are
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part of the globally optimal solution. Boros et al. [16] showed that in an equivalent
linear programming formulation, all variables corresponding to the unlabeled nodes
take 0.5 in optimal solution. Let’s assume we accept relaxed ([0, 1] instead of {0, 1})
solutions, then running QPBO and replacing the unlabeled nodes with 0.5 will result
in an approximation algorithm, which we denote as QPBO-R.

An immediate question is how good the QPBO-R approximation is. This ques-
tion is answered from a more general perspective in [57]: assuming P 6= NP, for
binary energy minimization in general, there does not exist a constant ratio approxi-
mation algorithm or even one with a ratio subexponential in the input size. Unfortu-
nately, the theoretical properties of many structural learning algorithms [25, 55, 77]
depend on a separation oracle with at least a constant ratio approximation, and the
finding in [57] makes pointless the assumption along with the derived properties for
these algorithms when applied to energy minimization in general.

We use full potential structural prediction as our testing time formulation.

Problem 2. Full Potential Structural Prediction
• Given a node feature extractor δ(·) and an edge feature extractor δ(·, ·), ∀k, l ∈ L

define the unary and pairwise potentials

Uu(yu = k) := −wk
u · δ(u) (4)

Up(yu = k, yv = l) := −wkl
uv · δ(u, v) (5)

• Denote the graph G as x, and define the linear discriminant function (score
function)

f(x,y) := −U(y) = wᵀΨ(x,y) (6)

• Ψ(x,y) is called the joint feature map. Using binary encoding yku = δ(yu =
k), Ψ(x,y) can be decomposed as follows:

Ψ(x,y)wk
u

=
∑
u∈V

ykuδ(u) (7)

Ψ(x,y)wkl
uv

=
∑

(u,v)∈E

ykuy
l
vδ(u, v) (8)

• Then the testing time inference problem is

ŷ = argmax
y∈L|V|

f(x,y) = argmin
y∈L|V|

U(y) (9)

• By abuse of notation, let (xi,yi) be an example from a datasetD = {(xi,yi)}ni=1.

The potentials depend on both the parameters and the features, so given w,
f = wᵀΨ(xi,yi) defines an energy function for an example xi. An ideal set of
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parameters should put the ground truth at or close to the place of lowest energy/high-
est score for each example so that the output of testing time inference is at or close
to the ground truth. A linear score function makes the parameter estimation easier
than non-linear forms. For some structural learning algorithms, kernel tricks can be
applied to capture complicated mappings [35].

Full Potential Interaction Notice here we have a full potential matrixUp(yku, y
l
v)

for each edge. This generalizes the well-known Potts model and associative Markov
networks [87], where only the diagonal terms are non-zero. The relative magnitude
of diagonal terms and off-diagonal terms can be arbitrary. This implies that the model
is more expressive as it can be both attractive (modeling a smoothing prior) or re-
pulsive. Moreover, the potential matrix does not need to be symmetric. Thus, such
a formulation is able to encode directed relationships like relative positions, e.g., a
computer monitor is usually placed above desk.

Next, we present the standard learning framework before presenting our modifi-
cations.

Problem 3. Structural SVM [35]

min
w,ξ≥0

1

2
||w||2 + Cξ (10)

s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :
1

n
wᵀ

n∑
i=1

(
Ψ − Ψ̄

)
≥ 1

n

n∑
i=1

∆(yi, ȳi)− ξ, (11)

where Ψ and Ψ̄ are shorthand for Ψ(xi,yi) and Ψ(xi, ȳi).

Structural SVMs are an extension to standard SVMs for structural outputs. A
structural SVM finds the optimal set of parameters that creates a large margin relative
to the loss for each structural example in the dataset. Here C is the parameter that
controls the relative weighting between regularization and risk minimization, and
∆(yi, ŷ) is a loss function encoding the penalty for a wrong labeling.

Due to the combinatorial nature of the label space (Yn = L|V|) , its size, i.e.,
the number of constraints (11) is exponential. Joachims et al. [35, 93] proposed the
cutting-plane algorithm, which finds the optimal solution by adding only a polyno-
mial number of constraints, given a separation oracle to compute the subgradients.

Definition 11.2. Given a loss function ∆(yi, ŷ), the loss augmented inference or
separation oracle is a procedure that finds

ȳi = argmax
ŷ∈Y

∆(yi, ŷ) + wᵀΨ(xi, ŷ) (12)

The loss augmented inference finds the worst violators of the margin. Instead of
bounding in the entire structural space ŷ ∈ Y , the cutting-plane algorithm bounds the
violation of the worst violators. It can be shown that this is equivalent to solving the
original problem, but now the algorithm terminates in polynomial time and returns a
globally optimal solution.
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11.2 The Joint Problem for Parameter Estimation

This subsection describes our modifications to solve the joint problem that is not
limited by the intractable separation oracle as in previous approaches. For the loss
fuction, we use Hamming loss with the goal of labeling each node in the graph cor-
rectly:

∆(y, ȳ) = ρ

[
1− 1

|V|
∑
u∈V

δ(yu = ȳu)

]
(13)

The loss equals to (1 - accuracy) scaled by a factor ρ. The structure of the loss is
simple, and the loss can be merged into the unary potentials, making loss augmented
problem the same problem as Problem 2.

