
Multi-task Value of Information Planning
for Sequential Multi-task Bandits

Rika Antonova

Adviser: Emma Brunskill

CMU-RI-TR-16-41

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Copyright c© 2016 Rika Antonova



Keywords: Reinforcement Learning, Bayesian Multi-Armed Bandits, Value of Information



Abstract

In sequential decision making under uncertainty, algorithms and agents that learn across related
tasks can have significantly better performance than approaches that neglect to leverage related
experience. In this work we consider online learning across a sequence of tasks, where each task
is drawn from a finite set of multi-armed bandits (MABs). We introduce the Multi-task Value
of Information (MT-VOI) planner, which balances exploration and exploitation at a task level by
evaluating the benefits of additional exploration in the current task in order to improve reward
across tasks. Our approach demonstrates a substantial improvement over single-task algorithms
and a recent multi-task algorithm designed specifically for acting across a sequence of MABs.
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1 BACKGROUND AND MOTIVATION-

1 Background and Motivation

1.1 Introduction

Algorithms and agents that learn across related tasks can have significantly better performance
than approaches that neglect to leverage related experience. In this work we consider online learn-
ing across a sequence of tasks, where each task itself involves sequential decision making under
uncertainty. For example, consider an adaptive tutoring system with modifiable settings appealing
to different types of students. The goal of this system could be both to help the current students
learn more effectively and to identify better settings that will help future students. The system
could automatically discover optimal settings for various groups of students (e.g. best settings for
cautious slow learners, impatient fast learners, students responding best to graphical aids, those
preferring verbal explanations, etc). Examples in other domains include: learning to present news
or ad recommendations targeted to a group of customers with similar interests (while automatically
discovering both the types of groups and the most appropriate articles/ads for each group type),
or learning effective control settings for a robot performing tasks in diverse environments (e.g.
different control approaches for sandy, rocky, hilly, flat terrains).

An algorithm that selects activities on each time step in order to maximize exactly the expected
sum of future rewards across all tasks is very appealing but likely to be computationally intractable.
As a step towards this objective, in this work we describe the Multi-task Value of Information (MT-
VOI) planner for a sequence of tasks sampled from a finite set of multi-armed bandits (MABs).
MT-VOI balances exploration and exploitation at a task level by evaluating if it would be benefi-
cial to perform additional exploration in the current task in order to improve reward across tasks.
In empirical simulations we demonstrate a substantial improvement over single-task algorithms
and over a recent state-of-the-art approach designed specifically for acting across a sequence of
MABs. MT-VOI achieves these improvements despite starting from uninformed prior without any
additional domain knowledge. Our experimental results highlight the benefit of explicitly reason-
ing about future tasks when selecting actions.

1.2 Previous Work

Previously there have been encouraging empirical demonstrations of the benefit of transfer rein-
forcement learning (see survey by [19]) from a source task to improve performance on a target
task, and some recent algorithms that guarantee a performance improvement due to learning across
tasks [3, 6, 12]. Prior work by Wilson et al. [20] considered acting in a sequence of tasks sampled
from a class of MDPs. The authors maintain a Bayesian posterior over the mixture of MDPs, and
update it using approximate inference. When acting in a new task, the presented approach main-
tains a probability over the current task parameters, but does not seek to do efficient exploration,
either within the current task or across tasks, to maximize performance. In contrast to this, Brun-
skill and Li [6] present a Probably Approximately Correct Reinforcement Learning for a similar
setting, but in this work the control approach explicitly leverages the learned finite set of parameters
to improve performance in next tasks. Most recently Azar, Lazaric and Brunskill [3], considered
online learning across a series of tasks drawn from a finite set of multi-armed bandits. This work
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1 BACKGROUND AND MOTIVATION

uses a Methods of Moments approach to learn the set of MABs’ parameters, and leverages this in
an optimism under uncertainty approach to improve performance on the current task.

Despite this previous research, many important questions remain open about how to best learn
and leverage information about multi-task structure to enhance performance across a series of
tasks. These issues relate to the exploration–exploitation tradeoff so well known in single task
decision making under uncertainty, where an agent may risk sacrificing some early rewards in
order to learn a better policy with higher later performance. It seems highly likely that a similar
exploration-exploitation tradeoff exists across tasks.

1.3 Motivation

All the prior approaches in sequential multi-task under uncertainty act to maximize performance
on the current task given prior experience. In contrast to previous work, we wish to develop
action selection algorithms that maximize performance across all tasks, current and future. First,
a natural question is whether thinking about the multi-task nature of the problem is necessary
when selecting actions within a particular task. If all tasks are completely unrelated, the multi-task
objective function decomposes into maximizing the expected performance in each individual task.
However, in many cases there will be some relationship between the tasks. In particular, if all tasks
are sampled from the same underlying distribution, there will often be structure we can leverage to
improve performance across tasks.

In this work we consider the same setup as that by Azar et al. [3], namely acting in a sequence
of J tasks, each of length H , where each task is drawn from a finite set of M multi-armed bandits
(MABs), each with N arms. MABs are a simple but powerful framework for sequential decision
making under uncertainty. In a MAB, pulling an arm n yields a stochastic payoff sampled from
a distribution whose parameters are unknown; we consider the common case of Bernoulli distri-
butions. In our and Azar’s multi-task setup, the MAB identity of each new task is unknown, as
are the M sets of MAB parameters and the probability distribution (assumed to be a multinomial)
of sampling a new task from each of the M MABs. For the examples that were discussed in the
introduction, this setup can capture learning the most engaging tutoring system settings for dif-
ferent (latent) types of students, the best type of articles/ads to show to different (latent) types of
customers, the appropriate robot control parameters for a (latent) type of terrain.

In this and other related setups, it is reasonable to believe that considering future tasks when
acting in the current task may aid overall performance. For example, consider a small illustrative
domain with two MABs and three arms as shown in Table 2.

arm1 arm2 arm3

MAB1 0.98 0.78 0.90
MAB2 0.78 0.98 0.02

Table 1: InfoArm domain with a discriminative arm.

In this domain the optimal arm to pull when interacting with MAB1 is arm1, when interacting
with MAB2 is arm2 (probability 0.98 of getting a reward). Despite the fact that arm3 is not opti-
mal in either of the MABs when the identity of the MAB is known, arm3 is most informative when
trying to distinguish between the two MABs (getting a reward after pulling arm3 hints strongly
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

that we are interacting with MAB1 and not MAB2). Thus, if there is a large number of tasks to
complete, it may be worth better learning the parameters of arm3 and pulling arm3 to discriminate
effectively between the two different MABs. However, near the end of our task sequence, it may
not be worth taking actions to refine the posterior over the arm parameters, because while arm3

is helpful in distinguishing between the two MABs, it is also costly to explore. In general, the
optimal strategy for maximizing the expected sum of future rewards across all tasks will depend
on the true underlying MAB parameters, the horizon left in the current task, and the number of
tasks remaining.

2 Bayesian Framework for Multi-task MAB Planning

When tasks are sampled from a stationary distribution, the problem of maximizing total expected
sum of rewards can be posed as partially observable Markov decision process (POMDP) planning
problem. POMDP is a framework for sequential decision making under uncertainty when the state
is unobservable – true parameters of the model are never revealed, and are only sensed indirectly
through observations. POMDP planning involves computing decisions to maximize the expected
sum of future rewards given the history of prior actions and observations (or a sufficient statistic
of such). Researchers have noted that it is possible to reframe learning in a single task sequential
decision making under uncertainty (where the parameters are unknown) as a POMDP planning
problem (e.g. [1, 8, 15]). Drawing inspiration from this work, we will frame our multi-task setting
as a special POMDP planning problem. To do so we require both (1) maintaining and updating a
Bayesian belief state that summarizes our knowledge of the underlying MAB parameters, the dis-
tribution over MABs, and the MAB identity of the current task, and (2) an algorithm for planning
in this POMDP to compute which arm to pull given the current belief state. We now describe our
approach to (1): using a Bayesian Network representation for our setup to maintain belief state for
POMDP planning.

2.1 Bayesian Network for Belief State

Recall from section 1.3 that in this work we consider acting in a sequence of J tasks, each of
length H , where each task is drawn from a finite set of M multi-armed bandits (MABs), each
with N arms. We pose our problem as planning in a special POMDP, where the latent state is the
joint probability distribution over MABs, the payoffs of each MAB, and the MAB identity of the
current task. The transition function over hidden states is simple: the underlying task parameters
are static (while interacting with the same task), and after H steps the identity of the current task is
resampled. The action space is the original action space (the set of arms) and the observations are
the rewards. Selecting an action then involves performing POMDP planning across a total horizon
of J ·H steps (J tasks, each of H steps).

