
Building and Leveraging Category Hierarchies
for Large-scale Image Classification

Hao Zhang
July 31, 2016

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Eric P. Xing, Chair

Abhinav Gupta
Wei Dai

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

CMU-RI-TR-16-38
Copyright c© 2016 Hao Zhang

Keywords: Image Categorization, Taxonomy Induction, Convolutional Neural Networks,
Probabilistic Inference

Abstract
In image classification, visual separability between different object categories

is highly uneven, and some categories are more difficult to distinguish than others.
Such difficult categories demand more dedicated classifiers. However, existing deep
convolutional neural networks (CNN) are trained as flat N-way classifiers, and few
efforts have been made to leverage the hierarchical structure of categories. Naturally,
incorporating external knowledge from category hierarchies presents a major oppor-
tunity to improve the task. However, traditional methods of manually constructing
category hierarchies by experts (e.g. WordNet, ImageNet) and interest communities
(e.g. Wikipedia) are either knowledge or time intensive, and the results have limited
coverage.

In this report, we study the problem of automatically learning and utilizing cate-
gory hierarchies (taxonomies) for large-scale image classification. First, we present
a probabilistic model for taxonomy induction by jointly leveraging text corpus and
images from the web. The model is discriminatively trained given a small set of ex-
isting ontologies and is capable of building full category hierarchies from scratch for
a collection of unseen conceptual labels with associated images. Then, we introduce
hierarchical deep convolutional neural networks (HD-CNNs), which embeds deep
convolutional neural networks into a category hierarchy. An HD-CNN separates
easy classes using a coarse category classifier while distinguishing difficult classes
using fine category classifiers. We reported state-of-the-art results on both taxonomy
induction and image classification tasks.

iv

Acknowledgments
I wish to thank my advisor at Carnegie Mellon, Prof. Eric P. Xing, for giving me

so much freedom to discover and explore new subjects in machine learning, com-
puter vision and distributed systems. An M.S. under his mentorship is the experience
of a lifetime.

My other committee members have also been very supportive. Prof. Abhinav
Gupta has been a warm supporter on my endeavor in computer vision. Wei has been
a great friend who gave me a lot of support on both research, study and life.

Further, I would like to thank my friends and colleagues at Carnegie Mellon with
whom I have had the pleasure of working over the years. Their encouragement and
friendship and their help have brought me incredible joy during my study at CMU.

I am especially thankful to my girlfriend, Luona Yang, for her constant support
and encouragement on my work with love, patience and understanding. She has
been always standing on my side during my up and downs. She is the inner peace in
my heart. Finally, I want to thank my parents for always supporting me to pursue my
dreams and being there whenever I needed them. Without them, I would not have
come this far.

vi

Contents

1 Introduction 1

2 Related Work 3
2.1 Taxonomy Induction . 3
2.2 Convolutional Neural Networks . 4
2.3 Category Hierarchy for Visual Recognition . 4

3 Taxonomy Induction 5
3.1 Problem Definition . 5
3.2 Model . 6
3.3 Features . 8

3.3.1 Image Features . 8
3.3.2 Word Features . 9

4 Hierarchial Deep Convolutional Neural Networks (HDCNN) 11
4.1 Notations . 11

4.1.1 HD-CNN Architecture . 11
4.2 HD-CNN Training . 12

4.2.1 Pretraining HD-CNN . 13
4.2.2 Fine-tuning HD-CNN . 13

4.3 HD-CNN Testing . 14

5 Evaluation 15
5.1 Taxonomy Induction . 15

5.1.1 Implementation Details . 15
5.1.2 Evaluation . 16
5.1.3 Qualitative Analysis . 18

5.2 Image Classification . 21
5.2.1 CIFAR100 . 21
5.2.2 ImageNet 1000 . 23

6 Conclusion 29

vii

A Taxonomy Induction 31
A.1 Model Derivation . 31

A.1.1 Illustration of Our Model . 31
A.1.2 Gibbs Sampling . 32
A.1.3 Gradient Descent . 32

A.2 Feature Extraction . 33
A.2.1 Parent-child Word-word Relation Feature (PC-T1) 33
A.2.2 Parent-child Image-word Relation Feature (PC-V2) 33
A.2.3 Parent-child Image-image Relation Feature (PC-V1) 34
A.2.4 Siblings Image-image Relation Feature (S-V1) 34
A.2.5 Siblings Word-word Relation Feature (S-T1) 34
A.2.6 Surface Features . 34

A.3 Implementation Details . 35
A.3.1 Word Embedding Training . 35
A.3.2 Efficiency . 35

B Hierarchical Deep Convolutional Neural Networks (HDCNN) 37
B.1 CIFAR100 Dataset . 37

B.1.1 HD-CNN Based on CIFAR100-NIN net 37
B.2 ImageNet 1000-class Dataset . 37

B.2.1 HD-CNN based on ImageNet-NIN . 37
B.2.2 HD-CNN based on ImageNet-VGG-16-layer 37

Bibliography 41

viii

List of Figures

3.1 An overview of our system. Input: a collection of label items, represented by text
and images; Output: we build a taxonomy from scratch by extracting features
based on distributed representations of text and images. 6

4.1 (a) A two-level category hierarchy where the classes are taken from ImageNet
1000-class dataset. (b) Hierarchical Deep Convolutional Neural Network (HD-
CNN) architecture. 11

5.1 The Ancestor-F1 scores changes over K (number of images used in the PC-V1
feature) at different heights. The values in the x-axis are K/100; K =∞ means
all images are used. 19

5.2 Normalized weights of each feature v.s. the layer depth. 20
5.3 Excerpts of the prediction taxonomies, compared to the groundturth. Edges

marked as red and green are false predictions and unpredicted groundtruth links,
respectively. 20

5.4 Case studies on ImageNet dataset. Each row represents a testing case. Column
(a): test image with ground truth label. Column (b): top 5 guesses from the
building block net ImageNet-NIN. Column (c): top 5 Coarse Category (CC)
probabilities. Column (d)-(f): top 5 guesses made by the top 3 fine category
CNN components. Column (g): final top 5 guesses made by the HD-CNN. See
text for details. 23

5.5 Left: Class-wise HD-CNN top-5 error improvement over the building block net.
Right: Mean number of executed fine category classifiers and top-5 error against
hyperparameter β on the ImageNet validation dataset. 25

A.1 An illustration of our model, which encourages local semantic consistency. . . . 31

B.1 Top: CIFAR100-NIN network. Bottom: HD-CNN network using CIFAR100-
NIN building block. 38

B.2 Top: ImageNet-NIN network. Bottom: HD-CNN network using ImageNet-NIN
building block. 39

B.3 Top: ImageNet-VGG-16-layer network. Bottom: HD-CNN network using ImageNet-
VGG-16-layer building block. 40

ix

x

List of Tables

5.1 Statistics of our evaluation set. The bottom 4 rows give the number of nodes
within each height h ∈ {4, 5, 6, 7}. The scale of the threes range from small to
large, and there is no overlapping among them. 16

5.2 Comparisons among different variants of our model, [15] and [2] on two tasks.
The ancestor-F1 scores are reported. 17

5.3 The performance when different combinations of visual features are enabled. . . 19
5.4 10-view testing errors on CIFAR100 dataset. Notation CCC=coarse category

consistency. 22
5.5 Comparison of testing errors, memory footprint and testing time between build-

ing block nets and HD-CNNs on CIFAR100 and ImageNet datasets. Statistics are
collected under single-view testing. Three building block nets CIFAR100-NIN,
ImageNet-NIN and ImageNet-VGG-16-layer are used. The testing mini-batch
size is 50. Notations: SL=Shared layers, CE=Conditional execution, PC=Parameter
compression. 24

5.6 Comparisons of 10-view testing errors between ImageNet-NIN and HD-CNN.
Notation CC=Coarse category. 26

5.7 Errors on ImageNet validation set. 26

B.1 CIFAR100-NIN network. The configuration of convolutional layer is denoted
as (filter number, filter height, filter width). The configuration of pooling layer
is denoted as (pooling height,pooling width, stride). Notations: LAY=Layer.
CFG=Configuration. ACT=Activation. PAR #=Parameter number. PAR %=Parameter
percentage. FLOP #=FLoating-point OPerations. FLOP %=FLoating-point
OPeration percentage. SMAX=SOFTMAX. 38

B.2 ImageNet-NIN network. 39
B.3 ImageNet-VGG-16-layer network. For clarity, adjacent layers with the same

configuration are merged, such as layers conv3 2 and conv3 3. 40

xi

xii

Chapter 1

Introduction

Image classification is one of the central tasks in computer vision and has been studied for
decades. State-of-the-art results in image classification are mostly established by deep convo-
lutional neural networks (CNNs) [30]. Deep CNNs are well suited for large-scale supervised
visual recognition tasks because of their huge model capacity and highly scalable training algo-
rithm.

However, in CNN-based image classification, one of the complications that arise in large
datasets with large number of categories is that the visual separability of object categories is
highly uneven. Some categories are much harder to distinguish than others. Take the categories
in CIFAR100 [29] as an example. It is easy to tell an Apple from a Bus, but harder to tell an
Apple from an Orange. In fact, both Apples and Oranges belong to the same coarse category
fruit and vegetables while Buses belong to another coarse category vehicles 1, as defined within
CIFAR100. Nonetheless, most deep CNN models nowadays are flat N-way classifiers, which
share a set of fully connected layers. This makes us wonder whether such a flat structure is
adequate for distinguishing all the difficult categories. A very natural and intuitive alternative
organizes classifiers in a hierarchical manner according to the category hierarchies, so that the
external knowledge from hierarchies could be utilized for the classifier to distinguish difficult
categories. Although hierarchical classification has been proven effective for conventional linear
classifiers [14, 34, 60, 62], few attempts have been made to exploit category hierarchies [12, 46]
in deep CNN models.

Since deep CNN models are large models themselves, organizing them hierarchically im-
poses the following challenges. First, traditional methods of manually constructing category
hierarchies by experts (e.g. WordNet) and interest communities (e.g. Wikipedia) are either
knowledge or time intensive, and the results have limited coverage. Instead of handcrafting a
hierarchy with extensive labor, how can we automatically induce taxonomic structure from data?
Second, a hierarchical CNN classifier consists of multiple CNN models at different levels. How
can we leverage the commonalities among these models and effectively train them all? Third,
it would also be slower and more memory-consuming to run a hierarchical CNN classifier on a
novel testing image. How can we alleviate such limitations?

In this report, we address the aforementioned problems from two aspects. On one hand, we
propose a novel probabilistic framework (Chapter 3) for taxonomy induction by jointly leverag-
ing textual and visual data. Our observation is that both textual and visual information provide

1

important cues for taxonomy induction. For example, in a semantically meaningful taxonomy,
the parent category seafish and its two child categories shark and ray are closely related as:
(1) there is a hypernym-hyponym (is-a) relation between the words “seafish” and “shark”/“ray”
through text descriptions like “...seafish, such as shark and ray...”, “...shark and ray are a group
of seafish...”; (2) images of the close neighbors, e.g., shark and ray are usually visually similar
and images of the child, e.g. shark/ray are similar to a subset of images of seafish. To effectively
capture these patterns, in contrast to previous works that rely on various hand-crafted features
[2, 7], we extract features by leveraging the distributed representations that embed images [41]
and words [37] as compact vectors, based on which the semantic closeness is directly measured
in vector space. Further, we develop a Bayesian model that integrates the rich multi-modal fea-
tures to induce “is-a” relations between categories, encouraging local semantic consistency that
each category should be visually and textually close to its parent and siblings. The model is dis-
criminatively trained and can be directly applied to build a category hierarchy from scratch for a
collection of semantic labels. We demonstrated superior performance of our model and feature
on automatical taxonomy induction tasks.

Given the pre-built hierarchies, on the other hand, we propose a generic and principled hierar-
chical architecture, Hierarchical Deep Convolutional Neural Network (HD-CNN), that embeds
a convolutional neural network classifier onto the category hierarchy. It thus decomposes an
image classification task into two steps. First, easy classes are separated by a coarse category
CNN classifier which corresponds to the intermediate nodes in the category hierarchy. Second,
more challenging classes are routed downstream to fine category classifiers (leaf nodes). HD-
CNN is modular and is built upon a building block CNN, which can be chosen to be any of the
state-of-the-art single CNN. An HD-CNN follows the coarse-to-fine classification paradigm and
probabilistically integrates predictions from fine category classifiers. We show that HD-CNN
can achieve lower error than the corresponding building block CNN, at the cost of a manageable
increase in memory footprint and classification time.

