
E-mail: Justin.Boyan@cs.cmu.edu

by

B.S., University of Chicago (1991)

c Justin A. Boyan, 1992

UNIVERSITY OF CAMBRIDGE

Submitted to the Department of Engineering and

Computer Laboratory

in partial ful�llment of the requirements for the degree

of

Master of Philosophy

Computer Speech and Language Processing

17 August 1992

Justin A. Boyan

H
Modular Neural Networks for Learning

Context-Dependent Game Strategies

Modular Neural Networks for Learning Context-Dependent Game

Strategies

by

Justin A. Boyan

Submitted to the Department of Engineering and Computer Laboratory
on 17 August 1992, in partial ful�llment of the

requirements for the degree of
Master of Philosophy

Computer Speech and Language Processing

Abstract

The method of temporal di�erences (TD) is a learning technique which specialises in predicting
the likely outcome of a sequence over time. Examples of such sequences include speech frame
vectors, whose outcome is a phoneme or word decision, and positions in a board game, whose
outcome is a win/loss decision. Recent results by Tesauro in the domain of backgammon indicate
that a neural network, trained by TD methods to evaluate positions generated by self-play, can
reach an advanced level of backgammon skill.

For my summer thesis project, I �rst implemented the TD/neural network learning algo-
rithms and con�rmed Tesauro's results, using the domains of tic-tac-toe and backgammon.
Then, motivated by Waibel's success with modular neural networks for phoneme recognition, I
experimented with using two modular architectures (DDD and Meta-Pi) in place of the mono-
lithic networks. I found that using the modular networks signi�cantly enhanced the ability of the
backgammon evaluator to change its strategic priorities depending on the current game context.
My best modular backgammon network was entered in the 1992 Computer Games Olympiad in
London, where it �nished in second place.

Thesis Supervisor: Professor Frank Fallside
Title: Head of Information Engineering Division, Department of Engineering

i

Contents

1 Background 1

1.1 Speech Recognition and Connectionism : 1

1.1.1 Approaches to Phoneme Recognition : 2

1.1.2 Monolithic vs. Modular Neural Networks : : : : : : : : : : : : : : : : : : 3

1.2 Game Playing : 5

1.2.1 Backgammon : 6

1.2.2 Reinforcement Learning : 7

2 Experimental Design and Results 10

2.1 Program Design : 10

2.1.1 Implementation : 10

2.1.2 Details of Neural Network Training : 12

2.1.3 Design of Modular Architectures : 13

2.2 Tic-Tac-Toe : 15

2.2.1 Design : 16

2.2.2 Results : 16

2.3 Backgammon : 17

2.3.1 Monolithic Networks : 18

2.3.1.1 Design : 18

2.3.1.2 Results : 19

2.3.2 Modular Networks : 22

2.3.2.1 Design of DDD Nets : 22

2.3.2.2 DDD Network Results : 25

2.3.2.3 Competition Results: The Computer Games Olympiad : : : : : 28

2.3.2.4 Meta-Pi Networks: Preliminary Experiments : : : : : : : : : : : 28

3 Conclusions 31

3.1 Summary : 31

3.2 Backgammon: Problems and Prospects : 32

3.3 Applications to Speech Processing : 33

ii

List of Figures

1-1 Connectionism in context : 1

1-2 Supervised vs. TD(0) learning (from [Sut88]). : : : : : : : : : : : : : : : : : : : 9

2-1 Organisation of C++ Program Modules : 11

2-2 The DDD Modular Network : 14

2-3 The Meta-Pi Network [HW89] : 15

2-4 Performance of tic-tac-toe networks trained against T-HAND : : : : : : : : : : : 17

2-5 Performance of backgammon networks trained against B-HAND : : : : : : : : : 20

2-6 E�ect of a Weak Training Opponent. X to Play : : : : : : : : : : : : : : : : : : 20

2-7 Performance of monolithic backgammon networks trained by self-play : : : : : : 21

2-8 Poor Play Due to Context-Insensitivity of Monolithic Network : : : : : : : : : : 23