Upon a closer look at our setup it becomes clear that the dependencies between latent states and
rewards could be captured by a Bayesian Network. Bayesian Network is a probabilistic graphical
model that represents a set of random variables and their conditional dependencies with a directed
acyclic graph (see [10] for an overview of probabilistic graphical models and their properties).
Bayesian Network for our setup is shown in Figure 1. The network is in plate notation (see sec-
tion 6.4.1 of [10]), where instead of drawing each variable individually, a rectangular plate is used
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

Figure 1: Bayesian network for multi-task belief state.
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to represent variables with identical distributions, and the number at the bottom of the plate repre-
sents the number of necessary repetitions (M MABs, N arms each, J tasks, H steps per task). We
will now describe each of the random variables involved in Bayesian Network of Figure 1, from
top to bottom.

Φ : Dirichlet-distributed random variable that expresses our belief about relative frequencies
of each MAB identity among the tasks (in our work “MAB identity” and MAB with a par-
ticular set of parameters are taken to be synonymous, since each MAB identity represents a
type/cluster/kind of agent and is expressed by a MAB with certain concrete reward probabil-
ities for each arm). α1, ..., αM serve as initial parameters for Φ and capture our prior belief
of the prevalence of each MAB.

Yj : latent random variable that represents the identity of the MAB we interact with in jth task.
Yj is latent, because MAB identity (the set of true MAB parameters) in our setup is never
observed – after the task is over we are not informed about the true parameters of the MAB
we have just interacted with. The probability distribution of sampling a new task from each
of the M MABs is assumed to be a multinomial in our setup, and so Yj is a multinomial
random variable, with Φ serving as its Dirichlet prior.

Θm,n : Beta-distributed random variable capturing distribution of reward parameter for the nth arm
in MAB m. In our setup arm payoff distribution is Bernoulli, so Θm,n serves as Beta prior
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

for the payoff of arm n of MAB m. α, β are used as initial parameters if prior information is
available about MAB payoffs.

Ψj,n : multiplexer variable to “select” θYj ,n that will generate rewards for the current arm pull (see
Definition 5.3 in [10] for details on multiplexers). The value of Ψj,n is effectively a copy of
the value of one of its parents, Θ1,1, ....,ΘM,N . Its probability mass function (PMF) can be
thought of as an indicator function that returns 1 when input corresponding to the parameters
of the MAB of the current task is given, and returns 0 otherwise.

Xj,n,h : Bernoulli random variable that expresses the probability of getting a reward when acting
in jth task, pulling arm n on step h. Xj,n,h are the only observed variables in this Bayesian
Network (we know the value of the reward after we pull an arm, but we never learn the true
parameters of the MABs or MAB identities involved in the tasks).

Plate notation for Bayesian Network offers a concise graphical representation of the network,
and in the same spirit we define vector notation for the set of random variables located in the same
plate. Let ΘΘΘ be a vector composed ofM·N elements Θ1,1, ..,ΘM,N , and let θθθ be a vector composed
of the values θ1,1, .., θM,N to be assigned to the corresponding random variables. Similarly, let ΨΨΨ
be a vector composed of J ·N elements Ψ1,1, ..,ΨJ,N , let ψψψ be a vector of corresponding values
ψ1,1, .., ψJ,N ; also let YYY be a vector composed of J elements Y1, ..., YJ , and let yyy be a vector of
corresponding values y1, ..., yJ .

Let us also outline notation we use for denoting random variables, their probability density/mass
functions and expectations:

- capital greek letters and X, Y are used to denote random variables

- lower case greek letters and x, y denote the concrete values of random variables

- fX(x) denotes probability density function (PDF) ofX ifX is a continuous random variable;
P (X=x) and P (x) denote probability mass function (PFM) if X is a discrete

- fX,Y (x, y) denotes PDF of a joint distribution of X and Y

- to obtain a marginal distribution of X (marginalizing out variable Y ) we write:∫
y
fX,Y (x, y)dy

(
or for discrete variables:

∑
y fX,Y (x, y) =

∑
yP (x, y)

)
- EY [X] denotes expectation over Y of a random variable X:

∫
y
xfX,Y (x, y)

- using vector notation introduced in the previous paragraph:∫
θθθ
fΘΘΘ(θθθ)dθθθ=

∫
θ1,1
· · ·
∫
θM,N

fΘ1,1(θ1,1) · · · fΘM,N(θM,N)dθ1,1 · · · dθM,N

- to integrate over ΘΘΘ excluding integrating over Θm,n we write:
∫
θθθ\θm,n

fΘΘΘ(θθθ)dθθθ\θm,n
(the result is a function of Θm,n, since it is the only variable that was not marginalized out)
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

2.2 Bayesian Multi-task Belief Updating

Below we describe the process for updating belief state (posterior distribution) while acting within
a single task, as well after a task completes. Our choice of using conjugate priors enables all
calculations to be performed analytically, which is a nice advantage in contrast to some related
work by Wilson et al. [20] on (a more general formulation of) acting in a finite set of MDPs, where
the authors used approximate inference to update the multi-task posterior.

The general procedure for deriving Bayesian updates is the same in spirit for each of the con-
ditional probability distributions (random variables) in our Bayesian Network:

1. start with the joint distribution of all the random variables in the Bayesian network

2. using the joint distribution write down the expression for the probability of getting a reward
(or a sequence of rewards)

3. carefully marginalize, leaving only the desired variable – this process requires taking advan-
tage of the conditional independencies encoded by the Bayesian network

2.3 Belief Updating Within the Same Task

Let us first demonstrate how to compute the probability of obtaining a reward after a sequence of
observations in the same task. Suppose we started the first task (sampled a MAB m,m∈{1...M})
and observed rn rewards of 1 and zn rewards of 0 for each of n = 1...N arms. For example if
we pulled arm 1 and received no reward (got a “reward” of 0) and then pulled arm 2 twice and
received a reward of 1 both times, we will have r1 = 0, r2 = 2, z1 = 1, z2 = 0. Because pulling
arms does not change the underlying MAB parameters, the number of rewards of 1 and 0 obtained
from each arm is a sufficient statistic when recording our interaction with a MAB (within the same
task). Hence we summarize the assignment of values to Xj,n,h variables as XXX = {r̂, ẑ}, where
r̂ = {r1, ..., rN}, ẑ = {z1, ..., zn}.

Now let XXX = {r̂(rn++), ẑ} denote the event that we obtain a reward of 1 from arm n on the
next pull. Then the joint probability of observing a collection of rewards summarized by r̂(rn++) =
{r1, ..., rn+1, ..., rN}, ẑ = {z1, ..., zn} is:
P (XXX={r̂(rn++), ẑ},ΨΨΨ, Y1,Φ,ΘΘΘ) = P (XXX={r̂(rn++), ẑ}|ΨΨΨ) P (ψψψ|Y1,Φ,ΘΘΘ) P (y|Φ) fΦ(φ) fΘΘΘ(θθθ)

Note that we are able break the joint distribution into a product of conditional distributions by using
independencies encoded by the Bayesian Network in Figure 1 (for more details see Appendix A).
We can now use variable elimination (see section 9.3 of [10]) to compute P (XXX = {r̂(rn++), ẑ}).
To make it easier to follow transformations we underline parts of equations that are about to be
significantly rearranged and highlight the results.

P (XXX={r̂(rn++), ẑ}) =
M∑
y=1

∑
ψ

∫
φ

∫
θθθ

P (XXX={r̂(rn++), ẑ},ΨΨΨ, Y1,Φ,ΘΘΘ)dφ dθθθ (1)

=
M∑
y=1

∫
φ

∫
θθθ

P (r1, z1|Θy,1) · · ·P (rn+1, zn|Θy,n) · · ·P (rN , zN |Θy,N)P (y|Φ)fΦ(φ). . . . . . . . . . . . . fΘΘΘ(θθθ) dφ. . dθθθ
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

=
M∑
y=1

∫
φ

P (Y=y|Φ)fΦ(φ)dφ. . . . . . . . . . . . . . . . . . . .

