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Abstract

Building accurate representations of the surfaces of bones in 3D medical images
is an important task in many computer-assisted surgery procedures. We �rst
present a survey of the existing solutions to this problem. Then, we give the
results of experiments on new 2D and 3D deformable models. We propose
to maximize the correlation of raw image values along contours parallel to
the surface of bones. We also propose new representations of deformable
contours : an orientation-based representation for 2D contours, and an implicit
representation using 4D splines for 3D contours. We �nally present some
results of subvoxel segmentation of bone surfaces.
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1 Introduction

The problem of accurately building a representation of the surfaces of bones
from 3D medical images is an important step in many computer-assisted
surgery procedures.

In this report, we �rst give a rapid survey of the existing segmentation
techniques in section 2, with a special interest on model-based segmentation.
We also give in section 3 some references of the works related to sub-pixel
feature extraction in 2D images used in computer vision.

We present in section 4 some experiments using these two techniques in
order to segment the bone surfaces in 3D images at a subvoxel precision.

2 Segmentation and model-based segmentation

Segmentation is the process taking in input an image (two- or tri-dimensional,
binary, grayscale, color) of an object, and giving as output a representation of
the object. This representation may be of di�erent structuration levels.

An unstructured representation is a set of geometric primitives (points,
segments, lines, surface patches,...) each representing locally the object.

A structured representation is a structure representing globally the object
(set of internal voxels, triangulation, implicit surfaces, parametrized surfaces,
splines, volumic mesh, skeleton).

The application determines the choice of a speci�c representation.

We describe here the di�erent techniques used to perform segmentation.
We make a distinction between low level algorithms, directly working on the
image, and high level algorithms, working on the characteristics provided by
the low level algorithms.

2.1 Low level algorithms

2.1.1 Manual segmentation

This tool is the most used. An operator with anatomical knowledge draws
contours interactively on di�erent slices of the dataset. The result is a set of 2D
oriented contours. This method is slow, tedious and usually not reproducible.
Its accuracy is determined by the operator's skill and the image resolution.

2.1.2 Mathematical morphology

Erosion, dilatation, and thresholding are simple tools that can be very e�cient.
The result is a set of voxels representing either the boundary of the interior of
the object. The problem with these methods is to �nd the correct succession of
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operators to apply and the correct set of parameters, which may vary among
datasets.

2.1.3 Partial derivatives

Considering the image as a function R3 ! R, we can compute the partial
derivatives, and from these values, compute some characteristic values like the
gradient, the laplacian.

From these values, one can construct sets of points that have a high prob-
ability to lie on the boundary of the objects.

Under the assumption that the boundary of the object corresponds to
an iso-surface of the image function, one can also compute tangent planes,
principal curvature directions and crest lines on the object surface.

The paper by Monga and Benayoun [28] gives references about partial
derivatives and curvatures computation. The work of Thirion, Gourdon, Sub-
sol and Ayache [31, 36, 35] show how to extract crest lines and use them for
registration between di�erent objects.

The gradient amplitude is a reliable and frequently used characteristic,
crest lines remain stable under anatomical variations. The computation of
crest lines in an image requires a lot of CPU time, and pre-�ltering is necessary
to attenuate the e�ects of the noise.

2.2 High level algorithms

2.2.1 Deformable surfaces

The idea is to start from an already structured representation, and to deform
it to match the object surface. This is an optimization process, with a surface
(i.e. a �nite set of parameters associated to a given surface representation) as
unknown.

The \energy" to optimize is the sum of an image term and a regularisation
term. The image term is designed to be minimal when the surface matches
the object boundary, and the regularisation term prevents the surface from
becoming irregular.

Usually, the image term is the sum of the gradient magnitude in the image
taken over the current surface. The regularisation term is the sum of �rst and
second order derivatives on the surface itself.

Introduced by Kass, Witkin and Terzopoulos in 1988 [23], these models
have in the last 5 years been ported to the 3D case (deformable models were
�rst introduced by Terzopoulos et al. for computer graphics in 1987 [34]).
We may cite the 3D models of Cohen, Cohen and Ayache [8], and Delingette,
Hebert and Ikeuchi [10].
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The result is frequently dependent on the initial contour. In 3D, some
other problems are the parametrization of the surface, and the high number
of degrees of freedom.