2-9 Good Play by the Context-Sensitive Modular Networks : : : : : : : : : : : : : : 23

2-10 Performance of DDD Modular Backgammon Networks, 0 hidden units : : : : : : 26

2-11 Performance of DDD Modular Backgammon Networks, 20 hidden units : : : : : 26

2-12 Performance of Meta-Pi Backgammon Networks : : : : : : : : : : : : : : : : : : 30

iii

Chapter 1

Background

Connectionism|the study of computational models inspired by models of the brain|has surged

in popularity over the past decade, forging productive new links between the communities of

Arti�cial Intelligence (AI), machine learning (ML), and statistical pattern recognition (SPR).

This thesis lies at the intersection of these three areas, and I hope it will serve as a small

contribution to all three.

AI ML

SPR connectionism

Figure 1-1: Connectionism in context

1.1 Speech Recognition and Connectionism

For both humans and machines, it seems likely that high-quality phoneme recognition must be

the basis for successful speech understanding [BBB89, LHR89]. However, phoneme recognisers

face three major di�culties:

� the acoustic evidence for a phoneme is a non-stationary signal, changing nonlinearly over

time;

1

� a phoneme is context-dependent|it overlaps in time with surrounding phonemes, so there

are rarely clear boundaries to indicate where one phoneme \ends" and another \begins";

and

� di�erent realisations of the same phoneme can vary considerably along dozens of di�erent

dimensions.

Finding mathematical models and control architectures for overcoming these di�culties consti-

tutes the frontier of speech recognition research.

1.1.1 Approaches to Phoneme Recognition

At present, the most successful framework for phoneme recognisers is the Hidden Markov Model

[LHR89]. HMM's provide a quite
exible mechanism for modelling the uncertainties of phoneme

recognition: a phone's time-varying properties are captured as a stochastic sequence of states

in the model, and duration information is encoded in the self-loop transition probabilities for

each state. Most importantly, both the state output probability distributions and the transition

probabilities can be learned according to the iterative Baum-Welch training algorithm [Rab90].

The training procedure allows the model to make implicit generalisations to account for the

variability of speech patterns; however, these generalisations are subject to the constraints of

the model architecture. Despite the much higher degree of
exibility o�ered by HMM's than by

earlier recognition models such as Discrete Time Warping [RL81], it is still the case that

we do not know the true model for speech, but we are sure that it is not a piecewise
stationary HMM, with some arbitrary choice of density function.[RMB+91]

Since the main objection to HMM's is that their representational
exibility is inadequate to

model speech, researchers have sought more
exible models which are nevertheless trainable.

One such model is the multilayer perceptron (MLP), which has enjoyed enormous popularity

since the development of the error back-propagation training algorithm [RHW86]. The MLP is

one of a class of \connectionist" or \arti�cial neural network" models|so-named because like

human neurons, their computations are simple and localised; their actions may be executed in

parallel; and the overall function computed by the network is distributed among the patterns of

weights and activations throughout the network. Other architectures falling under the rubric of

neural networks include Hop�eld nets [Hop82], Kohonen nets [Koh88], LVQ networks [KBC88],

and the Kanerva model [Kan88].

Biological analogies aside, the main attraction of the MLP model is that its parameters can

be trained to de�ne \an extremely
exible set of functions ... thus only weak assumptions are

made about the input statistics" [RMB+91]. In a typical MLP, each unit in a \hidden layer"

computes a weighted sum of the inputs, then applies a di�erentiable squashing function (usually

�(x) = 1=(1 + e�x)) to that sum. The result, the unit's \activation", is then \fed forward"

2

to either another hidden layer or the output layer, where new unit activations are calculated

similarly. The weights used in each weighted sum are the trainable parameters of the network;

they are adjusted during training in an attempt to minimise an error function over weight space

by the method of gradient descent. The error function is typically a sum-of-squares distance

between the network's computed output and a target output, and the particular realisation of

gradient descent for an MLP is the error back-propagation algorithm [RHW86].