In summary, this report has the following contributions. First, we propose a novel probabilis-
tic Bayesian model (Chapter 3) for taxonomy induction by jointly leveraging textual and visual
data. The model is discriminatively trained and can be directly applied to build a taxonomy
from scratch for a collection of semantic labels. We design novel features (Section 3.3) based
on general-purpose distributed representations of text and images to capture both textual and vi-
sual relations between labels. We empirically evaluate our model and features on the ImageNet
hierarchies with two different taxonomy induction tasks (Section 5.1.2). We achieve superior
performance on both tasks and improve the F1 score by 2x in the taxonomy construction task,
compared to previous approaches. Second, we introduce HD-CNN, a novel hierarchical CNN ar-
chitecture for image classification. We develop a scheme for learning the two-level organization
of coarse and fine categories based on the pre-built category hierarchies, and demonstrate that
various components of an HD-CNN can be independently pretrained. We show state-of-the-art
performance on the image classification task on both CIFAR100 and ImageNet dataset.

The rest of this thesis is organized as follows. In chapter 2 we review related works. Chapter
3 elaborates the proposed model and features for taxonomy induction, and chapter 4 details
the design and architecture of HDCNN. In chapter 5 we demonstrate empirical results on both
taxonomy induction and image classification. Chapter 6 concludes the thesis.

2

Chapter 2

Related Work

2.1 Taxonomy Induction

Building taxonomies using textual data. Many approaches have been recently developed that
build hierarchies purely by identifying either lexical patterns or statistical features in text cor-
pora [2, 15, 27, 28, 38, 43, 50, 51, 56, 61]. The approaches in [56] and [43] assume a starting
incomplete hierarchy and try to extend it by inserting new terms. [28] and [38] first find leaf
nodes and then use lexical patterns to find intermediate terms and all the attested hypernymy
links between them. In [50], syntactic contextual similarity is exploited to construct the taxon-
omy, while [51] go one step further to consider trustiness and collective synonym/contrastive
evidence. Different from them, our model is discriminatively trained with multi-modal data. The
works of [15] and [2] use similar language-based features as ours. Specifically, in [15], linguis-
tic regularities between pretrained word vectors [37] are modeled as projection mappings. The
trained projection matrix is then used to induce pairwise hypernym-hyponym relations between
words. Our features are partially motivated by [15], but we jointly leverage both textual and
visual information. In [27], both textual and visual evidences are exploited to detect pairwise
lexical entailments. Our work is significantly different as our model is optimized over the whole
taxonomy space rather than considering only word pairs separately. In [2], a structural learning
model is developed to induce a globally optimal hierarchy. Compared with this work, we exploit
much richer features from both text and images, and leverage distributed representations instead
of hand-crafted features.
Building taxonomies using visual data. Several approaches [3, 21, 36] have also been proposed
to construct visual hierarchies from image collections. In [3], a nonparametric Bayesian model
is developed to group images based on low-level features. In [21] and [36], a visual taxonomy is
built to accelerate image categorization. In [7], only binary object-object relations are extracted
using co-detection matrices. Our work differs from all of these as we integrate textual with
visual information to construct taxonomies. Also of note are several works that integrate text
and images as evidence for knowledge base autocompletion [5] and zero-shot recognition [16,
17, 44]. Our work is different because our task is to accurately construct multi-level hyponym-
hypernym hierarchies from a set of (seen or unseen) categories.
Evaluate the visual semantic relatedness. There are also considerable efforts in designing vi-

3

sual features to evaluate the visual semantic relatedness [7, 39]. In [7], to extract binary relations
between categories, they have to pre-construct a co-detection matrix. By contrast, we directly ex-
tract end-to-end vector features by exploiting distributed representations of images, avoiding any
feature engineering and detector training. In [39], the visual semantic relatedness of categories
is indirectly measured depending on linguistic patterns extracted from WordNet, Wikipedia, etc.
In contrast, we measure the visual relatedness using our image-image features, which are di-
rectly extracted from images themselves, thus our model not only considers linguistic patterns,
but encode perceptual semantics underlying the images themselves.

2.2 Convolutional Neural Networks
CNN-based models hold state-of-the-art performance in various computer vision tasks, includ-
ing image classification [30], object detection [19, 23], and image parsing [13]. Recently, there
has been considerable interest in enhancing CNN components, including pooling layers [58],
activation units [20, 45], and nonlinear layers [33]. These enhancements either improve CNN
training [58], or expand the network learning capacity. BY contrast, HDCNN boosts CNN per-
formance from an orthogonal angle and does not redesign a specific part within any existing
CNN model. Instead, we design a novel generic hierarchical architecture that uses an existing
CNN model as a building block. We embed multiple building blocks into a larger hierarchical
deep CNN.

2.3 Category Hierarchy for Visual Recognition
In visual recognition, there is a vast literature exploiting category hierarchical structures [49].
For classification with a large number of classes using linear classifiers, a common strategy is to
build a hierarchy or taxonomy of classifiers so that the number of classifiers evaluated given a
testing image scales sub-linearly in the number of classes [4, 18]. The hierarchy can be either
predefined [26, 35, 52] or learnt by top-down and bottom-up approaches [1, 10, 21, 32, 36,
40, 42]. In [11], the predefined category hierarchy of ImageNet dataset is utilized to achieve
trade-offs between classification accuracy and specificity. In [34], a hierarchical label tree is
constructed to probabilistically combine predictions from leaf nodes. Such hierarchical classifier
achieves significant speedup at the cost of certain accuracy loss.

One of the earliest attempts to introduce a category hierarchy in CNN-based methods is
reported in [46] but their main goal is transferring knowledge between classes to improve the
results for classes with insufficient training examples. In [12], various label relations are encoded
in a hierarchy. Improved accuracy is achieved only when a subset of training images are relabeled
with internal nodes in the hierarchical class tree. They are not able to improve accuracy in
the original setting where all training images are labeled with leaf nodes. In [54], a hierarchy
of CNNs is introduced but they experimented with only two coarse categories mainly due to
scalability constraints. HD-CNN exploits the category hierarchy in a novel way that we embed
deep CNNs into the hierarchy in a scalable manner and achieves superior classification results
over standard CNN.

4

Chapter 3

Taxonomy Induction

In this chapter, we introduce a probabilistic model for taxonomy induction based on features
extracted from both text and images. Our model is motivated by the key observation that in a
semantically meaningful taxonomy, a category tends to be closely related to its children as well
as its siblings. Figure 3.1 illustrates such an example. For instance, there exists a hypernym-
hyponym relation between the name of category shark and that of its parent seafish. Besides,
images of shark tend to be visually similar to those of ray, both of which are seafishes. Our
model is thus designed to encourage such local semantic consistency; and by jointly considering
all categories in the inference, a globally optimal structure is achieved. A key advantage of the
model is that we incorporate both visual and textual features induced from distributed represen-
tations of images and text (Section 3.3). These features capture the rich underlying semantics
and facilitate taxonomy induction. We further distinguish the relative importance of visual and
textual features that could vary in different layers of a taxonomy. Intuitively, visual features
would be increasingly indicative in the deeper layers, as sub-categories under the same category
of specific objects tend to be visually similar. In contrast, textual features would be more impor-
tant when inducing hierarchical relations between the categories of general concepts (i.e. in the
near-root layers) where visual characteristics are not necessarily similar.

The rest of this chapter is organized as follows. Section 3.1 formally defines the problem
and provides the notations. Section 3.2 induces our proposed model, and section 3.3 elaborates
the features we used for taxonomy induction. Empirical studies of our model could be found in
chapter 5.

3.1 Problem Definition
Assume a set of N categories x = {x1, x2, . . . , xN}, where each category xn consists of a text
term tn as its name, as well as a set of images in = {i1, i2, . . . }. Our goal is to construct a
taxonomy tree T over these categories1, such that categories of specific object types (e.g. shark)
are grouped and assigned to those of general concepts (e.g. seafish). As the categories in x may

1We assume T to be a tree. Most existing taxonomies are modeled as trees [2], since a tree helps simplify
the construction and ensures that the learned taxonomy is interpretable. With minor modifications, our model also
works on non-tree structures.

5

(a) Input

Seafish

Shark Ray

Seafish

Ray

Shark

“seafish, such as sharks and rays…”

“shark and ray are a group of seafish…”

“either ray or shark lives in …”

(c) Output

Seafish Shark

Ray

visually similar

close in wordvec space

wordvec projection

(b) Reasoning

Shark
visually similar

Seafish
visually similar

wordvec projection
Ray

Figure 3.1: An overview of our system. Input: a collection of label items, represented by text and
images; Output: we build a taxonomy from scratch by extracting features based on distributed
representations of text and images.

be from multiple disjoint taxonomy trees, we add a pseudo category x0 as the hyper-root so that
the optimal taxonomy is ensured to be a single tree. Let zn ∈ {1, . . . , N} be the index of the
parent of category xn, i.e. xzn is the hypernymic category of xn. Thus the problem of inducing
a taxonomy structure is equivalent to inferring the conditional distribution p(z|x) over the set of
(latent) indices z = {z1, . . . , zn}, based on the images and text.

3.2 Model
We formulate the distribution p(z|x) through a model which leverages rich multi-modal features.
Specifically, let cn be the set of child nodes of category xn in a taxonomy encoded by z. Our
model is defined as

pw(z,π|x,α) ∝ p(π|α)

N∏
n=1

∏
xn′∈cn

πngw(xn, xn′ , cn\xn′) (3.1)

where gw(xn, xn′ , cn\xn′), defined as

gw(xn, xn′ , cn\xn′) = exp{w>d(xn′)fn,n′,cn\xn′},

measures the semantic consistency between category xn′ , its parent xn as well as its siblings
indexed by cn\xn′ . The function gw(·) is loglinear with respect to fn,n′,cn\xn′ , which is the
feature vector defined over the set of relevant categories (xn, xn′ , cn\xn′), with cn\xn′ being
the set of child categories excluding xn′ (Section 3.3). The simple exponential formulation can
effectively encourage close relations among nearby categories in the induced taxonomy. The
function has combination weights w = {w1, . . . ,wL}, where L is the maximum depth of the
taxonomy, to capture the importance of different features, and the function d(xn′) to return the
depth of xn′ in the current taxonomy. Each layer l (1 ≤ l ≤ L) of the taxonomy has a specific
wl thereby allowing varying weights of the same features in different layers. The parameters
are learned in a supervised manner. In eq 3.1, we also introduce a weight πn for each node
xn, in order to capture the varying popularity of different categories (in terms of being a parent
category). For example, some categories like plant can have a large number of sub-categories,

6

while others such as stone have less. We model π as a multinomial distribution with Dirichlet
prior α = (α1, . . . , αN) to encode any prior knowledge of the category popularity2; and the
conjugacy allows us to marginalize out π analytically to get

pw(z|x,α) ∝
∫
p(π|α)

N∏
n=1

∏
xn′∈cn

πngw(xn, xn′ , cn\xn′)dπ

∝
∏
n

Γ(qn + αn)
∏

xn′∈cn
gw(xn, xn′ , cn\xn′)

(3.2)

where qn is the number of children of category xn.
Next, we describe our approach to infer the expectation for each zn, and based on that select a

particular taxonomy structure for the category nodes x. As z is constrained to be a tree (i.e. cycle
without loops), we include with eq A.1, an indicator factor 1(z) that takes 1 if z corresponds
a tree and 0 otherwise. We modify the inference algorithm appropriately to incorporate this
constraint.
Inference. Exact inference is computationally intractable due to the normalization constant of
eq A.1. We therefore use Gibbs Sampling, a procedure for approximate inference. Here we
present the sampling formula for each zn directly, and defer the details to Appendix A. The
sampling procedure is highly efficient because the normalization term and the factors that are
irrelevant to zn are cancelled out. The formula is

p(zn =m|z\zn, ·) ∝ 1(zn = m, z\zn) ·
(
q−nm + αm

)
·∏

xn′∈cm∪{xn} gw(xm, xn′ , cm ∪ {xn})∏
xn′∈cm\xn

gw(xm, xn′ , cm\xn)
,

(3.3)

where qm is the number of children of category m; the superscript −n denotes the number ex-
cluding xn. Examining the validity of the taxonomy structure (i.e. the tree indicator) in each
sampling step can be computationally prohibitive. To handle this, we restrict the candidate value
of zn in eq A.1.2, ensuring that the new zn is always a tree. Specifically, given a tree T , we
define a structure operation as the procedure of detaching one node xn in T from its parent and
appending it to another node xm which is not a descendant of xn.
Proposition 1. (1) Applying a structure operation on a tree T will result in a structure that is
still a tree. (2) Any tree structure over the node set x that has the same root node with tree T can
be achieved by applying structure operation on T a finite number of times.