Multi-class to Binary Transformation For loss augmented inference, we use a
binary encoding and remove the sum-up-to-1 constraint (

∑
k∈L y

k
u = 1). The loss

also needs to be slightly modified to address the removal of the constraint. We adopt
the Hamming loss for binary encoding:

∆b(y, ȳ) =
ρ

|V|
∑
u∈V

∑
k∈L

δ(yku 6= ȳku). (14)

The above modifications are based on the following observations:
• With the sum-up-to-1 constraint, ∆(y, ȳ) and ∆b(y, ȳ) are equivalent;
• Without the sum-up-to-1 constraint, let δ(yu = ȳu) =

∏
k∈L δ(y

k
u = ȳku), then

∆b(y, ȳ) is a tight upper bound of ∆(y, ȳ) in that ∆b(y, ȳ) ≥ ∆(y, ȳ) and
∆b(y, ȳ) = 0 if and only if ∆(y, ȳ) = 0;
In our approach, the removal of the sum-up-to-1 constraint changes the separa-

tion oracle, and the binary labeling might not have a consistent interpretation of the
original labeling during training. However, the tightness of the loss function shows
that we are effectively learning parameters to minimize the original loss. The sum-
up-to-1 constraint is implicitly enforced in a soft manner through the loss minimiza-
tion during training. Soft labeling (yku ∈ [0, 1]) is adopted in [3, 25]. In this case, the
loss is defined by replacing δ(yku 6= ȳku) with |yku− ȳku| in (14). In contrast to the hard
labeling that we use, for soft labeling without the sum-up-to-1 constraint, ∆b(y, ȳ)
does not have the same property of being a tight upper bound.

Enforcing Submodularity As presented in Section 11.1, without any relaxation, the
transformed binary problem puts great challenge to the inference subroutine because
the problem is NP-hard and not even possible to approximate with a guarantee. Thus,
we need to enforce submodularity to enable tractable exact inference.
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The transformed binary problem U b takes the form

U bp(yku, y
l
u) = ykuy

l
uUp(yu = k, yv = l). (15)

Note that it does not have a full potential matrix, and only U bp(1, 1) can be nonzero.
If, for all edges, U bp(1, 1) is non-positive, the whole energy satisfies (3) and is sub-
modular. Since our algorithm depends on only U bp(1, 1) being non-zero, the multi-
class-to-binary transformation must also be applied to binary classification problems,
which is not necessary in the typical 1-vs-all setup.

One way to satisfy the condition of U bp(1, 1) ≤ 0 is to have all edge features
δ(·, ·) and pairwise parameters wkl

uv be non-negative. It is reasonable to assume pair-
wise features can be always non-negative, since in many applications, the features
are normalized to [0, 1] during a pre-processing step. Therefore, we add additional
constraints only on the weights (18). We summarize our formulation as follows:

Problem 4. Partially Non-negative Structural SVM

min
w,ξ≥0

1

2
||w||2 + Cξ (16)

s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :

1

n
wᵀ

n∑
i=1

(
Ψ − Ψ̄

)
≥ 1

n

n∑
i=1

∆b(yi, ȳi)− ξ (17)

∀j ∈ P , wj ≥ 0 (18)

where Ψ and Ψ̄ are short for Ψ(xi,yi) and Ψ(xi, ȳi). P is the set of indices where
the parameter should be non-negative, e.g., the pairwise weights.

To solve this problem, we adopt the standard max-margin formulation. Our com-
plete algorithm is shown in Algorithm 1.

Solving the Modified Quadratic Program Non-negative constraints have been pre-
viously employed in structural learning but in a different context. In pose estimation
[102, 103], the quadratic spring terms must be non-negative. These works employ a
tree-structured model, so exact inference is possible through dynamic programming.
It is shown in [68] that for solvers in the primal space, adding non-negative con-
straints amounts to clipping the parameters during the update step while leaving the
rest unchanged. We adopt the dual coordinate descent solver from [68] to solve the
minimization problem in Problem 4. In practice, however, we find that a commer-
cial general purpose QP solver, namely Gurobi [27], is several times faster under the
same tolerance setting.
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Algorithm 1 Submodular Structural SVM for Non-submodular Problems
1: W ← ∅ . A working set of worst violators
2: η ←∞ . The new violation in each iteration
3: ξ ← 0 . The violation of the entire working set
4: while η − ξ > ε do
5: (w, ξ)← argminw,ξ≥0

1
2 ||w||

2 + Cξ
s.t. ∀(ȳ1, ..., ȳn) ∈ W ,

1
nw

ᵀ∑n
i=1 [Ψ(xi,yi)− Ψ(xi, ȳi)] ≥ 1

n

∑n
i=1∆b(yi, ȳi)− ξ

∀j ∈ P , wj ≥ 0
6: for i = 1,...,n do
7: ȳi ← argmaxŷ∈Y ∆b(yi, ŷ) + wᵀΨ(xi, ŷ) . Exact inference is now

possible
8: end for
9: W ←W ∪ {(ȳ1, ..., ȳn)}

10: η ← 1
n

∑n
i=1∆b(yi, ȳi)− 1

nw
ᵀ∑n

i=1 [Ψ(xi,yi)− Ψ(xi, ȳi)]
11: end while
12: return w

11.3 Generalization to Higher Order Potentials

Higher order potentials capture more interactions than the pairwise potentials. For
example, a column between a pair of abutments is a 3rd order interaction. Our gen-
eralization is based on the pairwise reduction from arbitrary high order potentials
proposed by Ishikawa et al. [32]. Taking the 3rd order case as an example, the reduc-
tion is based on the identity over Boolean variables

−xyz = min
w∈{0,1}

−w(x+ y + z − 2) (19)

If the 3rd order potential is non-positive, then the constructed pairwise potentials
in the reduction are also non-positive and vice versa. This enables us to enforce
submodularity on 3rd order energy minimization problems. Likewise, we can apply
similar constraints for even higher order problems. Details for general higher order
can be found in the supplementary material.

12 Analysis of Our Algorithm

The following theorems prove that our algorithm is both efficient and globally opti-
mal.