∫
θθθ

P (r1, z1|Θy,1) · · ·P (rn+1, zn|Θy,n) · · ·P (rN , zN |Θy,N)fΘΘΘ(θθθ)dθθθ

=
M∑
y=1

∫
φ

φyfΦ(φ)dφ

∫
θy,1

P (r1, z1|Θy,1)fΘ1,1(θ1,1)dθy,1 · · ·
∫
θy,n

P (rn+1, zn|Θy,n)fΘy,n(θy,n)dθy,n · · ·

=
M∑
y=1

EΦ[Φy] · EΘy,n[Θrn+1
y,n (1−Θy,n)zn ] ·

N∏
i=1
i 6=n

EΘy,i[Θ
ri
y,i(1−Θy,i)

zi ]

The transformation from the first to the second line of 1 a simple re-arrangement. From the sec-
ond to third line we used the fact that P (Yj = m|Φ = φ) = φm: the probability of selecting MAB
identity m for the jth task is given by the mth component of dirichlet-distributed variable Φ (which
has M components). To go from the third to the fourth line we recognize several expressions that
correspond to expectations. EΦ[Φy] is obtained using the fact that E[g(Φ)] =

∫
φ
g(φ)fΦ(φ)dφ and

viewing taking yth component of Φ as a function g(Φ). Let us adopt concise notation:
wΦy = EΦ[Φy] (2)

Expressions of the formEΘy,i[Θ
ri
y,i(1−Θy,i)

zi ] can be viewed as special higher moments of Θy,i, we
show derivations for evaluating them in Appendix B. From now on let us adopt a concise notation
for these special higher moments:

µri,ziΘy,i
= EΘy,i[Θ

ri
y,i(1−Θy,i)

zi ] (3)

wµΘy\n
=

N∏
i=1,i 6=n

µri,ziΘy,i
(4)

Our original question on how to compute the probability of obtaining a reward of 1 from arm
n after a sequence of observations can now be answered by conditioning on observed rewards:

P (reward of 1 if arm n is pulled next|XXX = {r̂, ẑ}) (5)

=
P (XXX = {r̂(rn++), ẑ})
P (XXX = {r̂, ẑ})

=

∑M
y=1wΦy · wµΘy\n

· µrn+1,zn
Θy,n∑M

y=1wΦywµΘy

It is also useful to compute probability of getting a reward of 1 on the next pull of arm n (while
still in the same task j) given previous rewards r̂, ŝ and given MAB identity m (this will be used
for planning algorithms described later for computing lower/upper bounds of payoffs for arms in
each MAB):

P (reward of 1 if arm n is pulled next|r̂, ẑ, Yj =m) = ���wΦy · wµΘy\n
· µrn+1,zn

Θm,n

���wΦywµΘy

(6)

2.4 Belief Updating upon Task Transition

We are now ready to derive Bayesian updates for Φ and ΘΘΘ when transitioning to a new task (let
us suppose we have just finished task j). Beta-distributed variables Θm,n (with m∈{1...M}, n∈
{1...N}) will capture what we have learned from task j about rewards from MAB m, arm n; these
Beta-distributed variables will become Beta mixtures after task completion. Intuitively, the reason
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

for obtaining the mixture is that each Beta component in the mixture corresponds to the version of
posterior Beta one would obtain with a certain assignment of arm pulls to MABs. Since we do not
observe the identity of the MABs, we only have a probabilistic estimate of the likelihood of each
assignment. Hence the posterior takes the form of weighted combination of Beta components, and
the weights reflect posterior likelihood of the arm pulls being assigned correctly. The derivation
for the posterior mixture is provided below:

fΘm,n,XXX(Θm,n=θ,XXX={r̂, ẑ})=
M∑
y=1

∑
ψ

∫
φ

∫
θθθ\θm,n

P (r̂, ẑ|Ψ)P (Ψ|Yj,ΘΘΘ)P (y|Φ)fΦ(φ)fΘΘΘ(θθθ)dφdθθθ\θm,n

=
M∑
y=1

∫
φ

∫
θθθ\θm,n

P (r1, z1|Θy,1) · · ·P (rN , zN |Θy,N)P (y|Φ)fΦ(φ)fΘ1,1(θ1,1) · · · fΘM,N (θM,N)dφ dθθθ\θm,n

=
M∑
y=1

∫
φ

P (y|Φ)fΦ(φ)dφ

∫
θθθ\θm,n

P (r1, z1|Θy,1) · · ·P (rN , zN |Θy,N)fΘ1,1(θ1,1) · · · fΘM,N (θM,N)dθθθ\θm,n

=

(
EΦ[Φm]

N∏
i=1,
i 6=n

µri,ziΘm,i

)
P (rn, zn|Θm,n)fΘm,n(θ) +

(
M∑
y=1,
y 6=m

EΦ[Φy]
N∏
i=1

µri,ziΘy,i

)
fΘm,n(θ),

using notation from equations 2 and 3:

= wΦywµΘy\n
· P (rn, zn|Θm,n)fΘm,n(θ) +

M∑
y=1,y 6=m

wΦywµΘy
· fΘm,n(θ) (7)

If Θm,n ∼ Beta(α, β), then from P (rn, zn|Θm,n)fΘm,n(θ) we obtain:

P (rn, zn|Θm,n = θ)fΘm,n(Θm,n = θ) = θrn(1− θ)zn · Γ(α+β)

Γ(α)Γ(β)
θα-1(1− θ)β-1

=

(
Γ(α+β)

Γ(α)Γ(β)

Γ(rn+α)Γ(zn+β)

Γ(rn+α+zn+β)︸ ︷︷ ︸
scalar weight w computed using Γ function

)
Γ(rn+α+zn+β)

Γ(rn+α)Γ(zn+β)
θrn+α-1(1− θ)zn+β-1︸ ︷︷ ︸

PDF of a random variable B+ ∼ Beta(α+rn, β+zn)

(8)

Hence P (rn, zn|Θm,n)fΘm,n(θm,n) is a product of weight w and PDF of a Beta-distributed random
variable with parameters α+rn, β+zn. So we see that after update Θm,n becomes a mixture of
Beta-distributed components (the summands in equation 7). If Θm,n is already a mixture of K
components before the update, then we can repeat the steps outlined in equation 8 for each of
the K components to obtain wk and B+

k for each k = 1...K (where B+
k ∼ Beta(αk+rn, βk+zn)

and αk, βk are the parameters of the Beta-distributed variable represented by the kth component of
Θm,n).
Putting together the results of equations 7 and 8, our Bayesian update for Θm,n becomes:

fΘm,n(θ)← fΘm,n(θ|r̂, ẑ) =
1

P (r̂, ẑ)

[
wΦmwµΘm\n

K∑
k=1

wkfB+
k
(θ) +

( M∑
y=1,
y 6=m

wΦywµΘy

)
fΘm,n(θ)

]
(9)
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2 BAYESIAN FRAMEWORK FOR MULTI-TASK MAB PLANNING

Note that products
∏
µri,ziΘy,i capture information from all arms, since we can not assume indepen-

dence of different arms when doing Bayesian updates across tasks, i.e. fΘm,n(θ|r̂, ẑ) 6= fΘm,n(θ|rn, sn).

Now let’s follow the derivation for Bayesian update rule for Φ:

fΦ,XXX(Φ=φ,XXX={r̂, ẑ})=
M∑
y=1

∑
ψ

∫
θθθ

P (r̂, ẑ|Ψ)P (Ψ|Yj,ΘΘΘ)P (y|Φ)fΦ(φ)fΘΘΘ(θθθ)dφdθθθ

=
M∑
y=1

( N∏
i=1

µri,ziΘy,i

)
φyfΦ(φ) =

M∑
y=1

wµΘy
φyfΦ(φ) (10)

We observe that after the completion of the first task Φ becomes a mixture of Dirichlets. Intu-
itively, each Dirichlet component in the mixture corresponds to a particular assignment of MAB
identities in each task; the weight of each mixture reflects the posterior likelihood of the particular
assignment:

fΦ(φ;α1, ..., αM) =
Γ(
∑M

i=1 αi)∏M
i=1 Γ(αi)

M∏
i=1

φαi−1
i

φyfΦ(φ) =

(
Γ(
∑M

i=1 αi)∏M
i=1 Γ(αi)

Γ(1+
∑M

i=1 αi)

(αy+1)
∏M

i=1
i 6=y

Γ(αi)︸ ︷︷ ︸
scalar weight wy computed using Γ function

)
(αy+1)

∏M
i=1
i 6=y

Γ(αi)

Γ(1+
∑M

i=1 αi)
φαyy

M∏
i=1
i 6=y

φαi−1
i

︸ ︷︷ ︸
PDF of random variable Φ+

y ∼ Dir(α1, ..., αy+1, ..., αM )

(11)

Later, during jth task, Φ could be a mixture of K Dirichlets: φyfΦ(φ) = φy
∑K

k=1 fΦk(φ), where
each component Φk ∼ Dir(αk1 , ..., αkM ). In this case using equation 11 we can obtain the cor-
responding wyk and Φ+

yk
for each of the K components of the mixture. Hence Bayesian updates

would result in adding new components to the mixture but Φ will remain a mixture of Dirichlet-
distributed random variables. Notice that each new Dirichlet component contributes a Dirichlet
with one of the M parameters incremented. This corresponds to a hypothesis that, in the task
we have just completed, we interacted with MAB whose corresponding parameter is incremented
(akin to incrementing a counter of how many times we could have encountered this MAB).
Putting together the results of equations 10 and 11, our Bayesian update for Φ becomes:

fΦ(φ)← fΦ(φ|r̂, ẑ) =
1

P (r̂, ẑ)

M∑
y=1

wµΘy

K∑
k=1

wykfΦ+
yk

(φ) (12)

2.5 Managing Belief State Representation Growth

The challenge of using the proposed analytical updates in practice comes from the fact that the
sizes of the Dirichlet and Beta mixtures grow with the number of tasks completed. This is because
the true MAB identity of the tasks is never directly provided, hence the need to retain probability
estimates for all the possible assignments of tasks to MABs. The size of the mixture of Betas
representing PDF for Θm,n grows exponentially with the number of tasks completed: after j tasks
the mixture has M j Beta components (M is the number of different MAB identities and is a fixed

9



3 MULTI-TASK PLANNING

constant). The size of the mixture of Dirichlets that captures PDF for Φ grows polynomially with
the number of tasks completed as O(jM). The smaller order of growth is due to that fact that some
Dirichlet components can be combined, reducing the number of components in the mixture; the
derivation for this is in Appendix C.1. This kind of belief representation growth is not unique to
our setup and has been observed and tackled in previous work ([16], [5], [14]). As we accumulate
multi-task evidence and our mixtures grow, we can chose to retain only the components with non-
negligible weights. Such approach is most similar in spirit to the “Most Probable” approximation
used by [16] to keep belief representation tractable during partially observable MDP RL by only
retaining K most probable states. This approach was shown to minimize L1 distance between exact
belief b and approximate belief b′, which directly yields a bound |V ∗(b) − V ∗(b′)| between the
values of the exact and approximate belief for infinite-horizon tasks and achieves good empirical
performance (sec. 5.1 of [16]).