The proof is straightforward and we omit it due to space limitations. We also add a pseudo
node x0 as the fixed root of the taxonomy. Hence by initializing a tree-structured state rooted at
x0 and restricting each updating step as a structure operation, our sampling procedure is able to
explore the whole valid tree space.
Output taxonomy selection. To apply the model to discover the underlying taxonomy from a
given set of categories, we first obtain the marginals of z by averaging over the samples generated
through eq A.1.2, then output the optimal taxonomy z∗ by finding the maximum spanning tree
(MST) using the Chu-Liu-Edmonds algorithm [2, 8].

2α could be estimated using training data.

7

Training. We need to learn the model parameters wl of each layer l, which capture the relative
importance of different features. The model is trained using the EM algorithm. Let `(xn) be the
depth (layer) of category xn; and z̃ (siblings c̃n) denote the gold structure in training data. Our
training algorithm updates w through maximum likelihood estimation, wherein the gradient of
wl is (see Appendix A for details):

δwl =
∑

n:`(xn)=l

{f(xz̃n , xn, c̃n\xn)− Ep[f(xzn , xn, cn\xn)]} ,

which is the net difference between gold feature vectors and expected feature vectors as per
the model. The expectation is approximated by collecting samples using the sampler described
above and averaging them.

3.3 Features
In this section, we describe the feature vector f used in our model, and defer more details in
Appendix A. Compared to previous taxonomy induction works which rely purely on linguistic
information, we exploit both perceptual and textual features to capture the rich spectrum of se-
mantics encoded in images and text. Moreover, we leverage the distributed representations of
images and words to construct compact and effective features. Specifically, each image i is rep-
resented as an embedding vector vi ∈ Ra extracted by deep convolutional neural networks. Such
image representation has been successfully applied in various vision tasks. On the other hand,
the category name t is represented by its word embedding vt ∈ Rb, a low-dimensional dense
vector induced by the Skip-gram model [37] which is widely used in diverse NLP applications
too. Then we design f(xn, xn′ , cn\xn′) based on the above image and text representations. The
feature vector f is used to measure the local semantic consistency between category xn′ and its
parent category xn as well as its siblings cn\xn′ .

3.3.1 Image Features
Sibling similarity. As mentioned above, close neighbors in a taxonomy tend to be visually
similar, indicating that the embedding of images of sibling categories should be close to each
other in the vector space Ra. For a category xn and its image set in, we fit a Gaussian distribution
N (vin ,Σn) to the image vectors, where vin ∈ Ra is the mean vector and Σn ∈ Ra×a is the
covariance matrix. For a sibling category xm of xn, we define the visual similarity between xn
and xm as

vissim(xn, xm) = [N (vim ;vin ,Σn) +N (vin ;vim ,Σm)]/2

which is the average probability of the mean image vector of one category under the Gaussian
distribution of the other. This takes into account not only the distance between the mean images,
but also the closeness of the images of each category. Accordingly, we compute the visual
similarity between xn′ and the set cn\xn′ by averaging:

vissim(xn′ , cn\xn′) =

∑
xm∈cn\xn′ vissim(xn′ , xm)

|cn| − 1
.

8

We then bin the values of vissim(xn′ , cn\xn′) and represent it as an one-hot vector, which con-
stitutes f as a component named as siblings image-image relation feature (denoted as S-V13).
Parent prediction. Similar to feature S-V1, we also create the similarity feature between the
image vectors of the parent and child, to measure their visual similarity. However, the parent node
is usually a more general concept than the child, and it usually consists of images that are not
necessarily similar to its child. Intuitively, by narrowing the set of images to those that are most
similar to its child improves the feature. Therefore, different from S-V1, when estimating the
Gaussian distribution of the parent node, we only use the topK images with highest probabilities
under the Gaussian distribution of the child node. We empirically show in section 5.1.3 that
choosing an appropriate K consistently boosts the performance. We name this feature as parent-
child image-image relation feature (denoted as PC-V1).

Further, inspired by the linguistic regularities of word embedding, i.e. the hypernym-hyponym
relationship between words can be approximated by a linear projection operator between word
vectors [15, 37], we design a similar strategy to [15] between images and words so that the parent
can be “predicted” given the image embedding of its child category and the projection matrix.
Specifically, let (xn, xn′) be a parent-child pair in the training data, we learn a projection matrix
Φ which minimizes the distance between Φvin′ (i.e. the projected mean image vector vin′ of the
child) and vtn (i.e. the word embedding of the parent):

Φ∗ = argmin
Φ

1

N

∑
n

‖Φvin′ − vtn‖22 + λ‖Φ‖1,

where N is the number of parent-child pairs in the training data. Once the projection matrix has
been learned, the similarity between a child node xn′ and its parent xn is computed as ‖Φvin′ −
vtn‖, and we also create an one-hot vector by binning the feature value. We call this feature as
parent-child image-word relation feature (PC-V2).

3.3.2 Word Features
We briefly introduce the text features employed. More details about the text feature extraction
could be found in Appendix A.
Word embedding features. Similar to PC-V1, We induce features using word vectors to mea-
sure both sibling-sibling and parent-child closeness in text domain [15]. One exception is that,
as each category has only one word, the sibling similarity is computed as the cosine distance be-
tween two word vectors. This will produce another two parts of features, parent-child word-word
relation feature (PC-T1) and siblings word-word relation feature (S-T1).
Word surface features. In addition to the embedding-based features, we further leverage lexical
features based on the surface forms of child/parent category names. Specifically, we employ the
Capitalization, Ends with, Contains, Suffix match, LCS and Length different features, which are
commonly used in previous works in taxonomy induction [2, 56].

3S: sibling, PC: parent-child, V: visual, T: textual.

9

10

Chapter 4

Hierarchial Deep Convolutional Neural
Networks (HDCNN)

In this chapter, we introduce the architecture of hierarchial deep convolutional neural networks
in detail 1.

4.1 Notations
Assume the dataset consists of a set of pairs {xi, yi}, where xi is an image and yi its category
label. C denotes the number of fine categories, which will be automatically grouped into K
coarse categories depending the built category hierarchies in chapter 3. {Sf

j }Cj=1 and {Sc
k}Kk=1

are partitions of image indices based on fine and coarse categories. Superscripts f and c denote
fine and coarse categories.

Root

Coarse category 1:
{white shark, numbfish,
hammerhead, stingray, … }

Coarse category 2:
{toy terrier, greyhound,
whippet, basenji, … }

Coarse category K:
{mink, cougar, bear, fox
squirrel, otter, … }

.	

.	

.	

(a)

Shared
layers

Fine component
independent layers F1

.

.

.

Coarse component
independent layers B

coarse prediction

fine
prediction 1

final
prediction

Image
low-­level features

P
ro
ba
bi
lis
tic
 a
ve
ra
gi
ng
 la
ye
r

Fine component
independent layers FK

fine
prediction K

(b)

Figure 4.1: (a) A two-level category hierarchy where the classes are taken from ImageNet 1000-
class dataset. (b) Hierarchical Deep Convolutional Neural Network (HD-CNN) architecture.

4.1.1 HD-CNN Architecture
HD-CNN is designed to mimic the structure of category hierarchy where fine categories are
grouped into coarse categories as in Fig 4.1(a). It performs end-to-end classification as illus-
trated in Fig 4.1(b). It mainly comprises four parts (i) shared layers (ii) a single component B to

1The notations in this chapter is independent of those in chapter 3

11

handle coarse categories (iii) multiple components {Fk}Kk=1 (one for each group) for fine classi-
fication and (iv) a single probabilistic averaging layer. Shared layers (left of Fig 4.1 (b)) receive
raw image pixel as input and extract low-level features. The configuration of shared layers is
set to be the same as the preceding layers in the building block CNN. On the top of Fig 4.1(b)
are independent layers of coarse category component B which reuses the configuration of rear
layers from the building block CNN and produces an intermediate fine prediction {Bf

ij}Cj=1 for
an image xi. To produce a coarse category prediction {Bik}Kk=1, we append a fine-to-coarse
aggregation layer (not shown in Fig 4.1(b)) which reduces fine predictions into coarse using a
mapping P : [1, C] 7→ [1, K]. The coarse category probabilities serve two purposes. First, they
are used as weights for combining the predictions made by fine category components {Fk}Kk=1.
Second, when thresholded, they enable conditional execution of fine category components whose
corresponding coarse probabilities are sufficiently large. In the bottom-right of Fig 4.1 (b) are
independent layers of a set of fine category classifiers {Fk}Kk=1, each of which makes fine cat-
egory predictions. As each fine component only excels in classifying a small set of categories,
they produce a fine prediction over a partial set of categories. The probabilities of other fine
categories absent in the partial set are implicitly set to zero. The layer configurations are mostly
copied from the building block CNN except that the number of filters in the final classification
layer is set to be the size of partial set instead of the full set of categories.

Both coarse (B) and fine ({Fk}Kk=1) components share common layers. The reason is three-
fold. First, it is shown in [57] that preceding layers in deep networks response to class-agnostic
low-level features such as corners and edges, while rear layers extract more class-specific fea-
tures such as dog face and bird’s legs. Since low-level features are useful for both coarse and
fine classification tasks, we allow the preceding layers to be shared by both coarse and fine com-
ponents. Second, it reduces both the total floating point operations and the memory footprint of
network execution. Both are of practical significance to deploy HD-CNN in real applications.
Last but not the least, it can decrease the number of HD-CNN parameters which is critical to the
success of HD-CNN training.

On the right side of Fig 4.1 (b) is the probabilistic averaging layer which receives fine as well
as coarse category predictions and produces a final prediction based on weighted average

p(yi = j|xi) =

∑K
k=1Bikpk(yi = j|xi)∑K

k=1Bik

, (4.1)

where Bik is the probability of coarse category k for image xi predicted by the coarse category
componentB. pk(yi = j|xi) is the fine category prediction made by the fine category component
Fk. We stress that both coarse and fine category components reuse layer configurations from the
building block CNN. This flexible modular design allows us to choose the state-of-the-art CNN
as building block, depending on the task at hand.

4.2 HD-CNN Training
As we embed fine category components from a category hierarchy into HD-CNN, the number
of parameters in rear layers grows linearly in the number of coarse categories. Given the same
amount of training data, this increases the training complexity and the risk of over-fitting. On

12

Algorithm 1: HD-CNN training algorithm
1: procedure HD-CNN TRAINING

2: Step 1: Pretrain HD-CNN
3: Step 1.1: Initialize coarse category component
4: Step 1.2: Pretrain fine category components
5: Step 2: Fine-tune the complete HD-CNN

the other hand, the training images within the stochastic gradient descent mini-batch are proba-
bilistically routed to different fine category components. It requires larger mini-batch to ensure
parameter gradients in the fine category components are estimated by a sufficiently large number
of training samples. Large training mini-batch both increases the training memory footprint and
slows down the training process. Therefore, we decompose the HD-CNN training into multiple
steps instead of training the complete HD-CNN from scratch as outlined in Algorithm 1.

4.2.1 Pretraining HD-CNN

We sequentially pretrain the coarse category component and fine category components.
Initializing the Coarse Category Component. We first pretrain a building block CNN F p using
the training set. Subscript p denotes the CNN is pretrained. As both the preceding and rear layers
in coarse category component resemble the layers in the building block CNN, we initialize the
coarse category component B with the weights of F p.
Pretraining the Rear Layers of Fine Category Components. Fine category components
{Fk}Kk=1 can be independently pretrained in parallel. Each Fk should specialize in classifying
fine categories within the coarse category k. Therefore, the pretraining of each Fk only uses
images {xi|i ∈ Sc

k} from the coarse category. The shared preceding layers are already initial-
ized and kept fixed in this stage. For each Fk, we initialize all the rear layers except the last
convolutional layer by copying the learned parameters from the pretrained model F p.

4.2.2 Fine-tuning HD-CNN

After both coarse and fine category components are properly pretrained, we fine-tune the com-
plete HD-CNN. As the category hierarchy as well as the associated mapping P o are learned,
each fine category component focuses on classifying a fixed subset of fine categories. Dur-
ing fine-tuning, the semantics of coarse categories predicted by the coarse category component
should be kept consistent with those associated with fine category components. Thus we add a
coarse category consistency term to regularize the conventional multinomial logistic loss.
Coarse category consistency. The coarse category consistency term ensures the mean coarse
category distribution {tk}Kk=1 within the mini-batch is preserved during the fine-tuning. The fine-
to-coarse category mapping P : [1, C] 7→ [1, K] (from the category hierarchy) provides a way
to specify the target coarse category distribution {tk}Kk=1. Specifically, tk is set to be the fraction
of all the training images within the coarse category k under the assumption that the distribution

13

over coarse categories across the training set is close to that within a training mini-batch.

tk =

∑
j|k∈P (j)

∣∣∣Sf
j

∣∣∣∑K
k′=1

∑
j|k′∈P (j)

∣∣∣Sf
j

∣∣∣ ∀k ∈ [1, K] (4.2)

The final loss function we use for fine-tuning the HD-CNN is shown below.