Theorem 12.1. Correctness of the algorithm For any training datasets D and any
ε > 0, if (w∗, ξ∗) is the optimal solution of Problem 4, then Algorithm 1 returns a
solution (w, ξ) that has a better objective value than (w∗, ξ∗), and for which (w, ξ+
ε) is feasible in Problem 4.
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Accu macro P macro R Time Speedup
[3] 81.45 76.79 70.07 4.11h 1.00
Ours 80.72 73.42 69.74 1.34h 3.06

Table 1: Performance comparison on the Cornell RGB-D Dataset (office scenes). The sec-
ond column denotes the overall accuracy. The ’P’ and ’R’ here stand for precision and recall
respectively. As defined in [3], the macro P or R equates to class average P or R.

Proof. The original proof presented in [35] holds, since it does not depend on any
constraints involving only w, and in our case, all separation oracles during training
are exact.

Theorem 12.2. Convergence of the algorithm Algorithm 1 terminates in polyno-
mial time.

The proof is provided in the supplementary material. Briefly, the separation ora-
cle terminates in polynomial time, and adding negative constraints does not change
the nature of the convex optimization in line 5. Note that the actual convergence rate
depends on the QP solver used for line 5.

13 Testing Time Inference

While we have a transformed and restricted problem during training, during test-
ing we might still have a full potential matrix for each potential. The only limita-
tion in the expressiveness of the formulation is that all the pairwise potentials are
non-positive (in the sense of minimization). We show in our experiments that this
restriction has limited effects on the overall accuracy. At testing time, the inference
is performed independently on each example, and the error does not accumulate as
it does at training time. If the graph is small or sparse, exact inference is possible
through ILP. Otherwise, TRW-S [42] provides good approximation in practice [36]
for general potentials.

14 Experiments

We demonstrate the performance of our algorithm on the standard Cornell RGB-D
dataset and a larger scale bridge dataset, which we created. On Cornell’s dataset,
our algorithm runs three times faster while keeping the same level of accuracy as
the competing method. On the bridge dataset, the competing methods are unable to
solve the scene parsing problem due to the intractable seperation oracle. In contrast,
our algorithm is able to solve it efficiently and accurately. In addition, we visual-
ize the weights learned by our algorithm to show that our model captures domain
knowledge.
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14.1 Cornell RGB-D Dataset: Understanding 3D Scenes

The Cornell RGB-D dataset [49, 3] is an indoor point cloud dataset captured by
Microsoft Kinect. The point clouds are obtained through merging multiple RGB-
D views using the simultaneous localization and mapping (SLAM) algorithm. The
point clouds are clustered into multiple segments. This dataset is suitable for testing
structural learning prediction algorithms because it is necessary to take into account
the neighborhood interaction for each node in order to label the segments correctly.

We compare our approach with [3] and use the same segmentation and features to
ensure a fair comparison. The pairwise features cover visual appearance, local shape
and geometry, and geometric context. Their algorithm adopts the persistency based
approach in [25] (QPBO-R in Section 11.1). Note this method has no guarantee of
optimality and an empirical heuristic needs to be adopted as discussed below. A
variant of their algorithm makes use of additional class label information to limit the
pairwise interactions to a predefined set of classes. The method assumes some labels
are parts of an object, and restricts some potentials to be only among these labels.
This information is usually not available on other structural datasets, so we do not
include it in our comparison. The 4-fold cross-validation results are summarized
in Table 1. The first row is taken from their paper. Our confusion matrix is shown
in Figure 1. Notice that even with the additional constraints, our algorithm achieves
approximately the same accuracy as [3] in 1/3 the time and with the critical advantage
of a theoretical guarantee bounding the error.
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Fig. 1: Confusion matrix of our algorithm on the Cornell RGB-D Dataset (office scenes).
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Fig. 2: Confusion matrix of our algorithm on the bridge dataset.

The competing method’s implementation uses an undocumented heuristic that is
vital for the learning procedure. In our algorithm, there is no need for this heuristic,
because no relaxation is involved. Recall the rationale for interpreting an unlabeled
node as 0.5 in Section 3. To compute the joint feature map Ψ(x,y), we need to
compute ykuy

l
v in (8). If both are unlabeled, then ykuy

l
v would be 0.25. In [3], an

additional measure is taken when neither side is labeled by QPBO:
• ykuylv is interpreted as 0.5, if the coefficient, i.e., U bp(yku, y

l
u), is positive;

• ykuylv is interpreted as 0, otherwise.
We found that without this rounding heuristic, the learning algorithm in [3] ter-

minates after a dozen or fewer iterations with a newly found violation smaller than
the violation of the current working set, which is impossible if the loss augmented
inference is exact. Such early termination prevents the structral SVM from learn-
ing any meaningful potentials, and the prediction is usually a failure. This effect has
been observed using both their implementation and our independent implementation
on Cornell’s RGB-D Dataset and the bridge dataset in next subsection.

14.2 Bridge Dataset: Scaling up to Complex Structures

For a second experiment, we tested out our algorithm on a domain-specific dataset to
evaluate its performance against a large dataset with complex structures. To this aim,
we created a synthetic but realistic bridge dataset (Figure 1) modeling complicated
building structure. Such a dataset is useful for developing 3D reverse engineering
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Fig. 3: The pairwise weights for the on-top-of feature. These weights capture domain knowl-
edge for bridge architecture.

techniques, which can find their application in as-built Building Information Model
(BIM) creation [99] and infrastructure inspection [83]. Unlike color or RGB-D im-
ages, full building laser scan datasets are scarce, thus we utilize a realistic synthetic
dataset. We constructed CAD models of bridges, and generated the point clouds by
placing a virtual laser scanner, complete with a noise model, in the scene as if we
are actually conducting actual field scans. Multiple scans are taken per scene and
merged into a single point cloud. In total, we have 25 bridge models of five different
types. Each model contains 200k to 500k 3D points after down-sampling.