The function computed by an MLP model is continuous with respect to its inputs; thus a

model which performs well on the training input/output pairs will often be able to generalise

to unseen inputs. However, there are many caveats to the MLP paradigm. For one thing, the

size and shape of the MLP is not trainable; it is up to the researcher to choose a structure with

enough free parameters (i.e. hidden units and weights) to model the problem, but not so many

that the network over�ts the training data and degrades its ability to generalise. For another

thing, training a large net may require an inordinate amount of training data or computing

resources. There are no theoretical guarantees of optimal convergence, since gradient descent

may lead the network into only a local minimum of the error surface. Finally, even when a

network does manage to successfully learn an input/output relation, the distributed nature

of its solution reveals very little information about the problem's substructure. Nevertheless,

neural nets have great appeal, and thousands of researchers in a wide variety of disciplines

are currently using neural nets to solve real problems (see e.g. [Tou90]). Speech recognition is

no exception: neural network-based approaches are quickly catching up to their more mature

HMM-based counterparts.

1.1.2 Monolithic vs. Modular Neural Networks

The task of designing an appropriate MLP architecture for phoneme recognition is complicated

by the dynamic nature of speech: the network must \represent temporal relationships between

acoustic events, while at the same time providing for invariance under translation in time"

[WSL89]. Typically, this is achieved by augmenting the MLP with either recurrent connections

(back from the hidden layer to the input layer) [RF91], time-delay units (which provide input

from multiple timesteps simultaneously) [WSL89], or some combination of the two [FLW90]. In

training these architectures, the weight changes computed by error back-propagation must be

averaged over time in order to enforce the constraint of shift-invariance. For Waibel's Time-Delay

Neural Network (TDNN), this means that \the network is forced to discover useful acoustic-

phonetic features in the input, regardless of when in time they actually occurred" [WSL89].

The basic TDNN [WSL89], trained to distinguish among the phonemes B, D, and G, made 4

times fewer classi�cation errors than an HMM trained on the same data (98.5% correct versus

93.7%). These impressive �gures result from a network topology which was carefully hand-tuned

for this task and then trained with error back-propagation for approximately 100 hours on a

supercomputer. However, Waibel and his colleagues also found that in order to scale up the

TDNN model to handle a large number of phonemes, simply increasing the breadth and depth

3

of the network would not su�ce. [WSS89] reports that a somewhat larger TDNN was able

to achieve 98.3% correct recognition over a six-phoneme set (BDGPTK), but training required

several weeks of supercomputer time. They concluded,

we cannot hope for one single monolithic network to be trained within reasonable time
as we increase task size and eventually aim for continuous, speaker-independent speech
recognition. [WSS89]

Instead, a modular network architecture is necessary. As discussed in [JJB91], a modular

structure composed of multiple neural networks provides several important advantages over a

single monolithic network:

learning speed If a complex function decomposes naturally into several simpler functions in

di�erent regions of its domain, then a modular network should be able to learn relatively

quickly both the set of simpler functions and a \switching function" to select among them.

By contrast, learning in a monolithic network is slowed by crosstalk, the e�ect in which the

units of the network receive con
icting error signals because the network is trying to learn

multiple dissimilar functions at once.

generalisation Again, if the function to be learned is decomposable, then a modular architec-

ture should generalise better than a monolithic architecture because its structure models

the function more closely.

ease of development When the learning task is broken down into better-de�ned components,

the networks may be designed and trained incrementally, allowing the developer to take

full advantage of his or her domain knowledge.

Waibel's group applied techniques of modularisation to their original three-consonant, single-

speaker TDNN in order to build all-consonant and multi-speaker recognition systems. They

approached the all-consonant discrimination task as follows [WSS89]:

1. Apply expert domain knowledge to divide the Japanese consonants into small disjoint sets

of similar phonemes (BDG, PTK, RWY, etc.), and train a separate TDNN on each set;

2. Train a somewhat larger \controller" TDNN to distinguish between the consonant subsets;

and �nally

3. Freeze the weights within each TDNN, link the structures together appropriately, and train

only the inter-structure links with back-propagation.