E = − 1

n

n∑
i=1

log(pyi) +
λ

2

K∑
k=1

(tk −
1

n

n∑
i=1

Bik)2 (4.3)

where n is the size of training mini-batch. λ is a regularization constant and is set to λ = 20.

4.3 HD-CNN Testing
As we add fine category components into the HD-CNN, the number of parameters, memory foot-
print and execution time in rear layers, all scale linearly in the number of coarse categories. To
ensure HD-CNN is scalable for large-scale visual recognition, we develop conditional execution
and layer parameter compression techniques.
Conditional Execution. At test time, for a given image, it is not necessary to evaluate all fine
category classifiers as most of them have insignificant weights Bik as in Eqn 4.1. Their contribu-
tions to the final prediction are negligible. Conditional execution of top relevant fine components
can accelerate the HD-CNN classification. Therefore, we threshold Bik using a parametric vari-
able Bt = (βK)−1 and reset Bik to zero when Bik < Bt. Those fine category classifiers with
Bik = 0 are not evaluated.
Parameter Compression. In HD-CNN, the number of parameters in rear layers of fine category
classifiers grows linearly in the number of coarse categories. Thus we compress the layer param-
eters at test time to reduce memory footprint. Specifically, we choose Product Quantization [24]
to compress the parameter matrix W ∈ Rm×n. We first partition it horizontally into segments
of width s such that W = [W 1, ...,W (n/s)]. Then k-means clustering is used to cluster the rows
in W i,∀i ∈ [1, (n/s)]. By only storing the nearest cluster indices in an 8-bit integer matrix
Q ∈ Rm×(n/s) and cluster centers in a single-precision floating number matrix C ∈ Rk×n, we
can achieve a compression factor of (32mn)/(32kn + 8mn/s), where s, k are hyperparameters
for parameter compression.

14

Chapter 5

Evaluation

We evaluate the whole framework from two aspects. First, we evaluate our taxonomy induction
model by training and testing on WordNet Taxonomies. Then, we evaluate HDCNN on image
classification tasks using standard benchmark dataset.

5.1 Taxonomy Induction
We first disclose our implementation details in section 5.1.1 and Appendix A for better repro-
ducibility. We then compare our model with previous state-of-the-art methods [2, 15] with two
taxonomy induction tasks. Finally, we provide analysis on the weights and taxonomies induced.

5.1.1 Implementation Details
Dataset. We conduct our experiments on the ImageNet2011 dataset [9], which provides a large
collection of category items (synsets), with associated images and a label hierarchy (sampled
from WordNet) over them. The original ImageNet taxonomy is preprocessed, resulting in a tree
structure with 28231 nodes.
Word embedding training. We train word embedding for synsets by replacing each word/phrase
in a synset with a unique token and then using Google’s word2vec tool [37]. We combine three
public available corpora together, including the latest Wikipedia dump [53], the One Billion
Word Language Modeling Benchmark [6] and the UMBC webbase corpus [22], resulting in a
corpus with total 6 billion tokens. The dimension of the embedding is set to 200.
Image processing. we employ the ILSVRC12 pre-trained convolutional neural networks [41] to
embed each image into the vector space. Then, for each category xn with images, we estimate a
multivariate Gaussian parameterized by Nxn = (µxn ,Σxn), and constrain Σxn to be diagonal to
prevent overfitting. For categories with very few images, we only estimate a mean vector µxn .
For nodes that do not have images, we ignore the visual feature.
Training configuration. The feature vector is a concatenation of 6 parts, as detailed in section
3.3. All pairwise distances are precomputed and stored in memory to accelerate Gibbs sampling.
The initial learning rate for gradient descent in the M step is set to 0.1, and is decreased by a
fraction of 10 every 100 EM iterations.

15

Trees Tree A Tree B Tree C
Synset ID 12638 19919 23733

Name consumer goods animal food, nutrient
h = 4 187 207 572

h = 5 362 415 890

h = 6 493 800 1166

h = 7 524 1386 1326

Table 5.1: Statistics of our evaluation set. The bottom 4 rows give the number of nodes within
each height h ∈ {4, 5, 6, 7}. The scale of the threes range from small to large, and there is no
overlapping among them.

5.1.2 Evaluation
Experimental Settings

We evaluate our model on three subtrees sampled from the ImageNet taxonomy. To collect the
subtrees, we start from a given root (e.g. consumer goods) and traverse the full taxonomy using
BFS, and collect all descendant nodes within a depth h (number of nodes in the longest path).
We vary h to get a series of subtrees with increasing heights h ∈ {4, 5, 6, 7} and various scales
(maximally 1326 nodes) in different domains. The statistics of the evaluation sets are provided in
Table 5.1. To avoid ambiguity, all nodes used in ILSVRC 2012 are removed as the CNN feature
extractor is trained on them.

We design two different tasks to evaluate our model. (1) In the hierarchy completion task,
we randomly remove some nodes from a tree and use the remaining hierarchy for training. In
the test phase, we infer the parent of each removed node and compare it with groundtruth. This
task is designed to figure out whether our model can successfully induce hierarchical relations
after learning from within-domain parent-child pairs. (2) Different from the previous one, the hi-
erarchy construction task is designed to test the generalization ability of our model, i.e. whether
our model can learn statistical patterns from one hierarchy and transfer the knowledge to build a
taxonomy for another collection of out-of-domain labels. Specifically, we select two trees as the
training set to learn w. In the test phase, the model is required to build the full taxonomy from
scratch for the third tree.

We use Ancestor F1 as our evaluation metric [2, 28, 38]. Specifically, we measure F1 =
2PR/(P +R) values of predicted “is-a” relations where the precision (P) and recall (R) are:

P =
|isapredicted ∩ isagold|

|isapredicted|
, R =

|isapredicted ∩ isagold|
|isagold|

.

We compare our method to two previously state-of-the-art models by [15] and [2], which are
closest to ours.

Results

Hierarchy completion. In the hierarchy completion task, we split each tree into 70% nodes
for training and 30% for test, and experiment with different h. We compare the following three

16

Method h = 4 h = 5 h = 6 h = 7

Hierarchy Completion
Fu2014 0.66 0.42 0.26 0.21
Ours (L) 0.70 0.49 0.45 0.37
Ours (LV) 0.73 0.51 0.50 0.42

Hierarchy Construction
Fu2014 0.53 0.33 0.28 0.18
Bansal2014 0.67 0.53 0.43 0.37
Ours (L) 0.58 0.41 0.36 0.30
Ours (LB) 0.68 0.55 0.45 0.40
Ours (LV) 0.66 0.52 0.42 0.34
Ours (LVB - E) 0.68 0.55 0.44 0.39
Ours (LVB) 0.70 0.57 0.49 0.43

Table 5.2: Comparisons among different variants of our model, [15] and [2] on two tasks. The
ancestor-F1 scores are reported.

systems: (1) Fu20141 [15]; (2) Ours (L): Our model with only language features enabled (i.e.
surface features, parent-child word-word relation feature and siblings word-word relation fea-
ture); (3) Ours (LV): Our model with both language features and visual features 2. The average
performance on three trees are reported at Table 5.2. We observe that the performance gradually
drops when h increases, as more nodes are inserted when the tree grows higher, leading to a more
complex and difficult taxonomy to be accurately constructed. Overall, our model outperforms
Fu2014 in terms of the F1 score, even without visual features. In the most difficult case with
h = 7, our model still holds an F1 score of 0.42 (2× of Fu2014), demonstrating the superiority
of our model.
Hierarchy construction. The hierarchy construction task is much more difficult than hierarchy
completion task because we need to build a taxonomy from scratch given only a hyper-root. For
this task, we use a leave-one-out strategy, i.e. we train our model on every two trees and test on
the third, and report the average performance in Table 5.2. We compare the following methods:
(1) Fu2014, (2) Ours (L), and (3) Ours (LV), as described above; (4) Bansal2014: The model by
[2] retrained using our dataset; (5) Ours (LB): By excluding visual features, but including other
language features from [2]; (6) Ours (LVB): Our full model further enhanced with all semantic
features from [2]; (7) Ours (LVB - E): By excluding word embedding-based language features
from Ours (LVB).

As shown, on the hierarchy construction task, our model with only language features still
outperforms Fu2014 with a large gap (0.30 compared to 0.18 when h = 7), which uses similar
embedding-based features. The potential reasons are two-fold. First, we take into account not
only parent-child relations but also siblings. Second, their method is designed to induce only
pairwise relations. To build the full taxonomy, they first identify all possible pairwise relations

1We tried different parameter settings for the number of clustersC and the identification threshold δ, and reported
the best performance we achieved.

2In the comparisons to [15] and [2], we simply setK =∞, i.e. we use all available images of the parent category
to estimate the PC-V1 feature.

17

using a simple thresholding strategy and then eliminate conflicted relations to obtain a legitimate
tree hierarchy. In contrast, our model is optimized over the full space of all legitimate taxonomies
by taking the structure operation in account during Gibbs sampling.

When comparing to Bansal2014, our model with only word embedding-based features un-
derperforms theirs. However, when introducing visual features, our performance is comparable
(p-value = 0.058).Furthermore, if we discard visual features but add semantic features from [2],
we achieve a slight improvement of 0.02 over Bansal2014 (p-value = 0.016), which is largely at-
tributed to the incorporation of word embedding-based features that encode high-level linguistic
regularity. Finally, if we enhance our full model with all semantic features from [2], our model
outperforms theirs by a gap of 0.04 (p-value < 0.01), which justifies our intuition that perceptual
semantics underneath visual contents are quite helpful.

5.1.3 Qualitative Analysis

In this section, we conduct qualitative studies to investigate how and when the visual information
helps the taxonomy induction task.
Contributions of visual features. To evaluate the contribution of each part of the visual features
to the final performance, we train our model jointly with textual features and different combi-
nations of visual features, and report the ancestor-F1 scores. As shown in Table 5.3. When
incorporating the feature S-V1, the performance is substantially boosted by a large gap at all
heights, showing that visual similarity between sibling nodes is a strong evidence for taxonomy
induction. It is intuitively plausible, as it is highly likely that two specific categories share a com-
mon (and more general) parent category if similar visual contents are observed between them.
Further, adding the PC-V1 feature gains us a better improvement than adding PC-V2, but both
minor than S-V1.

Compared to that of siblings, the visual similarity between parents and children does not
strongly holds all the time. For example, images of Terrestrial animal are only partially similar
to those of Feline, because the former one contains the later one as a subset. Our feature cap-
tures this type of “contain” relation between parents and children by considering only the top-K
images from the parent category that have highest probabilities under the Gaussian distribution
of the child category. To see this, we vary K while keep all other settings, and plot the F1 scores
in Fig 5.1. We observe a trend that when we gradually increase K, the performance goes up
until reaching some maximal; It then slightly drops (or oscillates) even when more images are
available, which confirms with our feature design that only top images should be considered in
parent-child visual similarity.

Overall, the three visual features complement each other, and achieve the highest perfor-
mance when combined.
Visual representations. To investigate how the image representations affect the final perfor-
mance, we compare the ancestor-F1 score when different pre-trained CNNs are used for visual
feature extraction. Specifically, we employ both the CNN-128 model (128 dimensional feature
with 15.6% top-5 error on ILSVRC12) and the VGG-16 model (4096 dimensional feature with
7.5% top-5 error) by [41], but only observe a slight improvement of 0.01 on the ancestor-F1
score for the later one.

18

S-V1 PC-V1 PC-V2 h = 4 h = 5 h = 6 h = 7
0.58 0.41 0.36 0.30

X 0.63 0.48 0.40 0.32
X 0.61 0.44 0.38 0.31

X 0.60 0.42 0.37 0.31
X X 0.65 0.52 0.41 0.33
X X X 0.66 0.52 0.42 0.34

Table 5.3: The performance when different combinations of visual features are enabled.

h = 4 h = 5

h = 6 h = 7

A
n
ce

st
er

-F
1

K /100

Figure 5.1: The Ancestor-F1 scores changes over K (number of images used in the PC-V1 fea-
ture) at different heights. The values in the x-axis are K/100; K = ∞ means all images are
used.