Similar to the Cornell RGB-D dataset, the task is to semantically label the seg-
ments, and we define eleven semantic classes for this dataset. We train a random
forest classifier on SHOT descriptors [91] to obtain a label class distribution for each
point. The descriptor encodes histogram of local surface information. We take the
mean class distribution as the node feature for each segment. We use ground truth
segmentation for benchmarking the contextual classification algorithms. We build a
graph based on the physical adjacency of the segments and use on-top-of, principal
direction consistency, and perpendicularity as three edge features. The accuracy is
computed at the node level. On average, the bridge scenes contain ten times more
segments and nine times more edges than the Cornell RGB-D dataset. We split the
dataset into five folds, each containing five bridge models.

The cross-validation result is summarized in Figure 2 and visualized in Figure 4.
We obtain 90.07% overall accuracy for semantic labeling the scene with 11 classes.
For a single fold, the training takes 1.3 hours, and testing takes 89 seconds for five
scenes. We attempted to use [55] and [3] as competing methods. However, the first
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Ground Truth Algorithm Output Ground Truth (Zoomed In) Algorithm Output (Zoomed In)

Fig. 4: Output of our algorithm on the bridge dataset. Some errors can be seen by comparing
the 3rd and 4th columns.

fails due to the poor separation oracle and the latter could not handle this large scale
of data and did not terminate after 7.5 days.
Capturing domain knowledge. Our algorithm is able to encode domain knowledge
in the pairwise weights. For instance, we visualize the weights for the on-top-of
feature in Figure 3. The feature is a binary indicator, and the product of this feature
and the corresponding weight adds towards the overall score. The matrix reveals
typical structural relationships seen in bridge architecture, e.g., the abutment and
attached beam are usually placed beneath the deck.

15 Conclusion

In this thesis, we investigated the problems of identifying the computational com-
plexity of energy minimization and estimating the parameters for energy minimiza-
tion.

We showed that general energy minimization, even in the 2-label pairwise case,
and planar energy minimization with three or more labels are exp-APX-complete.
Our finding rules out the existence of any approximation algorithm with a sub-
exponential approximation ratio in the input size for these two problems, including
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constant factor approximations. Moreover, we collected and reviewed the compu-
tational complexity of several subclass problems and arranged them on a complex-
ity scale consisting of three major complexity classes – PO, APX, and exp-APX,
corresponding to problems that are solvable, approximable, and inapproximable in
polynomial time. Problems in the first two complexity classes can serve as alterna-
tive tractable formulations to the inapproximable ones. Our work can help vision re-
searchers to select an appropriate model for an application or guide them in designing
new algorithms. These altogether set up a new viewpoint for interpreting and classi-
fying the complexity of optimization problems for the computer vision community.
In the future, it will be interesting to consider the open questions of the complexity
of structure-, rank-, and expectation-approximation for energy minimization.

For the parameter estimation of energy minimization, we proposed a method to
overcome the problem caused by using unbounded approximation for the separation
oracle in structural learning. Through exploiting the properties of the joint problem
of training time inference and learning, we transformed the inapproximable infer-
ence problem into a polynomial time solvable one, thereby enabling tractable exact
inference while still allowing an arbitrary graph structure and full potential interac-
tions. We were able to retrieve the theoretical guarantees of structural SVMs that
were lost when unbounded approximation was used.

Finally, we applied our structural learning algorithm to the 3D scene parsing
task. The effectiveness and efficiency of our method was well-demonstrated on the
Cornell RGB-D dataset and our bridge dataset.
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[96] Živný, S., Cohen, D.A., Jeavons, P.G.: The expressive power of binary submodular
functions. Discrete Applied Mathematics 157(15), 3347 – 3358 (2009)

[97] Werner, T.: A linear programming approach to max-sum problem: A review. PAMI
29(7), 1165–1179 (July 2007)

[98] Werner, T.: A linear programming approach to max-sum problem: A review. PAMI
29(7), 1165–1179 (2007)

[99] Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich
3d building models from laser scanner data. Automation in Construction 31, 325–337
(2013)

[100] Xiong, X., Huber, D.: Using context to create semantic 3d models of indoor environ-
ments. In: BMVC. pp. 1–11 (2010)

[101] Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. PAMI
34(9), 1744–1757 (2012)

[102] Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In:
CVPR. pp. 1385–1392 (2011)

[103] Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in
the wild. In: CVPR. pp. 2879–2886. IEEE (2012)
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Appendix

A Formal Proofs

Note for all proofs in this section, we assign integer values to Boolean functions: 0
for False and 1 for True.

A.1 General Case

Theorem 5.1. QPBO is exp-APX-complete.

Proof. We reduce from the following problem.

Problem 1 ([7], Section 8.3.2). W3SAT-triv
INSTANCE: Boolean CNF formula F with variables x1, · · · , xn and each clause
assuming exactly 3 variables; non-negative integer weights w1, · · · , wn.

SOLUTION: Truth assignment τ to the variables that either satisfies F or assigns
the trivial, all-true assignment.

MEASURE: min
∑n
i=1 wiτ(xi).