Dealing with the problem of parametrization, there are works on adaptive
topology deformable surfaces, by Leitner and Cinquin [14], the author and
Lachaud [25], McInerney and Terzopoulos [27].

Some authors propose to constrain the surface to belong to a restricted
set of shapes, corresponding to the anatomical variations between di�erent
patients. Thus, the optimization space is far smaller. This approach requires
the creation of a large enough set of training surfaces (segmented by hand),
and a statistical study of these surfaces. See the work of Szekely et al. [32],
and Hill, Cootes and Taylor [18]. This last work does not use the gradient, but
identi�es patterns in the gray levels in the direction normal to the contour.

2.2.2 Surface reconstruction from points or contours

The oldest algorithm is the marching cubes algorithm by Lorensen and Cline
[26], which creates a triangulated surface from a set of interior voxels. Algorri
and Schmitt [1] propose an two-step amelioration of this algorithm. See also
the work of Bloomenthal [4] on polygonalization of implicit surfaces.

The number of created triangles is about twice the number of voxels of the
surface, typically between 20,000 and 1,000,000 triangles. Such a number of
faces may not be easily handled by the applications, and the triangulations
may need to be resampled (see next paragraph).

An other class of algorithms reconstruct triangulated surfaces from a set
of contours in parallel planes. The NUAGES package, provided by B. Geiger
at INRIA, is an implementation of such algorithms. It is described in [15].
The number of triangles is also about twice the number of points.

Some algorithms take as input an arbitrary set of points to build a trian-
gulation of the most probable surface passing through the points. Bittar et al.
[3] uses implicit surfaces and medial axis transformation, and Attali [2] uses
Delaunay simplicial decomposition.

Other algorithms choose to match either globally or locally surface patches
with the data points, minimizing a distance criterion. Taubin proposes in
[33] an algorithm to �t an algebraic surface and a set of points with an Eu-
clidean distance criterion. Bricault and Monga [7] construct a set of quadrics
approximating a set of points. The successive articles of Hoppe, DeRose,
Duchamp, McDonald, Stuetzle, Halstead, Jin, Schweitzer, Eck and Lounsbery
[20, 21, 19, 11, 12] present algorithms to build more and more complex and
accurate structured representations (from triangulation to optimized B-spline
mesh) from an unstructured set of 3D points.
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2.2.3 Triangulation simpli�cation

As noted above, some reconstruction algorithms produce a too large number
of triangles. Solutions have been proposed to this problem by transforming a
triangulation to another having far less triangles, but remaining under a given
distance of the original surface.

Gueziec presents [16] an algorithm based on local vertex fusion. See also
the references given in a recent paper of Delingette [9].

2.2.4 Meshing

Meshing the interior of a volume known through a triangulated surface is an
important research problem. As a mesh is needed to solve number of engineer-
ing problems using the �nite element methods, constructing meshes is an active
research �eld. In 2D, the existing solutions can provide triangulations verifying
all the desired constraints (no small angles, no thin triangles,...), for arbitrary
shapes (with holes, for example). In 3D, there are only a few algorithms, and
there is still work to do. SeeMesh Generation and Grid Generation on the Web
at the URL http://www-users.informatik.rwth-aachen.de/ roberts/meshgeneration.html,
maintained by Robert Schneiders.

Building 3D regular meshes from the 3D skeleton is also an interesting area
to explore.

3 Subpixel feature detection

The precise detection of the position of characteristic features (edges, discs,
corners, crosses) in video images is used in computer vision, for example in
vision system calibration.

Shortis, Clarke and Short [30], Tian and Huhns [37], Valkenburg, McIvor
and Power [39] present studies of di�erent subpixel detection methods.

Bose and Amir [5] compare di�erent �ducials (characteristic marks drawn
on objects) for an application in precise registration. Efrat and Gotsman [13],
Havelock [17] study the projections of �ducials and the uncertainty of their
detection.

Kammoun and Astruc [22], Kisworo, Venkatesh and West [24] deal with
the problem of precise detection of edges.

Brand and Mohr [6] give an algorithm to detect corners at a sub-pixel
precision, optimizing a model of corner locally describing the image. Peuchot
[29] presents a similar algorithm working on crosses.
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4 Experiments

The basic idea of these experiments is to use the local correlation between
image values when moving in a direction tangent to the surface.