Relevance of textual and visual features v.s. depth of tree. Compared to [2], a major difference
of our model is that different layers of the taxonomy correspond to different weights wl, while
in [2] all layers share the same weights. Intuitively, introducing layer-wise w not only extends
the model capacity, but also differentiates the importance of each feature at different layers. For
example, the images of two specific categories, such as shark and ray, are very likely to be
visually similar. However, when the taxonomy goes from bottom to up (specific to general),
the visual similarity is gradually undermined — images of fish and terrestrial animal are not
necessarily similar any more. Hence, it is necessary to privatize the weights w for different
layers to capture such variations, i.e. the visual features become more and more evident from
shallow to deep layers, while the textual counterparts, which capture more abstract concepts,
relatively grow more indicative oppositely from specific to general.

To visualize the variations across layers, for each feature component, we fetch its correspond-
ing block in w as V . Then, we average |V | and observe how its values change with the layer
depth h. For example, for the parent-child word-word relation feature, we first fetch its corre-

19

Figure 5.2: Normalized weights of each feature v.s. the layer depth.

millipede

invertebrate critter

animal

caterpillar

domestic animal

starfish

chordate

arrowwormarthropod nematode

trichinaplanarian polyp

echinodermannelid

worm

tussock

caterpillar

tent

caterpillar

cephalochordate scavenger

larvaceansagitta

stocker

lancelet archiannelid

larva

foodstuff

meal, repast

food, nutrient

nutriment

liquid

diet

dietary

ingredientflour grain

beef

stew

cows’

milk

juice waterboiled

egg

barley spring

water

stew

fish

stew

diary

product

wheatsoybean

meal

wheat

flour

hard-boiled

egg

brunch breakfast

water

drinking

water

juice

Figure 5.3: Excerpts of the prediction taxonomies, compared to the groundturth. Edges marked
as red and green are false predictions and unpredicted groundtruth links, respectively.

sponding weights V from w as a 20 × 6 matrix, where 20 is the feature dimension and 6 is the
number of layers. We then average its absolute values3 in column and get a vector v with length
6. After `2 normalization, the magnitude of each entry in v directly reflects the relative impor-
tance of the feature as an evidence for taxonomy induction. Fig 5.2(b) plots how their magnitudes
change with h for every feature component averaged on three train/test splits. It is noticeable that
for both word-word relations (S-T1, PC-T1), their corresponding weights slightly decrease as h
increases. On the contrary, the image-image relation features (S-V1, PC-V1) grows relatively
more prominent. The results verify our conjecture that when the category hierarchy goes deeper
into more specific classes, the visual similarity becomes relatively more indicative as an evidence
for taxonomy induction.

3We take the absolute value because we only care about the relevance of the feature as an evidence for taxonomy
induction, but note that the weight can either encourage (positive) or discourage (negative) connections of two nodes.

20

Visualizing results. Finally, we visualize some excerpts of our predicted taxonomies, as com-
pared to the groundtruth in Fig 5.3.

5.2 Image Classification
We evaluate HD-CNN on CIFAR100 [29] and ImageNet [9]. HD-CNN is implemented on the
widely deployed Caffe [25] software. The network is trained by back propagation [30]. We run
all the testing experiments on a single NVIDIA Tesla K40c card.

5.2.1 CIFAR100

The CIFAR100 dataset consists of 100 classes of natural images. There are 50K training images
and 10K testing images. We follow [20] to preprocess the dataset (e.g. global contrast normal-
ization and ZCA whitening). Randomly cropped and flipped image patches of size 26 × 26 are
used for training. We adopt a NIN network 4 with three stacked layers [33]. We denote it as
CIFAR100-NIN which will be the HD-CNN building block. Fine category components share
preceding layers from conv1 to pool1 which accounts for 6% of the total parameters and 29%
of the total floating point operations. The remaining layers are used as independent layers. For
building the category hierarchy, we pertained a taxonomy induction model using the ImageNet
hierarchy and then use it to build the category hierarchy for CIFAR100 categories. Fine cate-
gories within the same coarse categories are visually more similar. We pretrain the rear layers of
fine category components. The initial learning rate is 0.01 and it is decreased by a factor of 10
every 6K iterations. Fine-tuning is performed for 20K iterations with large mini-batches of size
256. The initial learning rate is 0.001 and is reduced by a factor of 10 once after 10K iterations.
The model structure could be found in Appendix B.

For evaluation, we use 10-view testing [30]. We extract five 26 × 26 patches (the 4 corner
patches and the center patch) as well as their horizontal reflections and average their predictions.
The CIFAR100-NIN net obtains 35.27% testing error. Our HD-CNN achieves testing error of
32.62% which improves the building block net by 2.65%.
Shared layers. Use of shared layers makes both computational complexity and memory foot-
print of HD-CNN sublinear in the number of fine category classifiers when compared to the
building block net. Our HD-CNN based on CIFAR100-NIN consumes less than three times as
much memory as the building block net without parameter compression. We also want to inves-
tigate the impact of the use of shared layers on the classification error, memory footprint and the
net execution time (Table 5.5). We build another HD-CNN where coarse category component
and all fine category components use independent preceding layers initialized from a pretrained
building block net. Under single-view testing where only a central cropping is used, we observe
a minor error increase from 34.36% to 34.50%. But using shared layers dramatically reduces the
memory footprint from 1356 MB to 459 MB and testing time from 2.43 seconds to 0.28 seconds.
Conditional execution. By varying the hyperparameter β, we can effectively affect the number
of fine category components that will be executed. There is a trade-off between execution time

4https://github.com/mavenlin/cuda-convnet/blob/master/NIN/cifar-100_def

21

https://github.com/mavenlin/cuda-convnet/blob/master/NIN/cifar-100_def

Table 5.4: 10-view testing errors on CIFAR100 dataset. Notation CCC=coarse category consis-
tency.

Method Error

Model averaging (2 CIFAR100-NIN
nets)

35.13

DSN [31] 34.68

CIFAR100-NIN-double 34.26

dasNet [47] 33.78

Base: CIFAR100-NIN 35.27

HD-CNN, no finetuning 33.33

HD-CNN, finetuning 32.62

HD-CNN+CE+PC, finetuning 32.79

and classification error. A larger value of β leads to higher accuracy at the cost of executing more
components for fine categorization. By enabling conditional executions with hyperparameter
β = 6, we obtain a substantial 2.8X speed up with merely a minor increase in error from 34.36%
to 34.57% (Table 5.5). The testing time of HD-CNN is about 2.5 times as much as that of the
building block net.
Parameter compression. As fine category CNNs have independent layers from conv2 to cccp6,
we compress them and reduce the memory footprint from 447MB to 286MB with a minor in-
crease in error from 34.57% to 34.73%.
Comparison with a strong baseline. As our HD-CNN memory footprint is about two times as
much as the building block model (Table 5.5), it is necessary to compare a stronger baseline of
similar complexity with HD-CNN. We adapt CIFAR100-NIN and double the number of filters
in all convolutional layers which accordingly increases the memory footprint by three times. We
denote it as CIFAR100-NIN-double and obtain error 34.26% which is 1.01% lower than that of
the building block net but is 1.64% higher than that of HD-CNN.
Comparison with model averaging. HD-CNN is fundamentally different from model averag-
ing [30]. In model averaging, all models are capable of classifying the full set of the categories
and each one is trained independently. The main sources of their prediction differences are
different initializations. In HD-CNN, each fine category classifier only excels at classifying a
partial set of categories. To compare HD-CNN with model averaging, we independently train
two CIFAR100-NIN networks and take their averaged prediction as the final prediction. We ob-
tain an error of 35.13%, which is about 2.51% higher than that of HD-CNN (Table 5.4). Note
that HD-CNN is orthogonal to the model averaging and an ensemble of HD-CNN networks can
further improve the performance.
Coarse category consistency. To verify the effectiveness of coarse category consistency term
in our loss function (4.3), we fine-tune a HD-CNN using the traditional multinomial logistic loss
function. The testing error is 33.21%, which is 0.59% higher than that of a HD-CNN fine-tuned
with coarse category consistency (Table 5.4).

22

Comparison with state-of-the-art. Our HD-CNN improves on the current two best methods
[31] and [47] by 2.06% and 1.16% respectively and sets new state-of-the-art results on CI-
FAR100 (Table 5.4).

5.2.2 ImageNet 1000
The ILSVRC-2012 ImageNet dataset consists of about 1.2 million training images, 50, 000 val-
idation images. To demonstrate the generality of HD-CNN, we experiment with two different
building block nets. In both cases, HD-CNNs achieve significantly lower testing errors than the
building block nets.

Network-In-Network Building Block Net

hermit crab

0 1

tarantula
fiddler crab

crayfish
scorpion

alligator lizard

0 1

CC 82
CC 7

CC 10
CC 11
CC 6

0 1

cricket
banded gecko

fiddler crab
alligator lizard

hermit crab

0 1

alligator lizard
banded gecko

hermit crab
ringneck snake

tarantula

0 1

banded gecko
gar

scorpion
thunder snake

hermit crab

0 1

ringneck snake
alligator lizard

fiddler crab
tarantula

hermit crab

hand blower

0 1

power drill
dumbbell

punching bag
barbell
plunger

0 1

CC 50
CC 81
CC 40
CC 74
CC 49

0 1

barbell
plunger

hair spray
hand blower
punching bag

0 1

barbell
maraca

hair spray
punching bag
hand blower

0 1

maraca
hand blower

hair spray
dumbbell

punching bag

0 1

dumbbell
plunger

hair spray
punching bag
hand blower

digital clock

0 1

notebook
cab

projector
laptop

odometer

0 1

CC 63
CC 53
CC 75
CC 72
CC 65

0 1

digital clock
notebook
pool table
odometer

iPod

0 1

iPod
digital clock

laptop
odometer
monitor

0 1

traffic light
ski mask

Polaroid camera
digital clock

laptop

0 1

projector
iPod

odometer
laptop

digital clock

ice lolly

0 1

whistle
cinema

sunglass
sunglasses

bubble

0 1

CC 59
CC 50
CC 78
CC 75
CC 62

0 1

scoreboard
garbage truck

ice lolly
umbrella
maypole

0 1

maraca
plunger

sunglasses
sunglass
ice lolly

0 1

cinema
maypole
whistle
bow tie
ice lolly

0 1

maypole
umbrella

sunglasses
sunglass
ice lolly

(a) (b) (c) (d) (e) (f) (g)

Figure 5.4: Case studies on ImageNet dataset. Each row represents a testing case. Column
(a): test image with ground truth label. Column (b): top 5 guesses from the building block net
ImageNet-NIN. Column (c): top 5 Coarse Category (CC) probabilities. Column (d)-(f): top
5 guesses made by the top 3 fine category CNN components. Column (g): final top 5 guesses
made by the HD-CNN. See text for details.

We choose a public 4-layer NIN net5 as our first building block as it has greatly reduced num-
ber of parameters compared to AlexNet [30] but similar error rates. It is denoted as ImageNet-
NIN. The model structure could be found in Appendix B. In HD-CNN, various components share
preceding layers from conv1 to pool3 which account for 26% of the total parameters and 82% of
the total floating point operations. We follow the training and testing protocols as in [30]. Orig-
inal images are resized to 256 × 256. Randomly cropped and horizontally reflected 224 × 224
patches are used for training. At test time, the net makes a 10-view averaged prediction. We
train ImageNet-NIN for 45 epochs. The top-1 and top-5 errors are 39.76% and 17.71%. To build
the category hierarchy, we pretrained the taxonomy induction model on WordNet hierarchy (ex-
cluding those used in ImageNet) and induce a taxonomy of the ILSVRC 2012 categories with
89 intermediate nodes. Each fine category CNN is fine-tuned for 40K iterations while the initial

5https://gist.github.com/mavenlin/d802a5849de39225bcc6

23

https://gist.github.com/mavenlin/d802a5849de39225bcc6

learning rate 0.01 is decreased by a factor of 10 every 15K iterations. Fine-tuning the complete
HD-CNN is not performed as the required mini-batch size is significantly higher than that for the
building block net. Nevertheless, we still achieve top-1 and top-5 errors of 36.66% and 15.80%
and improve the building block net by 3.1% and 1.91%, respectively (Table 5.6). The class-wise
top-5 error improvement over the building block net is shown in Fig 5.5 left.