W3SAT-triv is known to be exp-APX-complete [7]. We use an AP-reduction
from W3SAT-triv to prove the same completeness result for QPBO. The optimal
value of W3SAT-triv is upper bounded by M :=

∑
i wi because the all-true as-

signment is feasible. The objective weight is represented in QPBO as unary terms
fi(xi) = wixi. For every Boolean clause C(xi, xj , xk) ∈ F we construct a triple-
wise term

δijk(xi, xj , xk) = M(1− C(xi, xj , xk)). (1)

This term takes the large value M iff C is not satisfied and 0 otherwise. Further,
the Boolean clause C(xi, xj , xk) can be represented uniquely as a multi-linear cubic
polynomial. For example, a clause x1 ∨ x̄2 ∨ x̄3 can be represented as

1− (1− x1)x2x3 = x1x2x3 − x2x3 + 1. (2)

Then we obtain similar representation with a single third order term and a second
order multi-linear polynomial for δijk:

δijk = M(axixjxk +
∑
J

bJ
∏
l∈J

xl), (3)



where J ⊆ {i, j, k}, |J | ≤ 2,
∏
l∈J xl is set to 1 if J is empty, a ∈ {−1, 1}, and

bJ ∈ {−1, 0, 1}. We now apply the quadratization techniques [32] to δijk. After in-
troducing an auxiliary variable xw with w > n, we observe the following identities:

−xixjxk = min
xw∈{0,1}

−xw(xi + xj + xk − 2) (4)

xixjxk = min
xw∈{0,1}

(
(xw−1)(xi+xj+xk−1) + (xixj+xixk+xjxk)

)
(5)

In either case, substituting the cubic term axixjxk in δijk with the expression inside
the min operator, we can have a unified quadratic form

ψijk := M
∑
Jw

bJw
∏
l∈Jw

xl, (6)

where Jw ⊆ {i, j, k, w}, |Jw| ≤ 2 and
∏
i∈Jw xi is set to 1 if Jw is empty. In both

cases, the quadratic form takes the same optimal values as its cubic counterpart given
the optimal assignment, i.e.,

min
xi,xj ,xk,xw

ψijk = min
xi,xj ,xk

δijk, (7)

but the transformation expands the original range of the cubic term from {−1, 0}
to {−1, 0, 1, 2} and from {0, 1} to {0, 1, 3} respectively for a = −1 and a = 1.
Therefore, the cost of the constructed instance of QPBO is bounded in the absolute
value by 3M and the number of added variables is exactly the number of clauses in
F . Clearly, this construction can be computed in polynomial time. Note that when
approximation is used, this transformation is no longer exact (ψijk 6= δijk), as the
optimality of the auxiliary variable xw cannot be guaranteed. However, it can be
verified that under all possible assignments (ignoring the min operator) in either
case, ψijk ≥ 0, which is the key for the reduction to be an approximation preserving
(AP) one.

The construction above defines a mapping π from any instance of W3SAT-triv
(p1 ∈ I1) to an instance of QPBO (p2 ∈ I2). The mapping σ from feasible solu-
tions of p2 (x ∈ S2(p2)) to that of p1 is defined as follows: if f(x) ≥ M , then let
the mapped solution σ(p1, x) be the all true assignment, otherwise let the mapped
solution σ(p1, x) be xi, i ∈ {1, ..., n}.

Now, we need to show that (π, σ) together with a constant α is an AP-reduction.
Let m1, m2, m∗1 and m∗2 to be short for m1(p1, σ(p1, x)), m2(p2), m∗1(p1), and
m∗2(π(p2)) respectively, where ∗ indicates the optimal solution. First, note that σ(p1, x)
is always feasible for W3SAT-triv: either it satisfies F or f(x) ≥ M and therefore
σ(p1, x) is the all-true assignment. In the first case, since every quadratic term is
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non-negative, we have

m1 =

n∑
i=1

xiwi (8)

≤
n∑
i=1

xiwi +
∑

Cijk∈F
ψijk(xi, xj , xk) = f(x) = m2. (9)

In the second case, by construction

m1 = M ≤ f(x) = m2. (10)

Therefore, no matter which case m1 ≤ m2.
Now for the optimal solution, if F is satisfiable, then by construction m∗1 = m∗2.

Recall from Definition 4.5, R = m/m∗. For any instance p1 ∈ I1, for any rational
r > 1, and for any x ∈ S2(p2), if

R2(p2, x) ≤ r, (11)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (12)

R1(p1, σ(p1, x)) =
m1

m∗1
≤ r (13)

If F is not satisfiable, m∗1 = M ≤ m∗2 and m2 ≥ m2∗ ≥M . Thus, for any instance
p1 ∈ I1, for any rational r > 1, and for any x ∈ S2(p2),

R1(p1, σ(p1, x)) =
m1

m∗1
=
M

M
= 1 ≤ r (14)

Therefore (π, σ, 1) is an AP-reduction. Since W3SAT-triv is exp-APX-complete and
QPBO is in exp-APX, we prove that QPBO is exp-APX-complete.

Corollary 5.2. k-label energy minimization is exp-APX-complete for k ≥ 2.

Proof. We create an AP-reduction from QPBO to k-label energy minimization by
setting up the unary and pairwise terms to discourage a labeling with the additional
k − 2 labels.