It is also possible to see intuitively why in our setting the approach of discarding mixture
components with negligible weights is effective for reducing belief state representation without
sacrificing significantly the accuracy of the multi-task posterior. The reasoning is that for MABs
with sufficiently different parameters and tasks with horizon greater than ≈10 steps, at the end of
the task it is likely to be highly certain about the identity of the MAB of the current task. Thus
after multi-task posterior is updated upon finishing a task, only one set of Beta components would
receive significant weights (those corresponding to the hypothesis of actions and rewards coming
from the most likely a-posteriori MAB), while the rest would be updated with small weight factors.
As evidence accumulates, mixtures Θm,n will more and more closely reflect true MAB payoff
distributions. The weights associated with Beta components that are most consistent with the true
reward distribution will grow, while the weights associated with other Betas will decrease. Similar
reasoning applies to the Dirichlet components of Φ.

3 Multi-task Planning

3.1 Challenges in Multi-task Planning

As discussed earlier, we can frame acting across a series of tasks sampled from a finite set of
MABs as a POMDP planning problem, yielding in principle a policy that maximizes the expected
sum of rewards across all tasks. However, the hidden states of such POMDP are reward prob-
abilities of the underlying MABs, and are therefore continuous, making this a continuous-state
POMDP. Discretizing parameter values can lead to substantial approximations unless it is done to
a fine precision, but as the state space grows exponentially with the number of parameters, such
representations often quickly exceed the reach of high performing offline discrete-state POMDP
approaches such as SARSOP [11].

An alternative approach is to build on recent online tree based methods which have success-
fully scaled to very large single-task problems. Such approaches only compute an action for the
current step, and then perform additional planning after the action is taken and an observation
and reward are received. One example is Real-Time Belief Space Search (RTBSS) introduced
by [13, 18]. RTBSS progressively builds a tree by exploring reachable belief states starting from
the current belief state. The tree growth is limited by pruning the branches that do not lie within
the bounds specified for the desired return/reward. Hence the algorithm is able to search deeper,

10



3 MULTI-TASK PLANNING

while avoiding expanding all nodes in the search tree. Another option for online planning is Monte
Carlo TreeSearch (MCTS) [7]. For this approach a tree policy is defined to select the most promis-
ing node to expand next. Then a simulation is run from the selected node using a simulation
policy defined for taking actions in each subsequent state. The search tree is updated using the
results/rewards collected during the simulation. An advantage of MCTS is that the values of the
intermediate states do not have to be estimated. The result/reward for the simulation can be es-
timated (if necessary) from only the final state reached. This aspect of MCTS is important for
success with domains involving long-horizon tasks with delayed rewards. However, in our domain
of multi-armed bandits the difficulty of estimating rewards at each step is similar for all steps, and
the reward is received immediately (after pulling an arm). Hence MCTS is unlikely to provide a
clear advantage over RTBSS in the setting we consider.

In theory, we could extend a standard forward-search tree POMDP planner to include all of the
task transitions in the search tree. However, in order to perform exact planning across all tasks,
one would need to build a tree of depth H ·J (where H is the number of actions in each task and J
is the number of tasks). For domains with N possible actions and Z possible observations (in our
case of Bernoulli bandits Z=2), exact planning would involve a tree with (N ·Z)H·J nodes, which
would be intractable for even the smallest domains. For instance, exact planning for a domain with
two MABs, 5 arms, a task horizon of 10, and 8 tasks total would require building a tree with 1080

nodes.
One of the key benefits we would hope to get from exact multi-task planning would be enabling

more exploratory behavior in earlier tasks, if such behavior would lead to better overall rewards
over the full horizon of J tasks by quickly refining our multi-task posterior. This challenge of task-
level exploration-exploitation is very similar to the within task exploration-exploitation tradeoff
well known in Reinforcement Learning. One approach to handling this in the single task setting,
in cases when it is computationally prohibitive to perform even single task exact planning, is to
consider the Value of Information (VOI) [17]. Intuitively, VOI represents the benefit of taking
an exploratory action in terms of the immediate reward gained by making a more informed deci-
sion on the subsequent time step, as compared to the reward of simply taking actions expected to
maximize the reward given the current information. Inspired by this, we extend this idea to the
task-level VOI. We consider the benefit of executing a more exploratory policy in an entire task,
in order to refine the multitask posterior and obtain better reward on the subsequent task, versus
myopically maximizing the single task performance of two consecutive tasks. Note that this pro-
cedure is a lower bound on VOI on a task level, because we do not consider the benefit of the
gained information on tasks farther away then the next two tasks, which makes it a conservative
VOI estimate.

3.2 Multi-task Value of Information Planning

We are now ready to introduce our complete multi-task VOI (MT-VOI) for acting across a series
of tasks drawn from the same stationary distribution. Again, we emphasize that MT-VOI could
also be used for MDPs or other sequential decision making multi-task setups. The pseudocode is
outlined in Algorithm 1.

Once a new task is obtained from the environment, we calculate the task-level VOI of acting in
current task using an exploratory policy, versus acting only to maximize expected rewards within a
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3 MULTI-TASK PLANNING

Algorithm 1 : MT-VOI

Set nsmpl to a constant of choice
Initialize multi-task posterior b
for j ← 1 to J do

Task j is obtained from the environment
Using the current multi-task posterior b:
V OIj ← VOIEstimate(b, nsmpl)
if V OIj is positive
then Act in task j using
===== exploratory policy ;
else Act in task j to maximize
===== expected reward within a
===== single task (e.g. with RTBSS) ;

Update the multi-task posterior b
end

Algorithm 2 : VOIEstimate (b, nsmpl )

V OIestimate← 0
for i← 1 to nsmpl do

// Sample from current posterior
(φi, θi)← SampleParams(b)
// Explore, then exploit
(rexpl0, b

′
expl)← ExploreSingleTask(φi, θi, b)

rexpl1 ← RTBSS(φi, θi, b′expl)
// Compare to no exploration
(r0, b

′)← RTBSS(φi, θi, b)
r1 ← RTBSS(φi, θi, b′)
// Compute VOI of exploration
V OIi ← (rexpl0+rexpl1)− (r0+r1)
V OIestimate← V OIestimate+ V OIi

end
return V OIestimate

single task. Since the number of possible sequences of outcomes is exponential in the (single-task)
horizon, it is not feasible for us to analytically compute the task-level VOI. Instead we approximate
it by sampling.

Algorithm 2 shows our task-level VOI estimation, specifically for the case of acting in a finite
set of MABs, though it would be straightforward to generalize this. We first sample a set of
MAB parameters from the current multitask posterior b. We then simulate an exploratory run
of RTBSS using the sampled parameters as if they were the true underlying MAB parameters.
Exploration in this case could constitute, for example, pulling each arm 3 times, then running
RTBSS until task horizon - we call the resulting variation ExploreSingleTask. After the simulation
of the exploratory run is complete, the posterior b is updated to b′expl. This is followed by simulating
a non-exploratory RTBSS run that starts from the updated posterior b′expl. At the end of these runs
we obtain an estimate of reward we could get in the next two tasks in case the first one used
additional exploration to refine multi-task posterior. We then compare the resulting reward to the
case of not using additional exploration. Again starting from the current multitask posterior b, we
simulate using RTBSS to act in one task, update multi-task posterior to b′, then utilize b′ for the
second non-exploratory run. At the end of these non-exploratory runs we obtain an estimate of
reward we could get in the next two tasks running RTBSS with no additional exploration.