Starting from a �rst rough estimate of the surface position, we propose to
optimize a scalar �eld de�ned locally such that at the end of the process, the
�eld values represent the signed distance to the actual surface. The result is
the iso-surface of the �eld corresponding to the value 0.

4.1 2D correlation-snakes

This �rst experiment focuses on the 2D bone segmentation problem. We de�ne
a parametrized curve patch (open), and associate to each position of the patch
a correlation value. Then, we optimize the patch parameters to maximize the
correlation.

To prevent the open patch from collapsing, and also to reduce the number
of parameters (the smaller this number, the faster the optimization), the length
of the curve is �xed, and only the normal vectors at a �nite number of positions
can vary.

The curve is open and is a set of 2p cubic Bezier patches, and then has
8p+1 control points. The curve is parametrized by the position of the central
control point M0 and the 2p+ 1 normal vectors at control points M�p : : :Mp

(see �gure 1).
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Figure 1: Curve composed of 2p cubic Bezier patches (here, p = 2). The curve
is parametrized by M0 and the unit normal vectors ni. The positions of the
other 8p control points are deduced from these values.

Given a length unit � and i = 0::p � 1, the points Mi+1 and M�i�1 are
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de�ned by:

Mi+1 = Mi +
1

2
� (ni + ni+1)

? (1)

M�i�1 = M�i +
1

2
� (n�i + n�i�1)

? where

�
x

y

�?
=

�
y

�x

�
:

Given a signed distance e to the curve, we can compute the variance of the
image values at the 2p+ 1 points Mi + e ni:

�2(e) =

Pp
�p f(Mi + e ni)

2

2p+ 1
�

 Pp
�p f(Mi + e ni)

2p+ 1

!2

: (2)

We then minimize the sum of �(e) in a range �emax : : : emax ; optimizing
on the ni orientations, with M0 constant. Some results obtained using this
approach are shown on �gure 2. The optimization is done using the package
subplex written by Tom Rowan, available on the GAMS software repository.
We had to add rigidity terms to the optimization.

The irregularity we can observe on the normal directions comes from the
discretization of the image. In the next section, we propose an extension of
this idea to the 3D case, using the techniques presented in section 3 to take
into account the discrete nature of the image.
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Figure 2: First and second rows: position of the snake before and after op-
timization. Left: curve (p = 6) and orientations of the 13 normals. Middle:
image values among the normal directions for each point Mi of the contour
(bottom horizontal axis is e in millimeters, right horizontal axis is i, and ver-
tical axis is the image value). Right: mean and mean �

p
�(e) of the values

taken at points Mi + e ni (horizontal axis is e in millimeters, vertical axis is
the image value).
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Figure 3: Same as previous �gure in another test position.
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4.2 3D correlation-patches

The chosen representation of the unknown surface is slightly di�erent in this
experiment. Instead of explicitly moving a surface, we will just de�ne a scalar
�eld and thus represent the surface implicitly. The scalar �eld will be de�ned
on an area representing a �rst approximation of the researched contour.

Figure 4 illustrates the de�nition of the scalar �eld in 2D. Given a �rst C1

guess of the contour to �nd (the bold central curve), we de�ne a curve by a set
of p control points Ci and, using the normals to this curve, a set of upper and
lower control points Ui and Li at a �xed distance d to this central curve. This
de�nes a 2D map m(u; v) from [0; 1]2 to R2, using Lagrange basis of orders p
in u and 3 in v.

U1

Up

Lp

Cp

C1

L1

d

Figure 4: De�nition of the implicit contour in 2D (see text).

We now add a third component to each control point, representing the
signed distance of the control point to the implicit contour. Only the third
component si of the Ci control points is a parameter of the contour ; the values
of the third component of Ui and Li are imposed to be respectively si+d and
si � d.

The map m(u; v) is now de�ned from [0; 1]2 to R3, with components X =
(x; y) and s. The scalar �eld s of the \distances" to the implicit contour is
then parametrized by the p values si and de�ned implicitly inside the patch
by :

8U 2 [0; 1]2; s(m(U)X) = m(U)s: (3)

The 3D case is de�ned the same way. We �rst have a C1 local estimate
of the surface to �nd, and de�ne a map from [0; 1]3 to R4 with coordinates
(x; y; z; s), using 3pq control points (see �gure 5). The scalar �eld is de�ned
by the pq values of the s coordinate at the control points of the central layer
of the 3D patch. Let S denote the vector of these pq parameters, and s(S;X)
the distance �eld de�ned for X inside the 3D patch.