Denote QPBO as P1 = (I1,S1,m1,min) and k-label energy minimization as
P2 = (I2,S2,m2,min). Given an instance p1 = (G = (V, E),L1, f) ∈ I1, let
M(p1) be a large number such that all for all x1 ∈ S1, m1 < M . For example, we
can let

M =
∑
u∈V

∑
xu∈L1

|fu(xu)|+
∑

(u,v)∈E

∑
xu∈L1

∑
xv∈L1

|fuv(xu, xv)|+ 1. (15)

We define the forward mapping π from any p1 ∈ I1 to p2 = (G = (V, E),L2, g) ∈
I2 as follows:
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• gu(a) = fu(a), for ∀a ∈ L1, and ∀u ∈ V;
• gu(a) = M , for ∀a /∈ L1, and ∀u ∈ V;
• guv(a, b) = fuv(a, b), for ∀a, b ∈ L1, and ∀(u, v) ∈ E ;
• guv(a, b) = M if either a or b /∈ L1 for ∀(u, v) ∈ E .
This setup has two properties:
• m2 ≥M if and only if the labeling x2 ∈ S2 includes labels that are not in L1;
• m∗1 = m∗2, for any p1 and p2 = π(p1).
Then we define the reverse mapping σ from any (p2,x2) to x1 ∈ S1 to be
• x1 = x2, if m2 < M ;
• x1 be any fixed feasible solution (e.g., all nodes are labeled as the first label),

if m2 ≥M .
Observe that in both cases, m1 ≤ m2. For any instance p1 ∈ I1, for any rational

r > 1, and for any x2 ∈ S2, if

R2(p2,x2) =
m2

m∗2
≤ r, (16)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (17)

R1(p1,x1) =
m1

m∗1
≤ r (18)

Therefore (π, σ, 1) is an AP-reduction. As QPBO is exp-APX-complete and all en-
ergy minimization problems are in exp-APX, we conclude that k-label energy mini-
mization is exp-APX-complete for k ≥ 2.

The above construction also formally shows that the energy minimization prob-
lem can only become harder when having a larger labeling space, irrespective of the
graph structure and the interaction type.

A.2 Planar Case

Theorem 6.1. Planar 3-label energy minimization is exp-APX-complete.

Proof. We create an AP-reduction from 3-label energy minimization to planar 3-label
energy minimization by introducing polynomially many auxiliary nodes and edges.

Denote 3-label energy minimization as P1 = (I1,S1,m1,min) and planar 3-
label energy minimization as P2 = (I2,S2,m2,min). Given an instance p1 ∈ I1,
we compute a large numberM(p1) as in Equation (15) in the proof for Corollary 5.2.

The gadget-based reduction presented in Section 6, defines a forward mapping π
from any p1 = (G1 = (V1, E1),L, f) ∈ I1 to p2 = (G2 = (V2, E2),L, g) ∈ I2. Let
V3 be the nodes added during the reduction, then V2 = V1 ∪ V3. The two gadgets
SPLIT and UNCROSSCOPY are used 4 times each to replace an edge crossing (point
of intersection not at end points) with a planar representation (Figure 4), introducing
22 auxiliary nodes. Since the gadgets can be drawn arbitrarily small so that they are
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not intersecting with any other edges, we can repeatedly replace all edge crossings in
G1 with this representation. There can be up toO(|E1|2) edge crossings, and we have
|V3| =O(|E1|2). Given that the reduction adds only a polynomial number of auxiliary
nodes, the forward mapping π can be computed by a polynomial time algorithm.

This setup has two properties:
• m2 ≤M if and only if the labeling x1 is the same as the partial labeling in x2

restricting to nodes in V1 in G2.
• m∗1 = m∗2, for any p1 and p2 = π(p1).
Then we define the reverse mapping σ from any (p2,x2) to x1 ∈ S1 to be
• x1 = x2, if m2 < M ;
• x1 be any fixed feasible solution (e.g., all nodes are labeled as the first label),

if m2 ≥M .
Observe that in both cases, m1 ≤ m2. For any instance p1 ∈ I1, for any rational

r > 1, and for any x2 ∈ S2, if

R2(p2,x2) =
m2

m∗2
≤ r, (19)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (20)

R1(p1,x1) =
m1

m∗1
≤ r (21)

Therefore (π, σ, 1) is an AP-reduction. As 3-label energy minimization is exp-APX-
complete (Corollary 5.2) and all energy minimization problems are in exp-APX, we
conclude that planar 3-label energy minimization is exp-APX-complete.

Corollary 6.2. Planar k-label energy minimization is exp-APX-complete, for k ≥ 3.

Proof. The proof of Corollary 5.2 is graph structure independent. Therefore, the same
proof applies here.

B Relation to Bayesian Networks

There are substantial differences between results for Bayesian networks [2] and our
result. Bayesian networks have a probability density function p(x) that factors ac-
cording to a directed acyclic graph, e.g., as p(x1, x2, x3) = p(x1|x2, x3)p(x2)p(x3).
Finding the MAP assignment (same as the most probable estimate (MPE)) in a
Bayesian network is related to energy minimization (1) by letting f(x) = − log(p(x)).
The product is transformed into the sum and so, e.g., factor p(x1|x2, x3) corresponds
to term f1,2,3(x1, x2, x3).

The inapproximability result of Abdelbar and Hedetniemi [2] holds even when
restricting to binary variables and factors of order three. However, [2, Section 6.1]
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count incoming edges of the network. For a factor p(x1|x2, x3), there are two, but
the total number of variables it couples is three and therefore such a network does
not correspond to QPBO. If one restricts to factors of at most two variables, e.g.,
p(x1|x2), in a Bayesian network, then only tree-structured models can be repre-
sented, which are easily solvable.

In the other direction, representing pairwise energy (1) as a Bayesian network
may require to use factors of order up to |V| composed of conditional probabilities
of the form p(xi |xj , xk, · · · ) with the number of variables depending on the vertex
degrees. It is seen that while the problems in their most general forms are convertible,
fixed-parameter classes (such as order and graph restrictions) differ significantly. In
addition, the approximation ratio for probabilities translates to an absolute approxi-
mation (an additive bound) for energies. The next corollary of our main result illus-
trates this point.

Corollary B.1. It is NP-hard to approximate MAP in the value of probability (2)
with any exponential ratio exp(r(n)), where r is polynomial.