The simulated runs allow us to compute an estimate of how much additional reward we can
expect to gain if we use the next task for collecting additional information about the multi-task
posterior. Notice that whenever our multi-task posterior reflects high uncertainty about the MAB
parameters, we are likely to sample parameters (φi, θi) that would be “surprising” – could differ
significantly from the most probable parameters suggested by the posterior. In such cases using
additional exploration could be very informative, which would be reflected in higher rewards ob-
tained in the RTBSS run following an exploratory run. Thus our VOI estimate would increase,
indicating that more exploration during the next task would be warranted.
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3.3 Approximations to Reduce Computation Time for Long-horizon Tasks

To speed up MT-VOI for tasks with long horizons we made several approximations.
When running single-task RTBSS we limited the depth of the tree. We found that limiting tree

depth to 4 produced strategies that were as good as those obtained by trees with higher depths
of up to 25. Limiting the depth of the search tree was critical to enable feasible run times for
long-horizon tasks.

When using multi-task posterior for planning within a single task, we used a single component
with mean closest to that of the mixture from each Dirichlet/Beta mixtures for each (MAB,arm).
Even though after the first few tasks such approximation could be somewhat crude, its precision
improves very quickly as the number of tasks completed grows (see more details on this in Ap-
pendix C.2).

We also avoided re-building the search tree in tasks with very long horizons unless there were
non-negligible shifts in the multi-task posterior. When the posterior remains almost exactly the
same (for example after pulling non-informative arm when enough evidence has already been
collected for this arm), the search tree is unlikely to be altered enough to suggest a different optimal
action.

4 Experiments

This section describes experiments for evaluating performance of our MT-VOI algorithm on two
multi-task MAB domains. Our experiments demonstrate that MT-VOI can start from an unin-
formed prior over the multi-task parameters and achieve good performance. To our knowledge
there are no established multi-task bandit benchmarks, therefore we discuss the performance on a
domain with interesting properties introduced in the previous section and on a domain constructed
in the most relevant prior work.

In our experiments we examine two groups of algorithms. The first group includes single
task algorithms that either ignore (UCB) or leverage information given about the true parameters
(RTBSS when MAB parameters are known). In terms of maximizing per-task reward, RTBSS with
known MAB parameters should obtain the best per-task reward (or, equivalently, lowest per-task
regret) we can hope for (up to error introduced by approximate planning). The second group con-
tains algorithms that are initialized with uninformed prior – probability of encountering different
MABs and their reward parameters are unknown. These algorithms either reflexively use informa-
tion obtained in the process of completing tasks (MT-MYOPIC described below) or proactively try
to optimize multi-task performance (MT-VOI).

In order to perform single-task planning, while incorporating information gathered so far into
the multi-task posterior, we employ RTBSS, using our analytic expressions to update the belief
state of the POMDP modeled by RTBSS. We call the resulting algorithm MT-MYOPIC – when we
perform RTBSS planning over a single task horizon and update the multi-task posterior at the end
of each task. MT-MYOPIC offers an effective way of taking advantage of multi-task posterior for
planning in a single task; however using it to plan in each task separately might cause us to under-
explore multi-task posterior. We contrast the performance of MT-MYOPIC with MT-VOI (which
uses task-level VOI estimate to determine whether the next task should involve more exploration).

For MT-VOI experiments we set the number of samples for estimating VOI (nsmpl) to 20. For
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Figure 2: Comparing regret performance of MT-VOI in different domains
(plots smoothed by averaging over a window of size 50).
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RTBSS with known MAB parameters we set the maximum depth to 25. When running RTBSS
(as a part of MT-VOI and MT-MYOPIC) we experiment with maximum search tree depths from
4 to 25, and finally choose the maximum depth of 4 (since the strategies produced do not improve
when increasing the maximum depth further).

4.1 Performance on InfoArm Domain

We first consider InfoArm domain introduced in “Bayesian Multi-task MAB Learning” section
(Table 2). Figure 2a shows a comparison of per-task regret (averaged over 100 runs) when com-
pleting 500 tasks, with a task horizon of 100 actions in each task.

For establishing a baseline we implemented UCB [2] – a popular optimism under uncertainty
single-task MAB algorithm that does not make use of prior information. We ran UCB with several
parameters and picked the version that performed best on the InfoArm domain. We also imple-
mented and ran MT-MYOPIC, MT-VOI and RTBSS with known MAB parameters.

MT-MYOPIC initialized with uninformed prior performed as well as UCB with best parame-
ters, however even after completing 500 tasks it was not able to get close to the performance of
RTBSS with known MAB parameters. In contrast, MT-VOI initialized with uninformed prior ex-
hibited a much faster drop in per-task regret and eventually got close to the performance of RTBSS
with known MAB parameters. This signified that additional targeted exploration was helpful.
When our VOI estimate indicated that additional exploration was needed on the next task, we were
able to refine the posterior using this additional exploration (we chose a rather conservative explo-
ration strategy of doing 3 exploratory pulls for each arm before running RTBSS for the remaining
part of the task).

4.2 Performance on NIPS2013 Tasks

We now consider the domain described by Azar et al. [3]. This domain contains 5 MABs with 7
arms each, and a horizon of 5000 steps. Each MABi has armi as its optimal arm. This domain
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is challenging as the payoff for arm3 is exactly the same for all the MABs (thus providing no
information), and multiple MABs have very similar parameters across the arms.

arm1 arm2 arm3 arm4 arm5 arm6 arm7

MAB1 0.9 0.75 0.45 0.55 0.58 0.61 0.65
MAB2 0.75 0.89 0.45 0.55 0.58 0.61 0.65
MAB3 0.2 0.23 0.45 0.35 0.3 0.18 0.25
MAB4 0.34 0.31 0.45 0.725 0.33 0.37 0.47
MAB5 0.6 0.5 0.45 0.35 0.95 0.9 0.8

Table 2: Rewards for arms in NIPS2013 domain in [3]

We used UCB with best-performing parameters to establish a baseline. In addition, we com-
pared our performance to tUCB and mUCB – algorithms introduced at NIPS2013 by [3]. As
described by the authors of NIPS2013 paper, tUCB used rewards for learning MAB parameters,
while mUCB was provided with MAB parameters and only had to resolve the identity of the MAB.
Figure 2b reveals that MT-MYOPIC achieves lower average per-task regret than UCB and tUCB.
MT-VOI exhibits an even stronger performance. After ≈450 tasks it achieves average per-task
regret of less than 60 – lower than mUCB (which assumes that MAB parameters are known and
only needs to resolve MAB identity in each task). In contrast to MT-VOI, tUCB achieves regret
below 100 only after 1500 tasks, not reaching the performance of mUCB even after 5000 tasks
(these tUCB numbers are off the chart in Figure 2b, but can be seen in Figure 8 of [3]).

5 Conclusion and Future Work

In this work we introduced MT-VOI, an algorithm for optimizing performance across a series
of tasks. Our results suggest a substantial improvement can be attained by explicitly reason-
ing about tasks to come. As discussed in the experiments section, our multi-task planning ap-
proach based on reasoning about value of information outperformed UCB, planning myopically,
and multi-task planning algorithms from [3]. This suggests that explicitly reasoning about explo-
ration/exploitation across multiple tasks is beneficial when optimizing multi-task rewards. We have
also demonstrated that MT-VOI is able to minimize per-task regret effectively even when starting
from uninformed prior. MT-VOI learned both the posterior for the distribution of MABs and the
parameters of each MAB. Moreover, the algorithm was well-suited to refining the posterior only
for the arms that showed promise in each MAB without the need to further refine the posterior for
the arms that were far from the optimal ones.

Our MT-VOI algorithm is an approximate solution to maximizing the expected reward across
multiple tasks. While we demonstrated that can outperform tUCB and mUCB from [3], the the-
oretical strength of these approaches is the availability of the proof for the regret bounds (which
could be a significant improvement over standard single-task bounds which would beO(J logH)).
Due to the approximations performed by MT-VOI (discussed in exp

Though it is unclear if we can obtain regret bounds for our current algorithm, it is certainly
interesting to derive regret bounds for approaches that seek to maximize multi-task performance
directly.
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Though in this paper we focused on acting in domains sampled from a finite sequence of multi-
armed bandits, our MT-VOI algorithm could be generically applied to multi-task planning across a
series of sequential decision making under uncertainty tasks, assuming each task is sampled from a
stationary (if unknown) distribution. So this could be one promising one direction for future work.