Let V be the set of voxels located entirely inside the patch, and f(v) 2 R
denote the gray level value of voxel v 2 V . v is a subset (indeed a box) of R3.

We propose two energy terms for the optimization. Both of these terms
are integrals on the patch. We discretize the distance interval [�d; d] into a set
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Figure 5: (left) Localization of the patch on the femur. (middle) Control mesh
of orders p = q = 5 build over a surface patch. (right) Set of voxels V located
inside the patch.

of intervals T . For example, we may choose regular intervals, for an integer
r :

T = f[�d;�(r� 1)d=r]; [�(r� 1)d=r;�(r� 2)d=r]; : : : [(r� 1)d=r; d]g :
(4)

Let �(S; v; t) be the relative volume (in [0; 1]) of the intersection of voxel
v 2 V and the \slice" of 3D space de�ned by s(S;X) 2 t for a distance interval
t 2 T . If the vertex v lies entirely inside the slice t, �(S; v; t) will be 1, and if
the vertex does not intersect the slice, it will be 0.

4.2.1 Sum of variances

The �rst energy is de�ned as in the previous section as the sum on all slices
of the variance of the image values in the slice.

Let �k(S; t) =
P

v2V �(S; v; t)f(v)k for k = 0; 1; 2, and t 2 T . The energy
term is then :

E1(S) =
X
t2T

�2(S; t)

�0(S; t)
�

�
�1(S; t)

�0(S; t)

�2

: (5)

4.2.2 Distance to the closest pro�le

Let h be a function de�ned from T to R and giving an estimate of the value
of the image in the distance slice t. We want to minimize the square distance
between the real voxel values and the values obtained using this hypothesis
function.
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The value of pixel v deduced from hypothesis h is
P

t2T �(S; v; t)h(t). The
energy term is then :

E2(S) =
X
v2V

 
f(v)�

X
t2T

�(S; v; t)h(t)

!2

: (6)

4.2.3 Implementation issues

We �rst build the set of voxel corners (8 points/voxel) interior to the patch,
and �nd for each of these points the parameter values in the patch (a vector
of [0; 1]3). This requires for each point the resolution of a polynomial system
of equations. This step takes between 40s and 80s of CPU time on a SGI Indy
R5000 at 150MHz, for all the femur examples shown. In the case of �gure 5,
there are 3598 voxel corners inside the patch.

Then, we build the set of voxels interior to the patch (having their 8 corners
inside the patch), and store for each voxel the references of the 8 corners in
the previous set. In the case of �gure 5, there are 2563 voxels inside the patch.

To compute either of the energies de�ned, we must �rst, for a given value
of S, compute the s component value at each of the interior voxel corners.
These values depend linearly of the vector S, and this step is just a matrix-
vector product. Then, we now the value of s at the 8 corners of each voxel.
We use a combination of subdivision and bilinear interpolation (in directions
x and y), and linear interpolation (in direction z, the largest dimension of the
voxel) to compute the values of � for the interval of slices intersected by the
voxel. Only a few number of slices intersect a given voxel.

4.2.4 Results

Figure 6 shows the result of the optimization of the �rst energy form on two
di�erent patches of the femur. Each optimization took about 2 minutes of CPU
time on an SGI Indy R5000 at 150MHz. The patches have an approximate
dimension of 8mm and a thickness of 3mm ; they are currently build from
a set of hand-segmented slices of the same scanner image. No regularization
term were added to the energy in these cases.

5 Conclusion

We have presented the problem of segmentation of bones in medical images,
and given some references about existing solutions to the problem of medical
image segmentation.

Using the optimization techniques used in computer vision to localize fea-
tures at a subpixel accuracy, we have presented experiences on 2D and 3D
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Figure 6: Each row shows an optimization process on a di�erent patch. From
left to right in each row: initial iso-surface, initial gray level pro�le (mean,
mean � standard deviation), �nal iso-surface, �nal gray level pro�le

segmentation of bone surfaces at a subvoxel resolution, starting from an ex-
isting estimate model of the surfaces.

Future work include the creation of a generic patch set for a given bone
(femur, pelvis,...), and the deformable matching of this generic surface model
and a 3D image to segment. This matching would give a set of patches repre-
senting a �rst estimate of the surface to segment, used to initialize the subvoxel
optimization process.
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