Proof. Recall that the probability p(x) is given by the exponential map of the en-
ergy: p(x) = exp(−f(x)). Assume for contradiction that there is a polynomial time
algorithm A that finds solution x and a polynomial r(n) ≥ 0 for n > 0 such that

p(x∗)

p(x)
≤ er(n) (22)

for all instances of the problem. Taking the logarithm,

−f(x∗) + f(x) ≤ r(n). (23)

or,

f(x) ≤ r(n) + f(x∗). (24)

Divide by f(x∗), which, by definition of NPO is positive, we obtain

f(x)

f(x∗)
≤ 1 +

1

f(x∗)
r(n) ≤ 1 + r(n). (25)

where we have used that f(x∗) is integer and positive and hence it is greater or
equal to 1. Inequality (25) provides a polynomial ratio approximation for energy
minimization. Since the latter is exp-APX-complete (Corollary 5.2), this contradicts
existence of the polynomial algorithm A, unless P = NP.

Note, this corollary provides a stronger inapproximability result for probabilities
than was proven in [2].

Remark B.2. Abdelbar and Hedetniemi [2] have shown also the following interest-
ing facts. For Bayesian networks, the following problems are also APX-hard (in the
value of probability):
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• Given the optimal solution, approximate the second best solution;
• Given the optimal solution, approximate the optimal solution conditioned on

changing the assignment of one variable.

C Miscellaneous

This result is used in Section 7.2.

Corollary C.1. An O(log k)-approximation implies an O(log |x|)-approximation
for k-label energy minimization problems.

Proof. Observe that an instance of the energy minimization problem (1) is completely
specified by a set of all unary terms fu and pairwise terms fuv . This defines a natural
encoding scheme to describe an instance of an energy minimization problem with
binary alphabet {0, 1}. Assume each potential is encoded by d digits, the input size

|x| = O((k|V|+ k2|V|2)d) = O(k2|V|2). (26)

For an O(log k)-approximation algorithm, the performance ratio

r = O(log k) = O(log k + log |V|) = O(log k|V|) = O(log |x|), (27)

which implies an O(log |x|)-approximation algorithm.

D Proof for Convergence of Algorithm 1

Convergence has been proven in [35, 88] for 1-slack structural SVMs. Here, we
show that similar results hold for problems with non-negative constraints. The proof
constructs a line search to bound the increase in the objective in each iteration. The
non-negative constraints can bring additional increase for the objective when they
are activated, resulting in possibly fewer iterations. Symbols used in the proof are
summarized in Table 1.

Problem 2. Primal QP
Using the new notations, the QP in Algorithm 1, line 5 can be written as

min
w,ξ≥0

1

2
||w||2 + Cξ (28)

s.t. Hᵀw ≥ l − ξ1, (29)
wP ≥ 0 (30)

The Lagrangian is

L(w, ξ, α, β, γ) =
1

2
||w||2 + Cξ (31)

− αᵀ[Hᵀw − l + ξ1]− βᵀw − γξ
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Symbols Definitions
t iteration count for Algorithm 1
ht

1
n

∑n
i=1 [Ψ(xi,yi)− Ψ(xi, ȳi)]

for all ȳi added in the t-th iteration
dt

1
n

∑n
i=1∆b(yi, ȳi)

for all ȳi added in the t-th iteration
H or Ht [h1 h2 ... ht]
l or lt [d1 d2 ... dt]

ᵀ

R max∀i,ȳ ||Ψ(xi,yi)− Ψ(xi, ȳi)||2
∆ max∀i,ȳ∆b(yi, ȳ)
α the dual variables for margin violation
β the dual variables for non-negativity
(w∗, ξ∗) the optimal solution of Problem 4.1
(α∗, β∗) corresponding dual variables for (w∗, ξ∗)
Jt(w) the primal objective value of the QP in

Algorithm 1, line 5 at the t-th iteration
Dt(α, β) the dual objective value of the QP in

Algorithm 1, line 5 at the t-th iteration
δt Dt(α

∗, β∗)−Dt(αt, βt)

Table 1: List of symbols for the convergence proof. (Section D)

Setting the differential of L with respect to w to zero yields

w = Hα+ β (32)

Setting the differential of L with respect to ξ to zero yields

C − αᵀ1 = γ ≥ 0 (33)

Note that we define β to be a vector of the same length as w for simplicity. (β)j is
fixed to zero for every coordinate j not required to be non-negative (j /∈ P ).

Problem 3. Dual QP
The dual problem is obtained by substituting equations (32) and (33) (KKT-

conditions) into the Lagrangian

max
α≥0,β≥0

− 1

2
αᵀHᵀHα− βᵀHα+ lᵀα− 1

2
βᵀβ (34)

s.t. αᵀ1 ≤ C (35)

Initially, the working set W is empty and J1 = D1 = 0. The trivial solution
w = 0 generates an upper bound C∆ for the optimality gap δt. Next, we show
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that this gap can be closed through a constant increase in the dual objective in each
iteration. The QP is solved by a QP solver in Algorithm 1. However, we cannot bound
the change of the objective value. Instead, we resort to a series of line searches. There
are two sets of dual variables, α and β. In each iteration, we optimize α, keeping β
fixed, and then optimize β, keeping α fixed. The following lemma is introduced to
bound the minimal increase in the objective with a line search in α.

Lemma D.1. For any unconstrained quadratic program,

f(x) = −1

2
xᵀAx + bᵀx (36)

with positive semi-definite A, a line search starting at x with maximum step-size
s towards a direction g, such that ∇f(x)ᵀg ≥ 0 and gᵀAg 6= 0, increases the
objective by at least

max
0≤λ≤s

[f(x+λg)− f(x)]

≥ 1

2
min

{
s∇f(x)ᵀg,

[∇f(x)ᵀg]2

gᵀAg

}
(37)

The first case applies when ∇f(x)ᵀg
gᵀAg > s, while the latter applies when ∇f(x)ᵀg

gᵀAg ≤ s.