Another direction would be to explore whether the Monte Carlo Tree Search (MCTS) [4] could
be applied to optimizing multi-task rewards and compare to MT-VOI.

might be beneficial in this setting. We did investigate using the MCTS method UCT [9] instead
of depth-limited RTBSS for our single-task internal planner, but found no benefit of UCT over
RTBSS. This is likely because in the bandit setting we are provided with a reward signal at each
step, whereas UCT and MCTS methods can be particularly beneficial given delayed rewards. It
remains an open question if MCTS could be used to directly optimize multi-task action selection,
though the horizon length involved seems challenging.
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[16] Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. A Bayesian Ap-
proach for Learning and Planning in Partially Observable Markov Decision Processes. J.
Mach. Learn. Res., 12:1729–1770, July 2011. 2.5

[17] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. 3.1

[18] David Silver and Joel Veness. Monte-Carlo Planning in Large POMDPs. In Advances in
Neural Information Processing Systems 23, pages 2164–2172, 2010. 3.1

[19] Matthew E. Taylor and Peter Stone. Transfer Learning for Reinforcement Learning Domains:
A Survey. Journal of Machine Learning Research, 10:1633–1685, 2009. 1.2

[20] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-Task Reinforcement
Learning: A Hierarchical Bayesian Approach. In Proc. of the Twenty-Fourth Int’l Conf. on
Machine Learning, pages 1015–1022, 2007. 1.2, 2.2

17





A FROM GROUND BAYESIAN NETWORK TO GENERALIZED PLATE MODEL

A From Ground Bayesian Network to Generalized Plate Model

A.1 Growing the Ground Network

Let us start building Ground Bayesian Network (see Figure 17.7 in [10] for a related example). We
will use notation introduced in section 2.1 for random variables composing the network (so please
read/review section 2.1 before proceeding). For now let’s suppose we start acting in the first task,
and sample one of two possible 1-armed MABs {a, b}. We start with trivial 1-armed bandits in
order to check that our intuition agrees with the outputs of the model in this simplest cases (and
we will soon generalize to n-armed MABs).

Ψ1

X11

Θa

Θb

Y1

w

αa βa

αb βb

y1 ∈ {a, b}
P (a) = w

P (b) = 1− w
P (Ψ1|Y1,Θa,Θb) = 1{Ψ1 = Θy1}

Beta

Beta

In the network abovew is the prior on the probabilities of each of the MAB types (for noww is a
constant; it will be replaced by a Dirichlet prior shortly). y1 ∈ {a, b} is the type of the first MAB we
will be interacting with. Ψ1 is a multiplexer which evaluates to 1 iff the input corresponds to Θy1 ,
e.g. P (Ψ1 = θa|Y1 = a,Θa = θa,Θb = θb) = 1 while P (Ψ1 = θa|Y1 = b,Θa = θa,Θb = θb) = 0.
Θa is the distribution on the parameters of MABa for the first arm. Θb is the distribution on the
parameters of MABb for the first arm. X11 is the reward obtained from the first action in the first
task.
Let’s compute P (X11 = 1) and see that we get something close to what our intuition suggests.

P (X11=1)=
∑
y1=a,b

∑
ψ

∫
θa

∫
θb

P (X11 = 1, Y1,Ψ1,Θa,Θb)dθadθb

since our joint distribution factorizes over the graph of our network, we obtain:

=
∑
y1=a,b

∑
ψ

∫
θa

∫
θb

P (X11 = 1|Ψ1)P (Ψ1|Y1,Θa,Θb)P (y1|w)fΘa(θa)fΘb(θb)dθadθb

= P (Y1=a|w)

∫
θa

∫
θb

θafΘa(θa)fΘb(θb)dθadθb + P (Y1=b|w)

∫
θa

∫
θb

θbfΘa(θa)fΘb(θb)dθadθb

= P (Y1=a|w)

∫
θa

θafΘa(θa)dθa + P (Y1=b|w)

∫
θb

θbfΘb(θb)dθb

= wEΘa [Θa] + (1− w)EΘb [Θb]
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This is exactly what we expected intuitively: the probability of getting a reward of 1 on our first
pull is the expected value of the payoff parameter for MABs a and b weighted by the probability
of sampling each of the MABs for our first task.

A.2 Bayesian Inference from Evidence in One Task

Suppose we observed X11 = 1 upon our first action and now we want to run inference on how
likely we are to get a 1 from the next action, i.e. compute P (X12|X11). This situation would
correspond to the ground Bayesian network below (note the shaded node for X11 indicating that it
has been observed):

Ψ1

X11 X12

Θa

Θb

Y1

w

αa βa

αb βb

y1 ∈ {a, b}
P (a) = w

P (b) = 1− w
P (Ψ1|Y1,Θa,Θb) = 1{Ψ1 = θy1}

Beta

Beta

Since we want to express the fact that we are dealing with the same (though unknown) task, we
will need to run the inference on the network in one step (see Appendix A.3 for a detailed expla-
nation). We will start with the initial parameters for the network and compute the joint distribution
of P (Y1,Θa,Θb,Ψ1, X11, X12), then marginalize it to get P (X11, X12), then using the definition of
conditional probability obtain P (X12|X11) = P (X12,X11)

P (X11)
.

P (X12 = 1, X11 = 1) =
∑
y1=a,b

∑
ψ

∫
θa

∫
θb

P (X12, X11, Y1,Ψ1,Θa,Θb)dθadθb

=
∑
y1=a,b

∑
ψ

∫
θa

∫
θb

P (X12, X11|Y1,Ψ1,Θa,Θb)fΘa(θa)fΘb(θb)P (y1|w)dθadθb

notice that P (X12, X11|Y1,Ψ1,Θa,Θb) = P (X12|Y1,Ψ1,Θa,Θb)P (X11|Y1,Ψ1,Θa,Θb),

since X12, X11 are independent given parents:

=
∑
y1=a,b

P (y1|w)

∫
θa

∫
θb

P (X12|Y1,Ψ1,Θa,Θb)P (X11|Y1,Ψ1,Θa,Θb)fΘa(θa)fΘb(θb)dθadθb

= w

∫
θa

∫
θb

P (X12|Θa)P (X11|Θa)fΘa(θa)fΘb(θb)dθadθb

+ (1− w)

∫
θa

∫
θb

P (X12|Θb)P (X11|Θb)fΘa(θa)fΘb(θb)dθadθb
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= w

∫
θa

Θa ·ΘafΘa(θa)dθa + (1− w)

∫
θb

Θb ·ΘbfΘb(θb)dθa

= w EΘa [Θ
2
a] + (1−w)EΘb [Θ

2
b ]

P (X12 =1|X11 =1) =
P (X12 =1, X11 =1)

P (X11 =1)
=
w EΘa [Θ

2
a] + (1−w)Eθb [Θ

2
b ]

P (X11 =1)
(13)

More generally, if we made r observations with reward 1 and z observations with reward 0, the
probability of getting a reward of 1 on the next observation would be:

P (reward = 1|r, z) =
P (r = 1, r, z)

P (r, z)
=
w E[Θr+1

a (1−Θa)
z] + (1−w)E[Θr+1

b (1−Θb)
z]

w E[Θr
a(1−Θa)z] + (1−w)E[Θr

b(1−Θb)z]

Hence we see that inference in a single task involves special higher moments of Beta-distributed
variables (see Appendix B). For generalization of inference with multi-armed MABs and Dirichlet
prior instead of the constant weight w see section 2.3.

A.3 Alternative Approaches to Inference in One Task

Let’s consider other ways we could compute P (X12 = 1|X11 = 1). Initially it seems that it
should be possible to compute updated conditional probability distributions (CPDs) fΘa(Θa|X11 =
1), fΘb(Θb|X11 = 1), P (Y1|w,X11 = 1), do Bayesian update replacing old CPDs by the new ones
and then compute P (X12 = 1). However, since variable Y1 is hidden (never observed) we will have
an activated v-structure in the graph between Y1, Θa, Θb variables when some rewards from the
task are observed (see section 3.3.1 of [10] for details on v-structure activation). Hence, if updates
within the same task are executed sequentially, X11 and X12 would become dependent. As a result
Θ parameters would become dependent and inference would become problematic. Therefore we
will not model the arrival of new observations in the same task by adding new reward nodes for
each observation sequentially. Instead, we will do batch updates incorporating all the observations
from the same task in one update. In practice we will need to run inference before we are done
interacting with the task. We will do this by initializing our bayesian network to the state it was
in right before the interaction with the current task has begun, and then add nodes to represent all
the evidence obtained in the current task so far (at once). We then run inference to predict the
probability of obtaining 1 for the next reward from this task.
Batch update is not the only way to run inference in one task, there is also an alternative approach,
which considers a mixture of MAB parameters weighted by MAB probabilities cut out of the larger
Bayesian Network structure. Consider the following very simple Bayesian network:

Θ

X1 Xh
...

fΘ(θ) = wfBeta(αa,βa)(θ) + (1− w)fBeta(αb,βb)(θ)

(where fBeta(α,β) denotes PDF of Beta-distributed

random variable with parameters α, β)

If we observe X1 = 1, we can perform Bayesian update for Θ as follows:

fΘ(Θ|X1 =1) =
P (X1 =1|Θ)fΘ(θ)

P (X1 = 1)
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P (X1 =1|Θ=θ)fΘ(Θ=θ) = θ

(
w

Γ(αa+βa)
Γ(αa)Γ(βa)

θαa-1(1−θ)βa-1+ (1−w)
Γ(αb+βb)

Γ(αb)Γ(βb)
θαb-1(1−θ)βb-1

)

= w
Γ(αa+βa)

Γ(αa)Γ(βa)

Γ(αa+1)Γ(βa)

Γ(αa+βa+1)
fBeta(αa+1,βa)(θ)

+ (1−w)
Γ(αb+βb)

Γ(αb)Γ(βb)

Γ(αa+1)Γ(βb)