Table 5.5: Comparison of testing errors, memory footprint and testing time between building
block nets and HD-CNNs on CIFAR100 and ImageNet datasets. Statistics are collected under
single-view testing. Three building block nets CIFAR100-NIN, ImageNet-NIN and ImageNet-
VGG-16-layer are used. The testing mini-batch size is 50. Notations: SL=Shared layers,
CE=Conditional execution, PC=Parameter compression.

Model top-1, top-
5

Memory
(MB)

Time
(sec.)

Base:CIFAR100-
NIN

37.29 188 0.04

HD-CNN w/o SL 34.50 1356 2.43
HD-CNN 34.36 459 0.28
HD-CNN+CE 34.57 447 0.10
HD-CNN+CE+PC 34.73 286 0.10

Base:ImageNet-
NIN

41.52, 18.98 535 0.19

HD-CNN 37.92,16.62 3544 3.25
HD-CNN+CE 38.16, 16.75 3508 0.52
HD-CNN+CE+PC 38.39, 16.89 1712 0.53

Base:ImageNet-
VGG-16-layer

32.30, 12.74 4134 1.04

HD-
CNN+CE+PC

31.34,12.26 6863 5.28

Case studies We want to investigate how HD-CNN corrects the mistakes made by the building
block net. In Fig 5.4, we collect four testing cases. In the first case, the building block net fails to
predict the label of the tiny hermit crab in the top 5 guesses. In HD-CNN, two coarse categories
#6 and #11 receive most of the coarse probability mass. The fine category component #6
specializes in classifying crab breeds and strongly suggests the ground truth label. By combining
the predictions from the top fine category classifiers, the HD-CNN predicts hermit crab as the
most probable label. In the second case, the ImageNet-NIN confuses the ground truth hand
blower with other objects of close shapes and appearances, such as plunger and barbell. For
HD-CNN, the coarse category component is also not confident about which coarse category the
object belongs to and thus assigns even probability mass to the top coarse categories. For the
top 3 fine category classifiers, #74 strongly predicts ground truth label while the other two #49

24

and #40 rank the ground truth label at the 2nd and 4th place respectively. Overall, the HD-
CNN ranks the ground truth label at the 1st place. This demonstrates HD-CNN needs to rely on
multiple fine category classifiers to make correct predictions for difficult cases.
Conditional executions. By varying the hyperparameter β, we can control the number of fine
category components that will be executed. There is a trade-off between execution time and clas-
sification error as shown in Fig 5.5 right. A larger value of β leads to lower error at the cost of
more executed fine category components. By enabling conditional executions with hyperparam-
eter β = 8, we obtain a substantial 6.3X speed up with merely a minor increase of single-view
testing top-5 error from 16.62% to 16.75% (Table 5.5). With such speedup, the HD-CNN testing
time is less than 3 times as much as that of the building block net.
Parameter compression. We compress independent layers conv4 and cccp7 as they account for
60% of the parameters in ImageNet-NIN. Their parameter matrices are of size 1024× 3456 and
1024 × 1024 and we use compression hyperparameters (s, k) = (3, 128) and (s, k) = (2, 256).
The compression factors are 4.8 and 2.7. The compression decreases the memory footprint from
3508MB to 1712MB and merely increases the top-5 error from 16.75% to 16.89% under single-
view testing (Table 5.5).

0 200 400 600 800 1000

class

−0.3

−0.2

−0.1

0.0

0.1

0.2

e
rr
o
r
im

p
ro
v
e
m
e
n
t

log2 β
-5 -4 -3 -2 -1 0 1 2 3 4

M
ea

n

of
 e

xe
cu

te
d

co
m

po
ne

nt
s

0

2

4

6

8

10

12

To
p

5
er

ro
r

0.15

0.155

0.16

0.165

0.17

0.175

0.18

Figure 5.5: Left: Class-wise HD-CNN top-5 error improvement over the building block net.
Right: Mean number of executed fine category classifiers and top-5 error against hyperparameter
β on the ImageNet validation dataset.

Comparison with model averaging. As the HD-CNN memory footprint is about three times
as much as the building block net, we independently train three ImageNet-NIN nets and average
their predictions. We obtain top-5 error 17.11% which is 0.6% lower than the building block but
is 1.31% higher than that of HD-CNN (Table 5.6).

VGG-16-layer Building Block Net

The second building block net we use is a 16-layer CNN from [41]. We denote it as ImageNet-
VGG-16-layer6. The model structure could be found in Appendix B. The layers from conv1 1

6https://github.com/BVLC/caffe/wiki/Model-Zoo

25

https://github.com/BVLC/caffe/wiki/Model-Zoo

Table 5.6: Comparisons of 10-view testing errors between ImageNet-NIN and HD-CNN. Nota-
tion CC=Coarse category.

Method top-1, top-5

Base:ImageNet-NIN 39.76, 17.71

Model averaging (3 base
nets)

38.54, 17.11

HD-CNN 36.66, 15.80

HD-CNN+CE+PC 36.88, 15.92

Table 5.7: Errors on ImageNet validation set.

Method top-1, top-
5

GoogLeNet,multi-crop [48] N/A,7.9
VGG-19-layer, dense [41] 24.8,7.5
VGG-16-layer+VGG-19-
layer,dense

24.0,7.1

Base:ImageNet-VGG-16-
layer,dense

24.79,7.50

HD-CNN+PC,dense 23.69,6.76

HD-CNN+PC+CE,dense 23.88,6.87

to pool4 are shared and they account for 5.6% of the total parameters and 90% of the total
floating number operations. The remaining layers are used as independent layers in coarse and
fine category classifiers. We follow the training and testing protocols as in [41]. For training,
we first sample a size S from the range [256, 512] and resize the image so that the length of
short edge is S. Then a randomly cropped and flipped patch of size 224 × 224 is used for
training. For testing, dense evaluation is performed on three scales {256, 384, 512} and the
averaged prediction is used as the final prediction. Please refer to [41] for more training and
testing details. On ImageNet validation set, ImageNet-VGG-16-layer achieves top-1 and top-5
errors 24.79% and 7.50% respectively.

Similar to the previous NIN structure, we build a category hierarchy with 84 intermediate
categories. We implement multi-GPU training on Caffe by exploiting data parallelism [41] and
train the fine category classifiers on two NVIDIA Tesla K40c cards. The initial learning rate
is 0.001 and it is decreased by a factor of 10 every 4K iterations. HD-CNN fine-tuning is not
performed. Due to large memory footprint of the building block net (Table 5.5), the HD-CNN
with 84 fine category classifiers cannot fit into the memory directly. Therefore, we compress
the parameters in layers fc6 and fc7 as they account for over 85% of the parameters. Parameter
matrices in fc6 and fc7 are of size 4096 × 25088 and 4096 × 4096. Their compression hyper-

26

parameters are (s, k) = (14, 64) and (s, k) = (4, 256). The compression factors are 29.9 and
8 respectively. The HD-CNN obtains top-1 and top-5 errors 23.69% and 6.76% on ImageNet
validation set and improves over ImageNet-VGG-16-layer by 1.1% and 0.74% respectively.
Comparison with state-of-the-art. Currently, the two best nets on ImageNet dataset are GoogLeNet [48]
(Table 5.7) and VGG 19-layer network [41]. Using multi-scale multi-crop testing, a single
GoogLeNet net achieves top-5 error 7.9%. With multi-scale dense evaluation, a single VGG 19-
layer net obtains top-1 and top-5 errors 24.8% and 7.5% and improves top-5 error of GoogLeNet
by 0.4%. Our HD-CNN decreases top-1 and top-5 errors of VGG 19-layer net by 1.11% and
0.74% respectively. Furthermore, HD-CNN slightly outperforms the results of averaging the
predictions from VGG-16-layer and VGG-19-layer nets.

27

28

Chapter 6

Conclusion

Existing deep convolutional neural networks (CNN) are trained as flat N-way classifiers and few
efforts have been made to leverage the hierarchical structure of categories. This thesis builds
on the intuition not all categories are equally difficult to distinguish. Based on this, we first
study the problem of automatically inducing semantically meaningful category hierarchies from
multi-modal data. We propose a probabilistic Bayesian model which leverages distributed rep-
resentations for images and words [59]. We compare our model and features to previous ones
on two different tasks using the ImageNet hierarchies, and demonstrate superior performance of
our model, and the effectiveness of exploiting visual contents for taxonomy induction. Given
the pre-build category hierarchies, we then combine the category hierarchy with deep CNN and
introduce Hierarchical Deep CNN (HD-CNN) [55]. HD-CNN separates easy classes in coarse
category classifier while distinguishing the most difficult classes in fine category classifiers. HD-
CNN is trained by component-wise pre-training, followed by a global finetuning with a multi-
nomial logistic loss regularized by a temporal sparsity penalty. We demonstrated that HD-CNN
is a flexible deep CNN architecture to improve over existing deep CNN models. We showed
this empirically on both CIFAR-100 and Image-Net datasets using three different building block
nets. As part of future work, we plan to extend HD-CNN architectures to those with more than 2
hierarchical levels and also verify our empirical results in a theoretical framework.

29

30

Appendix A

Taxonomy Induction

Appendix A is organized as follows. In section A.1, we provide more details about our proposed
model, including an illustration of our model (section A.1.1), the derivation of the Gibbs sam-
pler (section A.1.2) and the gradient descent algorithm (section A.1.3). Section A.2 gives more
details on the feature extraction. As supplementary to the paper, section A.3 discloses more im-
plementation details, including the text data processing (section A.3.1) and the implementation
efficiency (section A.3.2).

A.1 Model Derivation

A.1.1 Illustration of Our Model

Fig A.1 illustrates the intuition of our model. Each parent-children group (the green boxes in Fig
A.1) corresponds to a consistency term which encodes the semantic closeness of all parent-child
pairs and sibling pairs within that group. The model encourages the local semantic consistency
by factorizing consistency terms of all parent-children groups present in the taxonomy.

Figure A.1: An illustration of our model, which encourages local semantic consistency.

31

A.1.2 Gibbs Sampling

The probability of a configuration z is defined as

pw(z|x,α)

∝
∏
n

Γ(qn + αn)
∏

xn′∈cn
gw(xn, xn′ , cn\xn′) · 1(z). (A.1)

To sample the parent index zn of category xn, conditioned on the structure of the rest nodes, we
have

p(zn = m|z\zn, ·)

∝
∏
t6=m

Γ(q−nt + αt)
∏

xn′∈ct\xn

gw(xt, xn′ , ct\xn)

· Γ(q−nm + 1 + αt)
∏

xn′∈cm∪{xn}

gw(xm, xn′ , cm ∪ {xn})

· 1(zn = m, z\zn),

where qm is the number of children of categorym; the superscript−n denotes the number exclud-
ing xn. To simplify the sampling procedure, we divide p(zn = m|z\zn, ·) with the “likelihood”
of the whole structure excluding xn, i.e.

p(z\zn|·) ∝
∏
t

Γ(q−nt + αt)
∏

xn′∈ct\xn

gw(xt, xn′ , ct\xn),

which is independent of the value of zn. This leads to our sampling formula as in Eq 3 of the
paper

p(zn =m|z\zn, ·) ∝ 1(zn = m, z\zn) ·
(
q−nm + αm

)
·∏

xn′∈cm∪{xn} gw(xm, xn′ , cm ∪ {xn})∏
xn′∈cm\xn

gw(xm, xn′ , cm\xn)
.

A.1.3 Gradient Descent

Our training algorithm updates w through maximum likelihood estimation. As we employ an
exponential form for the local consistency function gw(·) = exp(w>d(·)f) (where we have simpli-
fied the notations to avoid cluttering the notations), the model defined in Eq A.1 can be seen to
have a loglinear form with respect towd(·). For the weightswl of layer l, all the terms in Eq A.1,
except gwl

(·) for the nodes in the lth layer, are independent of wl, and we denote them as Cz.
Thus we have

log pw(z̃|x,α) = log
Cz̃ exp{w>l f z̃,l}∑
z Cz exp{w>l fz,l}

,

where z̃ is the gold taxonomy from training data, and fz,l =
∑

n:`(xn)=l f(xzn , xn, cn\xn) is the
sum over the node feature vectors of layer l in taxonomy z. Take derivative with respect to wl

32

we obtain the gradient

δwl = f z̃,l −
∑
z

Cz exp{w>l fz,l}∑
z′ Cz′ exp{w>l fz′,l}

fz,l + logCz̃

=
∑

n:`(xn)=l

{f(xz̃n , xn, c̃n\xn)− Ep[f(xzn , xn, cn\xn)]}

+ logCz̃.

The expectation is approximated by collecting a set of samples using the Gibbs sampler as de-
scribed above, and then averaging over them.