Proof.

f(x + λg)− f(x) = −1

2
gᵀAgλ2 +∇f(x)ᵀgλ (38)

is a simple quadratic function in λ restricted to [0, s]. When ∇f(x)ᵀg
gᵀAg ≤ s, its optimal

value is obtained at λ∗ = ∇f(x)ᵀg
gᵀAg , with value [∇f(x)ᵀg]2

2gᵀAg ; and when ∇f(x)ᵀg
gᵀAg >

s, its optimal value is obtained at λ∗ = s, with value ∇f(x)ᵀgs − 1
2g

ᵀAgs2 ≥
1
2s∇f(x)ᵀg.

Consider at the beginning of iteration (t + 1), t constraints have been added for
the QP. We want to optimize this new QP based on the previous iteration’s solution
(α, β). Keeping β fixed, the line search in α is constructed as:

α̃(λ) := [−λαᵀ, λC]ᵀ, λ ∈ [0, 1] (39)

Note the direction (α̃ = [−αᵀ
t , C]) is chosen so that by construction, α + α̃(λ)

is always in the feasible region. In order to apply Lemma D.1, we need to bound
∇Dᵀα̃ and α̃ᵀHᵀHα̃.

Due to strong duality,

∂D(α, β)

∂α
= l −Hᵀ(Hα+ β) = l −Hᵀw, (40)
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and due to complementary slackness, for each non-zero component i of α,

∂D(α, β))

∂(α)i
= di − hᵀiw = ξ (41)

For (α)t corresponding to the newly added constraint and some µ, by construction
of Algorithm 1

∂D(α, β))

∂αt
= dt − hᵀtw = ξ + µ ≥ ξ + ε (42)

Therefore

∇Dᵀα̃ = −1ᵀαξ + C(ξ + µ) = Cµ (43)

On the other hand

α̃ᵀHᵀHα̃ = α̃ᵀHᵀ
tHtα̃

= αᵀHᵀ
t−1Ht−1α− 2C1ᵀHᵀ

t−1Ht−1α+ C2h2
t (44)

≤ C2R2 + 2C2R2 + C2R2 (45)

= 4C2R2 (46)

Applying Lemma D.1, we have

max
0≤λ≤1

[D(α+ α̃(λ), β)−D(α, β)] ≥ min

{
µ

2
,

µ2

4C2R2

}
(47)

We update the α using the line search above and then optimize β assuming α
fixed. The dual problem 3 is a quadratic function with a diagonal quadratic matrix.
Thus there is no interaction between each coordinate of β, and they can be optimized
independently.

The optimal solution is

∀j ∈ P, (β∗)j = max (0,−(Hα)j) (48)

with an increase in the objective

1

2
(β)2

j + (Hα)j(β)j , if (β∗)j = 0; (49)

1

2
((β∗)j − (β)j)

2, if (β∗)j = −(Hα)j ; (50)

It is important to check that this solution ensures that w ≥ 0. In both cases, the
component-wise update in β gives the objective a non-negative increase. However,
the increase can be zero when (β)j = 0 or (Hα)j ≤ 0, or equivalently, when the
primal constraint wj ≥ 0 is not activated.
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In summary, adding the non-negative constraints will not widen the duality gap
but will actually decrease the gap, yet the amount of reduction is not guaranteed, as
is the case with α.

The remainder of the reasoning is identical to [35]. The reasoning leads to the
following theorem:

Theorem D.2. Convergence of Algorithm 1 For any training dataset D and any
C > 0, 0 < ε ≤ 4R2C, ρ > 0, Algorithm 1 terminates after at most⌈

log2

∆(ρ)

4R2C

⌉
+

⌈
16R2C

ε

⌉
(51)

iterations.

We have enforced submodularity for the loss augmented inference, thus it can
be computed optimally using the BK algorithm [18] with worst case complexity
O(n2m|C|) or the standard push-relabel based max-flow algorithm [? ] with worst
case complexity O(n2

√
m) 1. Here n and m denote the number of nodes and edges

in the graph. |C| is the size of the minimal cut.
In each iteration of Algorithm 1, the loss augmented inference is called exactly n

times, with n being the size of the dataset. Putting everything together, we have the
proof for Theorem 5.2, i.e., polynomial time termination of Algorithm 1.

E Proof for Generalization to Higher Order Potentials for
Enforcing Submodularity

Our algorithm can be generalized to higher order potentials using the reduction de-
scribed in [32]. Let

S1 =

d∑
i=1

yi, S2 =

d−1∑
i=1

d∑
j=i+1

yiyj =
S1(S1 − 1)

2
(52)

The two ways of reduction are proposed based on the sign of the coefficient a:
if a < 0,

ay1...yd = min
z∈{0,1}

az(S1 − d+ 1) (53)

if a > 0,

ay1...yd = a min
z1,...,znd

∈{0,1}

nd∑
i=1

zi[ci,d(−S1 + 2i)− 1] + aS2 (54)

1Although the BK algorithm has a worse theoretical complexity, it was shown in [18] to
be more efficient for computer vision problems in practice.
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where nd and ci,d are some positive constants.
In our case, a = −wd · δ(u1, ..., ud). To enforce submodularity, we want all co-

efficients of the pairwise terms to be non-positive. It can be verified that if a < 0,
this condition is satisfied. If a < 0, we have, after reduction, the term aS2, which
contains positive coefficients. Thus, we need to impose similar assumptions and re-
strictions that all high order features are non-negative and the learned higher order
potential be non-negative. Applying this reduction, our algorithm is able to learn the
parameters for high order potentials exactly in polynomial time.
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