Γ(αb+βb+1)
fBeta(αb+1,βb)(θ)

= w
αa

αa+βa
fBeta(αa+1,βa)(θ) + (1−w)

αb
αb+βb

fBeta(αb+1,βb)(θ)

P (X1 =1)=

∫
θ

P (X1 = 1,Θ)dθ = w
αa

αa+βa
+ (1−w)

αb
αb+βb

fΘnew1
(θ)← fΘ(Θ|X1 =1) =

w αa
αa+βa

fBeta(αa+1,βa) + (1−w) αb
αb+βb

fBeta(αb+1,βb)

P (X1 =1)

We can now compute P (X2 = 1) using the updated fΘnew1
:

P (X2 =1)=

∫
θ

P (X2 =1|Θnew1)fΘnew1
(θ)dθ

=
1

P (X1 =1)

(
w

αa
αa+βa

αa+1

αa+βa+1
+ (1−w)

αb
αb+βb

αb+1

αb+βb+1

)

=
w EΘaold

[Θ2
aold

] + (1−w)EΘbold
[Θ2

bold
]

P (X1 =1)
, where Θaold ∼ Beta(αa, βa),Θbold ∼ Beta(αb, βb)

We can clearly see that we obtain the same pattern as when performing batch updates in the full
Bayesian network (equation 13), so this approach of cutting out a restricted piece of the network
and running incremental Bayesian updates for the same task is consistent with the results we ob-
tained before. If we were to incorporate the second observation into Θ we would obtain:

fΘnew2
(θ)← fΘnew1

(Θnew1 |X2 =1)

=
w αa

αa+βa
αa+1

αa+βa+1
fBeta(αa+2,βa)(θ) + (1−w) αb

αb+βb
αb+1

αb+βb+1
fBeta(αb+2,βb)(θ)

w αa
αa+βa

αa+1
αa+βa+1

+ (1−w) αb
αb+βb

αb+1
αb+βb+1

(14)

Let us compare the two approaches we have used so far (batch and cut-out) with the approach of
batch updates in the cut-out piece of the network.

fΘ(Θ|X1 = 1, X2 = 1) =
P (X1 = 1, X2 = 1|θ)fΘ(Θ)

P (X1 = 1, X2 = 1)

P (X1 = 1, X2 = 1|θ)fΘ(Θ) = P (X1 = 1|θ)P (X2 = 1|θ)fΘ(Θ) = θ2fΘ(Θ)

= θ2

(
w

Γ(αa+βa)
Γ(αa)Γ(βa)

θαa (1− θ)βa + (1−w)
Γ(αb+βb)

Γ(αb)Γ(βb)
θαb (1− θ)βb

)

= w
Γ(αa+βa)

Γ(αa)Γ(βa)
θαa+2(1− θ)βa + (1−w)

Γ(αb+βb)
Γ(αb)Γ(βb)

θαb+2(1− θ)βb

= w
Γ(αa+βa)

Γ(αa)Γ(βa)

Γ(αa+2)Γ(βa)

Γ(αa+βa+2)
fBeta(αa+2,βa)(θ)
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+ (1−w)
Γ(αb+βb)

Γ(αb)Γ(βb)

Γ(αb+2)Γ(βb)

Γ(αb+βb+2)
fBeta(αb+2,βb)(θ)

= w
αa

αa+βa

αa+1

αa+βa+1
fBeta(αa+2,βa)(θ) + (1−w)

αb
αb+βb

αb+1

αb+βb+1
fBeta(αb+2,βb)(θ)

Since P (X2=1, X1=1) = w αa
αa+βa

αa+1
αa+βa+1

+(1−w) αb
αb+βb

αb+1
αb+βb+1

, we obtain that fΘ(Θ|X1 =1, X2 =

1) is equivalent to equation 14 and we again get the same result with this third way of incorporating
evidence.

A.4 From Ground Network for Several Tasks to Plate Model

Let us now expand our ground Bayesian network to include several tasks. In the illustration below
we also replace constant weight w with a Dirichlet-distributed random variable Φ (to capture our
beliefs about probabilities of encountering each MAB) and expand each of the MABs to have two
arms.

Ψ1 Ψ2

X11 X1n

Y2

X21

Θa1 Θa2

Θb1 Θb2

Y1

Φ

αa1 βa1 αa2 βa2

αb1 βb1 αb2 βb2
wa wb

...

yi ∈ {a, b}
P (a|Φ) = wa

P (b|Φ) = 1−wa = wb

Beta Beta

Beta BetaDir

Now the need for a more compact notation is obvious, so we collect all the MABs into a single
plate (of size M - the total number of MABs) that is indexed by MAB identity, and add a nested
plate of size N for each of the arms. Likewise we collect all the Yjs into a plate of size J (the
total number of tasks) with a nested plate for each selector Ψj,n and a further nested plate for
observations X (indexed by task number, arm and step number within the task). The result is the
plate model presented in section 2.1 (Figure 1).

Note that there is an alternative way of thinking about our Bayesian network after completing
a task. When we are done interacting with the previous task we can update:

fΘm,n(θ)← fΘm,n(Θm,n|rewards from finished task), for m = 1...M, n = 1...N

fΦ(φ)← fΦ(Φ|rewards from finished task)

Thus instead of expanding the ground Bayesian network further, we will expand the sizes of Beta
and Dirichlet mixtures for Φ and Θm,n nodes. For the purposes of inference (needed for planning)
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these two views are identical. If we expand the ground network upon arrival of new observations
and tasks, when performing inference we will obtain the same Beta and Dirichlet mixtures. So we
can either incorporate evidence from the completed task into a Bayesian update (expansion of the
mixtures), or view the ground network for the plate model in Figure 1 as a network with nodes for
the whole sequence of J tasks (with rewards already obtained represented by observedXj,n,h nodes
and future rewards represented by unobserved nodes).

B Special Higher Moments of Beta Distribution

In probability theory higher moments of a random variable Θ are usually denoted by EΘ[Θr], r ∈
N. In this work we make frequent use of moments of the form EΘ[Θr(1 − Θ)z], r, z ∈ N. Below
we derive expressions for these special higher moments when Θ ∼ Beta(α, β).

EΘ[Θr(1−Θ)z] =

∫
θ

θr(1− θ)zfΘ(θ)dθ =

∫ 1

0

θr(1− θ)z Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

θr+α−1(1− θ)z+β−1dθ

=
Γ(α + β)

Γ(α)Γ(β)
· Γ(α + r)Γ(β + z)

Γ(α + β + r + z)

∫ 1

0

Γ(α + β + r + z)

Γ(α + r)Γ(β + z)
θr+α−1(1− θ)z+β−1dθ

=
Γ(α + β)

Γ(α)Γ(β)
· Γ(α + r)Γ(β + z)

Γ(α + β + r + z)
, using Γ(a) = (a− 1)Γ(a− 1) we get:

=
Γ(α + β) · (α + r − 1)(α + r − 2) · · ·αΓ(α) · (β + z − 1)(β + z − 2) · · · βΓ(β)

Γ(α)Γ(β) · (α + β + r + z − 1)(α + β + r + z − 2) · · · (α + β)Γ(α + β)

=
(α + r − 1)(α + r − 2) · · ·α · (β + z − 1)(β + z − 2) · · · β

(α + β + r + z − 1)(α + β + r + z − 2) · · · (α + β)

=

∏r−1
i=0 (α + i) ·

∏z−1
i=0 (β + i)∏r+z−1

i=0 (α + β + i)

Or alternatively, using B(α, β) = Γ(α)Γ(β)
Γ(α+β)

we get EΘ[Θr(1− Θ)z] = B(α+r,β+z)
B(α,β)

, where B is Beta

function B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt.

Even though obtaining EΘ[Θr(1 − Θ)z] looks computationally intensive, in our inference and
Bayesian update implementation we never need to compute EΘ[Θr(1 − Θ)z] from scratch for
large r, z. Instead most cases require computing EΘ[Θr+1(1 − Θ)z] or EΘ[Θr(1 − Θ)z+1], when
EΘ[Θr(1 − Θ)z] has already been obtained. And so we use a very fast update rule (the case for
z + 1 is similar):

EΘ[Θr+1(1−Θ)z] = (α + r) · EΘ[Θr(1−Θ)z]

24



C TACKLING BETA AND DIRICHLET MIXTURE EXPANSION

C Tackling Beta and Dirichlet Mixture Expansion

C.1 Growth Rate of Beta and Dirichlet Mixtures due to Bayesian Updates

As we mentioned in Appendix A.4, we can incorporate evidence from the completed tasks into a
Bayesian update for Θm,n and Φ nodes. We presented derivations for these Bayesian updates in
section 2.4 (equations 9 and 12), and mentioned the growth of Beta and Dirichlet mixtures.