A.2 Feature Extraction

In this section, we further elaborate the procedures how to extract the features, as complementary
to the descriptions in section 4 of our paper.

A.2.1 Parent-child Word-word Relation Feature (PC-T1)

Following [15], we first learn Ctt word-word projection matrices {Φtt
c }C

tt

c=1 using all pairwise
relations from the training hierarchies, where Ctt is the number of clusters chosen by cross
validation [15], and the superscript “tt” denotes text to text (word to word). Then, we compute
the distance d = ‖Φtt

c vtn′ − vtn‖2, where vtn′ and vtn are the word embedding of the child
and parent category, respectively, and Φtt

c is the projection matrix for the pair {vtn′ ,vtn}, whose
index c ∈ {1, 2, . . . , Ctt} is determined by cluster assignment of the pair (see more details in
[15]). Then, we quantize d into a histogram lying on [u, v] with k bins, thus produce a k-
dimensional vector as the feature vector.

A.2.2 Parent-child Image-word Relation Feature (PC-V2)

We already elaborate how PC-V2 feature is extracted in the paper. Here we provide more detailed
implementation notes.

We firstly `2-normalize the mean image vector v̄in′ of the child category xn′ . We then learn
the image-word projection matrices {Φit

c }C
it

c=1 to project v̄in′ to vtn , where vtn is the word em-
bedding of the parent node xn, Cit is the number of clusters and “it” denotes image to word.
Then we use the same quantization strategy to extract a k-dimensional vector as the parent-child
image-word relation feature. It is noticeable that for category without v̄in′ (without images), we
produce a k-dimensional zero vector instead. As each part of the feature is independent with the
other, when multiplying with the weights w, the counterpart in w is automatically cancelled by
multiplying zeroes, contributing nothing to the local semantic consistency term.

33

A.2.3 Parent-child Image-image Relation Feature (PC-V1)
As described in section 4.1 of the paper, for image-image relation, we compute the vissim which
is defined as

vissim(xn, xm) =
N (vim ;vin ,Σn) +N (vin ;vim ,Σm)

2

as the visual similarity between two categories, where the Gaussian of the child category is
estimated using all images in that category, yet the Gaussian of the parent category is fit using
only the top K images with highest probabilities under the distribution of the child category.
This usually results in a relatively small value which is not in the same scale with other features.
Hence, we further transform the vissim into log scale and rescale it using:

d =
s

log(vissim(xn, xm))

so that a smaller value of d indicates stronger similarity. Then, the visual distance d is quantized
into a histogram and a d-dimensional vector is produced as the feature. For nodes without images,
a zero vector will be used instead.

A.2.4 Siblings Image-image Relation Feature (S-V1)
Similar to the parent-child image-image relation feature, we first compute pairwise visual simi-
larity between each pair of siblings (but using all images in that category when fitting the Gaus-
sian). Then, their mean value is quantized as a feature vector.

A.2.5 Siblings Word-word Relation Feature (S-T1)
Based on the observation that word vectors with a smaller distance are usually semantically
closer, we first compute the cosine distance between the word embedding of each pair of siblings,
then quantize the mean distance into a histogram to form the feature vector, where the histogram
range [u, v] is determined empirically for each feature.

For all features mentioned above, We set the number of bins k to 20 by cross validation.

A.2.6 Surface Features
For two categories xn and xn′ with category name tn and tn′ respectively, we list the surface
features we used as below [2].
• Ends with, i.e. whether tn′ ends with tn (e.g. catshark is a sub-category of shark).
• Contains, i.e. whether tn′ contains tn.
• Capitalization, whether tn′ and tn are capitalized. Intuitively, if tn′ is capitalized while tn

is not, the probability of xn being a parent of xn′ tends to be low.
• Suffix match, whether tn′ and tn share a common suffix with length k, where k is ranged

as k = 1, . . . , 7.
• LCS, the longest continuous common substring of tn′ and tn. The value 2 |LCS|

|tn′ |+|tn| is quan-
tized into a histogram as a feature vector.

34

• Length difference, i.e. the indicator features for rounded-off and binned values of 2
|tn′ |−|tn|
|tn′ |+|tn| .

A.3 Implementation Details

A.3.1 Word Embedding Training
Preprocessing. We first download the entire structure of ImageNet2011 Release. Every cate-
gory in ImageNet is denoted as a synset, and every synset is jointly described by multiple terms
1. To match every synset against the corpus for word embedding training, we match every de-
scriptive term of the synset, and discard synsets that are not found or those which rarely exist in
the corpus.

We implement a tri-tree in order to detect synset terms in the large corpus more efficiently.
The time complexity for phrase matching is O(dn), where d is the depth of the tri-tree and n is
the number of tokens in the corpus.

Training. Once we determined the mappings between synsets and words in the training corpus,
we re-scan the whole corpus and replace the matched words (or phrases) with a unique string

Synset id, where id is the ID of the query synset. We use the hierarchical softmax training
algorithm [37] to train 15 iterations for 200-dimensional word embedding. Synsets occurring
fewer than 5 times in the corpus are removed.

A.3.2 Efficiency
Features described above can be classified as pairwise features or group-wise features. Specif-
ically, all pairwise features, including the parent-child word-word relation feature (PC-T1),
parent-child image-word relation feature (PC-V2), parent-child image-image relation feature
(PC-V1) and surface features, can be obtained in O(1) time by pre-computation. While, the
group-wise features, including the sibling image-image relation feature (S-V1) and siblings word-
word relation feature (S-T1), can be obtained in linear time.

1A term could be a single word (e.g. apple), or a phrase represented by multiple words (e.g. thresher shark).

35

36

Appendix B

Hierarchical Deep Convolutional Neural
Networks (HDCNN)

B.1 CIFAR100 Dataset

B.1.1 HD-CNN Based on CIFAR100-NIN net
The instance of HD-CNN we use for CIFAR100 dataset is built upon a building block net
CIFAR100-NIN. The layer configurations in CIFAR100-NIN are listed in Table B.1. The ar-
chitectures of both CIFAR100-NIN and the corresponding HD-CNN are illustrated in Figure
B.1. We use the preceding layers from conv1 to pool1 as shared layers.

B.2 ImageNet 1000-class Dataset
We experiment with two different building block nets on ImageNet dataset, namely ImageNet-
NIN and ImageNet-VGG-16-layer.

B.2.1 HD-CNN based on ImageNet-NIN
The layer configurations of the building block net ImageNet-NIN are listed in Table B.2. The
architectures of ImageNet-NIN and the corresponding HD-CNN are shown in Figure B.2. The
preceding layers from conv1 to pool3 are shared in HD-CNN.

B.2.2 HD-CNN based on ImageNet-VGG-16-layer
The layer configurations of the building block net ImageNet-VGG-16-layer are listed in Table
B.3. The architectures of ImageNet-VGG-16-layer and the corresponding HD-CNN are shown
in Figure B.3. Layers from conv1 1 to pool4 are shared within HD-CNN.

37

max	
 pool	

dropout	

max	
 pool	

dropout	
 Final	
 Predic,on	

conv1	
 CCCP1	
 CCCP2	
 conv2	
 CCCP3	
 CCCP4	

pool	
 average	

CCCP5	
 CCCP6	
 conv3	

max	
 pool	

dropout	

max	
 pool	

dropout	

shared	

.	

.	

.	

Branching	
 F1	

Branching	
 FK	
 	

conv3	
 cccp5	

average	

coarse	
 predic:on	

fine	

predic:on	

fine	

predic:on	

Final	

predic:on	

cccp6	

conv1	
 CCCP1	
 CCCP2	
 conv2	
 CCCP3	
 CCCP4	

aggrega:on	

Figure B.1: Top: CIFAR100-NIN network. Bottom: HD-CNN network using CIFAR100-NIN
building block.

LAY conv1 cccp1 cccp2 pool1 conv2 cccp3 cccp4 pool2 conv3 cccp5 cccp6 pool3 prob

CFG 192,5,5 160,1,1 96,1,1 3,3,2
MAX

192,
5,5

192,1,1 192,1,1 3,3,2
MAX

192,3,3 192,1,1 100,1,1 6,6,1
AVG

SMAX

ACT ReLU ReLU ReLU ReLU ReLU ReLU

PAR # 1.4e+4 3.1e+4 1.5e+4 4.6e+5 3.7e+4 3.7e+4 3.3e+5 3.7e+4 1.9e+4

PAR
%

1.5 3.1 1.6 46.9 3.8 3.8 33.8 3.8 2.0

FLOP
#

9.7e+6 2.1e+7 1e+7 7.8e+7 6.2e+6 6.2e+6 1.2e+7 1.3e+6 6.9e+5

FLOP
%

6.7 14.3 7.2 53.6 4.3 4.3 8.2 0.9 0.5

Table B.1: CIFAR100-NIN network. The configuration of convolutional layer is denoted as (fil-
ter number, filter height, filter width). The configuration of pooling layer is denoted as (pooling
height,pooling width, stride). Notations: LAY=Layer. CFG=Configuration. ACT=Activation.
PAR #=Parameter number. PAR %=Parameter percentage. FLOP #=FLoating-point OPera-
tions. FLOP %=FLoating-point OPeration percentage. SMAX=SOFTMAX.

38

max	

pool	

max	

pool	

dropout	

conv1	
 CCCP1	
 CCCP2	
 conv3	
 CCCP5	
 CCCP6	

×2	

predic8on	

conv4	
 CCCP7	
 CCCP8	

average	

pool	

so>max	

max	

pool	

max	

pool	

dropout	

shared	

conv4	
 cccp7	
 cccp8	

conv1	
 CCCP1	
 CCCP2	
 conv3	
 CCCP5	
 CCCP6	

×2	

.	

.	

.	

Branching	
 F1	

Branching	
 FK	

average	

coarse	
 pred	

fine	

predic?on	

fine	

predic?on	

final	

predic?on	

aggrega?on	

Figure B.2: Top: ImageNet-NIN network. Bottom: HD-CNN network using ImageNet-NIN
building block.

LAY conv1 cccp1 cccp2 pool0 conv2 cccp3 cccp4 pool2 conv3 cccp5 cccp6 pool3 conv4 cccp7 cccp8 pool4 prob
CFG 96,11,11 96,1,1 96,1,1 3,3,2

MAX
256,5,5 256,1,1 256,1,1 3,3,2

MAX
384,3,3 384,1,1 384,1,1 3,3,2

MAX
1024,3,31024,1,11000,1,16,6,1

AVG
SMAX

ACT ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
PAR
#

3.5e+4 9.2e+3 9.2e+3 6.1e+5 6.6e+4 6.6e+4 8.9e+5 1.5e+5 1.5e+5 3.5e+6 1.1e+6 1.1e+6

PAR
%

0.5 0.1 0.1 8.1 0.9 0.9 11.7 1.9 1.9 46.6 13.8 13.5

FLOP
#

1e+8 2.7e+7 2.7e+7 4.5e+8 4.8e+7 4.8e+7 1.5e+8 2.5e+7 2.5e+7 1.3e+8 3.8e+7 3.8e+7

FLOP
%

9.2 2.4 2.4 40.7 4.3 4.3 13.6 2.3 2.3 11.6 3.4 3.4

Table B.2: ImageNet-NIN network.

39

conv1	
 conv2	
 conv3	
 conv4	

max	

pool	

max	

pool	

max	

pool	

max	

pool	

fc1	

dropout	

conv5	

max	

pool	

fc2	
 so6max	

dropout	

each	
 conv	
 includes	
 3	
 convolu:onal	
 layers	

fc3	

predic:on	

shared	

conv5	
 fc1	
 fc2	

conv1	
 conv2	
 conv3	
 conv4	

max	

pool	

max	

pool	

max	

pool	

max	

pool	

.	

.	

.	

Branching	
 F1	

Branching	
 FK	

average	

coarse	
 predic;on	

fine	

predic;on	

fine	

predic;on	

Final	

predic;on	

fc3	

aggrega;on	

Figure B.3: Top: ImageNet-VGG-16-layer network. Bottom: HD-CNN network using
ImageNet-VGG-16-layer building block.