The resulting conglomerate network achieved 95.0% recognition accuracy on the 18-consonant

discrimination task, which rose to 95.9% after the frozen connections were freed and the network

was trained to �ne-tune all of its parameters. The excellent performance of the modular approach

4

demonstrates the virtue of intelligently distributing the di�cult classi�cation decisions among

subnetworks. A weakness of this particular scheme, however, is its heavy dependence on the

controller subnetwork, whose errors dominated the error rate of the system. One approach to

rectifying this imbalance would be to train a larger and more accurate controller net; however,

the subnet may grow into just the sort of hard-to-train, monolithic network which modularity

seeks to avoid.

A better approach to easing the dependence on the controller subnetwork would involve

allowing the controller to make soft rather than hard classi�cation decisions. The Meta-Pi

network of Hampshire and Waibel [HW89] accomplishes this goal. A Meta-Pi network was

trained to solve the scaled-up problem of multi -speaker, three-consonant recognition as follows:

1. Train a separate speaker-dependent TDNN on the task for each speaker (in this case six)

and freeze these networks; and

2. Create and train the Meta-Pi \gating network", which is responsible for deciding in what

proportions to mix the outputs of the speaker-dependent nets (hence its decisions are

\soft").

An important point about Meta-Pi training is that the gating network is never provided with

an explicit speaker identity; rather, its choice of speaker mixing proportions is determined

solely with respect to the overall classi�cation objective. This scheme is justi�ed by Bayesian

statistical theory, and also works very well in practice: [HW89] reported a 98.4% recognition

rate on the six-speaker three-phoneme task, very nearly reaching the 98.7% average speaker-

dependent recognition rate. A drawback to the Meta-Pi formalism is that during recognition,

all six of the subnetworks must be evaluated separately, so a sequential implementation runs 6

times more slowly than the \all-or-nothing" controller structure described earlier. Both of these

modular designs take as a starting point the researcher's ability to specify the underlying task

decomposition; methods for having the network learn the decomposition as well as the controller

network are also currently being investigated [JJB91].

1.2 Game Playing

It has long been recognised that classical board games such as chess and checkers provide an

excellent testbed for new theories in a variety of �elds, including

� machine learning, e.g. Samuel's checkers program [Sam59];

� planning, e.g. Collins et. al.'s adaptive planning chess system [CBK89];

� pattern recognition, e.g. Lee and Mahajan's Othello program [LM88]; and

� neural networks, e.g. Tesauro and Sejnowski's backgammon program [TS89] and Robinson

and Fallside's tic-tac-toe program [RF89].

5

Each of these games de�nes a domain which is easy to represent, program, and evaluate; yet

expert-level play may require sophisticated abilities of planning, pattern recognition, and mem-

ory.

At the heart of most computer game algorithms is a position evaluator function. This func-

tion, given a board position as input, ideally returns the expected payo� from that board position

given future optimal play by both sides. To decide on its move in a given situation, the game-

playing program generates a list of all possible board positions resulting from the current legal

moves; evaluates each with the static evaluator; and selects the move which results in the board

with the highest evaluation. If the position evaluator function for a game is known accurately,

then the game program will make the correct move in every situation and the game is said to

be \solved" [Dre81].

Over the past two decades, great progress has been made in designing accurate position

evaluators. Advances in computer game-playing have followed largely from the development of

rigorous searching strategies which allow the evaluator to explicitly look ahead as many as 20

turns into the future, considering millions of possible game continuations to arrive at an excellent

estimate of a position's expected payo�. Indeed, Connect-Four has been solved by this method

[All89, All88], and deeply-searching chess and checkers programs now play at the world-class

level [LN91, SCT+92]. Yet in the game of backgammon, signi�cant advances have been made

only very recently, and using an altogether di�erent approach.