From equation 9 we can see that after each update the size of the mixture of Betas for each Θm,n

doubles. The first part of the sum wΦmwµΘm\n

∑K
k=1 wkfB+

k
(θ) contributes K new beta components

to the mixture, while the second part
(∑M

y=1,
y 6=m

wΦywµΘy

)
fΘm,n(θ) only changes weights of the K

already existing Beta-distributed components.
As to Bayesian updates for Φ – at the first glance at equation 12 we could conclude that because

of the double summation
∑M

y=1

∑K
k=1 the mixture fΦ(φ) grows exponentially with the number of

tasks completed (M j). However we note that most of the new components in the mixture could be
grouped with already existing ones. Let Φj denote the updated mixture after completing jth task,
then we have:

Φ0 ∼ Dir(α1, ..., αM)

Φ1 ∼ Dir(α1+1, ..., αM)+...+Dir(α1, ..., αM+1)

Φ2 ∼ Dir(α1+2, ..., αM)+...+Dir(α1+1, ..., αM+1) + ...

+Dir(α1, ..., αi+1, ..., αM+1)+...+Dir(α1, ..., αi+1, ...αM+2) + ...

+Dir(α1+1, ..., αM+1)+...+Dir(α1, ..., αM+2)

We observe that the number of unique Dirichlet components in a mixture Φj is equal to the number
of ways to choose one of M places j times with replacement. Each time we would choose a place
m = 1...M we would increment the corresponding parameter of the Dirichlet component, but
for the final result the order in which we increment does not matter. Thus we can group all of
the Dirichlet-distributed components of the Φj mixture into

(
M+j−1
j−1

)
components (combinatorial

formula for choosing j times from M objects with replacement, order does not matter). As j
increases, the number of components in the mixture grows as (M+j−1)!

(j−1)!M !
= 1

M !
· j(j + 1) · · · (j +

M − 1) = O(jM). So the Dirichlet mixture Φ would grow polynomially with the number of tasks
completed (and not exponentially as it might first appear).

C.2 Using Collapsed Posterior to Speed up Inference

Since the number of Beta components for each Θm,n and Φ grows with the number of tasks when
using analytic Bayesian updates, we need to choose an effective approximation strategy. In sec-
tion 2.4 we discussed several approaches to reducing mixture sizes. Here we describe and addi-
tional approach to speeding up inference during planning. This approach involves using a “col-
lapsed” posterior for inference – using a single Beta/Dirichlet distribution to approximate a mixture
of Betas/Dirichlets.

As to the experiments we ran so far, our use of the collapsed posterior most likely did not
hurt the performance after we have collected enough samples to learn a fairly precise posterior of
each Θm,n. Which, for the NIPS task happened after around 15-25 tasks, since each of our task
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horizons have been quite long (5K steps). It is worth noting that around that same point (after
15-25 steps) our exploration heuristic would also suggest to stop exploring, and inspection of a
number of posteriors confirmed that by that time our estimate of P (reward=1) was usually quite
precise even when using collapsed posterior. Hence despite the fact that analytically using the
collapsed posterior is not equivalent to using the full multi-task posterior, this was a fair approach
for the particular algorithm we have used for the NIPS task.

The main question we are going to tackle now is what is the difference between using the
full multi-task posterior computed using the Bayesian updates (after observing rewards in the first
j − 1 tasks) and using a collapsed multi-task posterior to select actions in the jth task. Collapsed
posterior is obtained as follows:

– for each Θm,n mixture use a single Beta with parameters α, β such that α
α+β

= EΘm,n [Θm,n],
while α + β is equal to the total number of pulls of arm n completed before starting task j

– for mixture of Dirichlets Φ use a single Dirichlet with parameters α1, ...αM such that αi∑M
i=1 αi

=

EΦ[Φi] ∀i = 1...M and
∑M

i=1 αi is the number of tasks completed so far

The question we need to answer: what is the difference in probability reward=1 for arm n for
the first step in task j computed when using multi-task posterior versus computed using collapsed
posterior. For simplicity let us first work with a trivial planning algorithm – simply pick the best
action given the current belief state bbb (updated multi-task posterior) and compute the expected
reward we would receive if we pulled that arm until the end of the current task. Finding such
action is useful for computing lower bound at the leaves (when using a search tree for planning).

mleaf = argmax
m∈1,...,M

P (Yj = m|bbb) = argmax
m∈1,...,M

EΦ[Φm]

nleaf = argmax
a∈1,...,N

P (reward=1 from arm n|mleaf , bbb) = argmax
n∈1,...,N

EΘmleaf ,n
[Θmleaf ,n]

So far the two outcomes using full and collapsed posteriors would be identical, since we have only
used the expectations of the Beta and Dirichlet mixtures. Let us look closely at what happens
when we obtain another reward from the same arm in the same task. Recall that to compute the
probability of reward given a certain MAB and arm we can use equation 6 from section 2.2.

P (reward of 1 from arm n|rn=1, zn=0, Yj =m) =
EΘm,n [Θ2

m,n]

EΘm,n [Θm,n]
(15)

Let Θ ∼ w1Beta(α1, β1) + w2Beta(α2, β2). Then using derivations in Appendix B we get:

EΘ[Θr(1−Θ)z] =
K∑
k=1

wk

∏r−1
i=0 (αk + i) ·

∏z−1
i=0 (βk + i)∏r+z−1

i=0 (αk + βk + i)

P (reward of 1 from arm n|rn=1, zn=0, Yj =m) =

=
K∑
k=1

wk

∏1
i=0(αk + i)∏1

i=0(αk + βk + i)

/
K∑
k=1

wk

∏0
i=0(αk + i)∏0

i=0(αk + βk + i)
=

∑K
k=1 wk

(αk+1)αk
(αk+βk+1)(αk+βk)∑K

k=1wk
αk

αk+βk

P (reward of 1 from arm n|rn=1, zn=0) =

∑M
y=1 EΦ[Φy]

∑K
k=1wk

(αk+1)αk
(αk+βk+1)(αk+βk)∑M

y=1EΦ[Φy]
∑K

k=1wk
αk

αk+βk
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We arrived at expressions that involve sums in the denominators, so it seems that it is not possible
to make further simplifications. Hence the trouble comes when we take the next step (or when
we expand the search tree). In particular, we will need to compute the probability of reward after
having taken one step in the same task. For concreteness, let us suppose that we have pulled arm
n and obtained a reward of 1 (or, equivalently, we are working with the corresponding child of the
node in a search tree). In this situation we will need to evaluate equation 15, and thus work with
EΘm,n [Θ2

m,n]. This is a second moment of a mixture of Betas, which will not in general be equal to
the second moment of the single Beta in the collapsed posterior. To see this even more clearly, note
that if we keep obtaining the reward of 1 until task horizon, we will need to keep computing higher
and higher moments of the Beta mixture (versus higher moments of the single Beta in the collapsed
posterior). All these moments will not be equal for two different probability distributions.

We could argue that, after a sufficient number of tasks completed, a single Beta can approximate
the true distribution for Θm,n well. However, we do not have a reason to believe that this would
happen after only the first few tasks (when the number of samples is small). Let’s consider a tiny
example. Let Θm,n = 0.1Beta(1, 1)+0.9Beta(100, 100). ThenEΘm,n [Θm,n] = 0.05+0.45 = 0.5.
Let the collapsed posterior contain Θm,ncollapsed

= Beta(101, 101). Then, using the formulas for
higher moments of Beta from Appendix B, we have:

E[Θ2
m,n] = 0.1 · 1

2
· 2

3
+ 0.9 · 1

2
· 101

201
≈ 0.0333 + 0.2261 = 0.2594

E[Θ2
m,ncollapsed

] =
101

202
· 102

203
≈ 0.2512

E[Θ3
m,n] = 0.1 · 1

2
· 2

3
· 3

4
+ 0.9 · 1

2
· 101

201
· 102

202
≈ 0.1392

E[Θ3
m,ncollapsed

] =
101

202
· 102

203
· 103

204
≈ 0.1268

And if we have a Beta mixture with a more even weight distribution Θm,n = 0.5Beta(1, 1) +
0.5Beta(100, 100), then E[Θ2

m,n] ≈ 0.2923, E[Θ3
m,n] ≈ 0.1884, which are farther from expecta-

tions for Θm,ncollapsed
.

D Multitask Planning Examples

D.1 InfoArm Domain Example

Below is a brief example that illustrates Bayesian belief state updates in a sequence of tasks from
InfoArm domain (see description in table 2 and experiments in section 4.1).

Figures below show distributions for Φ (mixture of Dirichlets in tables with blue borders) and
Θm,n (mixture of Betas in each cell of the tables with magenta borders). We initialize with unin-
formed prior:
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Then we start acting in a sequence of tasks. The updated posterior after the first task is finished:

The updated multi-task posterior after the second task is finished:

After about 15 tasks are completed we see that the estimates of P (reward=1|MAB=m, arm=n)
(displayed under “unweighted means”) come very close to the true probabilities. The updated
multitask posterior after 16st task is shown below:

Furthermore we can see that the learning algorithm discovered a strategy of pulling informative
arm in order to distinguish between MABs faster.
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