LAY conv
1 1

conv
1 2

pool1 conv
2 1

conv2 2pool2 conv
3 1

conv
3 {2,3}

pool3 conv
4 1

conv
4 {2,3}

pool4 conv
5 {1,2,3}

pool5 fc6 fc7 fc8 prob

CFG 64,
3,3

64,
3,3

2,2,2
MAX

128,
3,3

128,
3,3

2,2,2
MAX

256,3,3256,
3,3

2,2,2
MAX

512,
3,3

512,
3,3

2,2,2
MAX

512,3,3 2,2,2
MAX

4096 4096 1000 SMAX

ACT ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
PAR # 1.7e3 3.7e4 7.4e4 1.5e5 3.0e5 5.9e5 1.2e6 2.4e6 2.4e6 1.0e8 1.7e7 4.1e6
PAR
%

0.01 0.03 0.1 0.1 0.2 0.4 0.9 1.7 1.7 74.3 12.1 3.0

FLOP
#

8.7e7 1.9e9 9.3e8 1.9e9 9.3e8 1.9e9 9.3e8 1.9e9 4.6e8 1.0e8 1.7e7 4.1e6

FLOP
%

0.6 12.0 6.0 12.0 6.0 12.0 6.0 12.0 3.0 0.7 0.11 0.1

Table B.3: ImageNet-VGG-16-layer network. For clarity, adjacent layers with the same config-
uration are merged, such as layers conv3 2 and conv3 3.

40

Bibliography

[1] Hichem Bannour and Céline Hudelot. Hierarchical image annotation using semantic hi-
erarchies. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, 2012. 2.3

[2] Mohit Bansal, David Burkett, Gerard de Melo, and Dan Klein. Structured learning for
taxonomy induction with belief propagation. 2014. (document), 1, 2.1, 1, 3.2, 3.3.2, 5.1,
5.1.2, 5.1.2, 5.2, 5.1.2, 2, 5.1.3, A.2.6

[3] Evgeniy Bart, Ian Porteous, Pietro Perona, and Max Welling. Unsupervised learning of
visual taxonomies. In CVPR, 2008. 2.1

[4] Samy Bengio, Jason Weston, and David Grangier. Label embedding trees for large multi-
class tasks. In NIPS, 2010. 2.3

[5] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured
embeddings of knowledge bases. In Conference on Artificial Intelligence, number EPFL-
CONF-192344, 2011. 2.1

[6] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn,
and Tony Robinson. One billion word benchmark for measuring progress in statistical
language modeling. arXiv preprint arXiv:1312.3005, 2013. 5.1.1

[7] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual knowledge
from web data. In CVPR, 2013. 1, 2.1

[8] Yoeng-Jin Chu and Tseng-Hong Liu. On shortest arborescence of a directed graph. Scientia
Sinica, 1965. 3.2

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In CVPR, 2009. 5.1.1, 5.2

[10] Jia Deng, Sanjeev Satheesh, Alexander C Berg, and Fei Li. Fast and balanced: Efficient
label tree learning for large scale object recognition. In Advances in Neural Information
Processing Systems, 2011. 2.3

[11] Jia Deng, Jonathan Krause, Alexander C Berg, and Li Fei-Fei. Hedging your bets: Op-
timizing accuracy-specificity trade-offs in large scale visual recognition. In CVPR, 2012.
2.3

[12] Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li,
Hartmut Neven, and Hartwig Adam. Large-scale object classification using label relation
graphs. In ECCV. 2014. 1, 2.3

41

[13] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning hierar-
chical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013. 2.2

[14] Rob Fergus, Hector Bernal, Yair Weiss, and Antonio Torralba. Semantic label sharing for
learning with many categories. In ECCV. 2010. 1

[15] Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu. Learning
semantic hierarchies via word embeddings. In ACL, 2014. (document), 2.1, 3.3.1, 3.3.2,
5.1, 5.1.2, 5.2, 5.1.2, 2, A.2.1

[16] Chuang Gan, Yi Yang, Linchao Zhu, Deli Zhao, and Yueting Zhuang. Recognizing an
action using its name: A knowledge-based approach. International Journal of Computer
Vision, pages 1–17. 2.1

[17] Chuang Gan, Ming Lin, Yi Yang, Yueting Zhuang, and Alexander G Hauptmann. Exploring
semantic inter-class relationships (SIR) for zero-shot action recognition. In AAAI, 2015. 2.1

[18] Tianshi Gao and Daphne Koller. Discriminative learning of relaxed hierarchy for large-
scale visual recognition. In ICCV, 2011. 2.3

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In CVPR, 2014. 2.2

[20] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
In ICML, 2013. 2.2, 5.2.1

[21] Gregory Griffin and Pietro Perona. Learning and using taxonomies for fast visual catego-
rization. In CVPR, 2008. 2.1, 2.3

[22] Lushan Han, Abhay Kashyap, Tim Finin, James Mayfield, and Jonathan Weese. Umbc
ebiquity-core: Semantic textual similarity systems. Atlanta, Georgia, USA, 2013. 5.1.1

[23] K He, X Zhang, S Ren, and J Sun. Spatial pyramid pooling in deep convolutional networks
for visual recognition. In ECCV. 2014. 2.2

[24] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neigh-
bor search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011. 4.3

[25] Yangqing Jia. Caffe: An open source convolutional architecture for fast feature embedding,
2013. 5.2

[26] Yangqing Jia, Joshua T Abbott, Joseph Austerweil, Thomas Griffiths, and Trevor Darrell.
Visual concept learning: Combining machine vision and bayesian generalization on con-
cept hierarchies. In NIPS, 2013. 2.3

[27] Douwe Kiela, Laura Rimell, Ivan Vulic, and Stephen Clark. Exploiting image generality
for lexical entailment detection. In ACL, 2015. 2.1

[28] Zornitsa Kozareva and Eduard Hovy. A semi-supervised method to learn and construct
taxonomies using the web. In EMNLP, 2010. 2.1, 5.1.2

[29] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Com-
puter Science Department, University of Toronto, Tech. Rep, 2009. 1, 5.2

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

42

convolutional neural networks. In NIPS, 2012. 1, 2.2, 5.2, 5.2.1, 5.2.1, 5.2.2

[31] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. arXiv preprint arXiv:1409.5185, 2014. 5.4, 5.2.1

[32] Li-Jia Li, Chong Wang, Yongwhan Lim, David M Blei, and Li Fei-Fei. Building and using
a semantivisual image hierarchy. In CVPR, 2010. 2.3

[33] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, 2013. 2.2, 5.2.1

[34] Baoyuan Liu, Fereshteh Sadeghi, Marshall Tappen, Ohad Shamir, and Ce Liu. Probabilistic
label trees for efficient large scale image classification. In CVPR, 2013. 1, 2.3

[35] Marcin Marszalek and Cordelia Schmid. Semantic hierarchies for visual object recognition.
In CVPR, 2007. 2.3

[36] Marcin Marszałek and Cordelia Schmid. Constructing category hierarchies for visual
recognition. In ECCV. 2008. 2.1, 2.3

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013. 1, 2.1, 3.3,
3.3.1, 5.1.1, A.3.1

[38] Roberto Navigli, Paola Velardi, and Stefano Faralli. A graph-based algorithm for inducing
lexical taxonomies from scratch. In IJCAI, 2011. 2.1, 5.1.2

[39] Marcus Rohrbach, Michael Stark, György Szarvas, Iryna Gurevych, and Bernt Schiele.
What helps where–and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
2.1

[40] Ruslan Salakhutdinov, Antonio Torralba, and Josh Tenenbaum. Learning to share visual
appearance for multiclass object detection. In CVPR, 2011. 2.3

[41] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 5.1.1, 5.1.3, 5.2.2, 5.7

[42] Josef Sivic, Bryan C Russell, Andrew Zisserman, William T Freeman, and Alexei A Efros.
Unsupervised discovery of visual object class hierarchies. In CVPR, 2008. 2.3

[43] Rion Snow, Daniel Jurafsky, and Andrew Y Ng. Semantic taxonomy induction from het-
erogenous evidence. In ACL, 2006. 2.1

[44] Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learn-
ing through cross-modal transfer. In Advances in neural information processing systems,
pages 935–943, 2013. 2.1

[45] Jost Tobias Springenberg and Martin Riedmiller. Improving deep neural networks with
probabilistic maxout units. arXiv preprint arXiv:1312.6116, 2013. 2.2

[46] Nitish Srivastava and Ruslan Salakhutdinov. Discriminative transfer learning with tree-
based priors. In NIPS, 2013. 1, 2.3

[47] Marijn F Stollenga, Jonathan Masci, Faustino Gomez, and Jürgen Schmidhuber. Deep
networks with internal selective attention through feedback connections. In NIPS, 2014.
5.4, 5.2.1

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

43

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. arXiv preprint arXiv:1409.4842, 2014. 5.7, 5.2.2

[49] Anne-Marie Tousch, Stéphane Herbin, and Jean-Yves Audibert. Semantic hierarchies for
image annotation: A survey. Pattern Recognition, 2012. 2.3

[50] Luu Anh Tuan, Jung-jae Kim, and Ng See Kiong. Taxonomy construction using syntactic
contextual evidence. In EMNLP, 2014. 2.1

[51] Luu Anh Tuan, Jung-jae Kim, and Ng See Kiong. Incorporating trustiness and collective
synonym/contrastive evidence into taxonomy construction. 2015. 2.1

[52] Nakul Verma, Dhruv Mahajan, Sundararajan Sellamanickam, and Vinod Nair. Learning
hierarchical similarity metrics. In CVPR, 2012. 2.3

[53] Wikipedia. https://dumps.wikimedia.org/enwiki/20141208/, 2014. 5.1.1

[54] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang. Error-driven incremental learning in
deep convolutional neural network for large-scale image classification. In Proceedings of
the ACM International Conference on Multimedia, 2014. 2.3

[55] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei
Di, and Yizhou Yu. Hd-cnn: Hierarchical deep convolutional neural networks for large
scale visual recognition. In ICCV, 2015. 6

[56] Hui Yang and Jamie Callan. A metric-based framework for automatic taxonomy induction.
In ACL-IJCNLP, 2009. 2.1, 3.3.2

[57] M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV.
2014. 4.1.1

[58] M. D Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional
neural networks. In ICLR, 2013. 2.2

[59] Hao Zhang, Zhiting Hu, Yuntian Deng, Mrinmaya Sachan, Zhicheng Yan, and Eric P. Xing.
Learning concept taxonomies from multi-modal data. In The Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), 2016. 6

[60] Bin Zhao, Fei Li, and Eric P Xing. Large-scale category structure aware image categoriza-
tion. In NIPS, 2011. 1

[61] Xingwei Zhu, Zhao-Yan Ming, Xiaoyan Zhu, and Tat-Seng Chua. Topic hierarchy con-
struction for the organization of multi-source user generated contents. In SIGIR, 2013.
2.1

[62] Alon Zweig and Daphna Weinshall. Exploiting object hierarchy: Combining models from
different category levels. In ICCV, 2007. 1

44

https://dumps.wikimedia.org/enwiki/20141208/

	1 Introduction
	2 Related Work
	2.1 Taxonomy Induction
	2.2 Convolutional Neural Networks
	2.3 Category Hierarchy for Visual Recognition

	3 Taxonomy Induction
	3.1 Problem Definition
	3.2 Model
	3.3 Features
	3.3.1 Image Features
	3.3.2 Word Features

	4 Hierarchial Deep Convolutional Neural Networks (HDCNN)
	4.1 Notations
	4.1.1 HD-CNN Architecture

	4.2 HD-CNN Training
	4.2.1 Pretraining HD-CNN
	4.2.2 Fine-tuning HD-CNN

	4.3 HD-CNN Testing

	5 Evaluation
	5.1 Taxonomy Induction
	5.1.1 Implementation Details
	5.1.2 Evaluation
	5.1.3 Qualitative Analysis

	5.2 Image Classification
	5.2.1 CIFAR100
	5.2.2 ImageNet 1000

	6 Conclusion
	A Taxonomy Induction
	A.1 Model Derivation
	A.1.1 Illustration of Our Model
	A.1.2 Gibbs Sampling
	A.1.3 Gradient Descent

	A.2 Feature Extraction
	A.2.1 Parent-child Word-word Relation Feature (PC-T1)
	A.2.2 Parent-child Image-word Relation Feature (PC-V2)
	A.2.3 Parent-child Image-image Relation Feature (PC-V1)
	A.2.4 Siblings Image-image Relation Feature (S-V1)
	A.2.5 Siblings Word-word Relation Feature (S-T1)
	A.2.6 Surface Features

	A.3 Implementation Details
	A.3.1 Word Embedding Training
	A.3.2 Efficiency

	B Hierarchical Deep Convolutional Neural Networks (HDCNN)
	B.1 CIFAR100 Dataset
	B.1.1 HD-CNN Based on CIFAR100-NIN net

	B.2 ImageNet 1000-class Dataset
	B.2.1 HD-CNN based on ImageNet-NIN
	B.2.2 HD-CNN based on ImageNet-VGG-16-layer

	Bibliography