1.2.1 Backgammon

Backgammon, known variously as the \oldest" and the \cruelest" board game, de�es solution by

lookahead search because the number of possible moves at each turn is simply too large|over

400 on average, considering the 21 possible rolls of the dice. A program to play backgammon

in real-time must therefore \not search more than one or two ply, but rather rely on pattern

recognition and judgmental skills" [TS89]. The game of backgammon is a particularly well-suited

domain for testing methods of noisy, stochastic, \real-life" pattern recognition.

The earliest serious attempt at a backgammon program was in the late 1970's, when Hans

Berliner's group devoted four man-years to hand-crafting the \BKG" position evaluator [Ber79].

The evaluator made use of a large number of features Fi which indicated the presence or ab-

sence of various patterns of pieces on the board. The evaluator then combined these features

into an overall payo� estimate according to Berliner's SNAC (Smoothness, Non-linearity, and

Application Coe�cients) methodology:

Smoothness The overall evaluation should de�ne a smooth surface over the feature space. If

the surface is discontinuous with respect to a feature in the space, then the program will

tend to attach too much importance to that feature (and play incorrectly) in situations

where alternate move choices are on opposite sides of the discontinuity.

Nonlinearity Linear functions, though well-behaved, are inadequate for modelling the context-

6

sensitive relationships between features in the space; the evaluator should be able to com-

bine the feature values nonlinearly.

Application Coe�cients Berliner's solution to the smoothness and nonlinearity constraints

was an evaluation function of the form:

V = A1F1 +A2F2 + � � �+AnFn:

The Ai values, termed application coe�cients, were special features whose values tend to

vary slowly with respect to board moves. The Ai's indicate concepts such as the phase

of game and ease of winning. Since these are slowly-varying, the overall evaluation will

be relatively constrained from move to move, guaranteeing smoothness and stability while

computing a nonlinear function of the discrete-valued features Fi.

In 1979, version 9.8 of the program actually defeated the world champion in a short match

(although it was very lucky to have done so). According to backgammon expert Bill Robertie,

BKG's expected payo� against a human expert would have been approximately �0:3 points per

game (ppg), ranking it at the advanced intermediate level [Rob92]. No commercial backgammon

programs developed before or since BKG have ranked higher than �0:66 ppg, testifying to the

quality of Berliner's pioneering e�ort.

The BKG evaluator, a nonlinear function which smoothly combines many features of the in-

put, naturally suggests an implementation as an arti�cial neural network. Indeed, backgammon-

playing (along with speech recognition) was one of the �rst complex tasks to be attempted with

an MLP and error back-propagation. In 1989, Tesauro and Sejnowski [TS89] trained a stan-

dard MLP on a database of 3202 positions labelled by a human expert. The network's optimal

performance was achieved after only about 12 training cycles through the database, after which

its performance slowly degraded. (By contrast, the network's performance on the training data

was still steadily increasing after over 50 epochs of training, indicating that the networks were

overlearning the noise in the training set.) The optimal network was able to win about 59%

of its games against a weak computer opponent, and also defeated its rivals at the First Com-

puter Olympiad [Tes89]. However, it made many obvious blunders in many di�erent types of

positions, and would have stood little chance of success against a good human player. Tesauro

prophesised that improving the network further would require

either an intractably large number of [training] examples, or a major overhaul in either
the pre-computed features or the training paradigm. [TS89]

1.2.2 Reinforcement Learning

Tesauro was right. Several months ago, he unveiled his latest backgammon evaluator network,

the result of a major overhaul in the training paradigm which allowed the net to see not just 3202

7

but literally millions of training examples|all generated from its own play [Tes92]. The new

paradigm is based on the theory of reinforcement learning by the method of temporal di�erences

(TD), formalised by Sutton [Sut88].

Temporal di�erence methods apply to the training of any system which learns to predict the

outcome of a temporal sequence of events. Two examples of temporal prediction problems are

speech recognition, viewed as a series of speech frames culminating in a phoneme classi�cation,

and game-playing, viewed as a series of board positions culminating in a win/loss decision.

The distinguishing feature of TD methods is that the training is driven not by the di�erence be-

tween each prediction and the eventual outcome, but rather by the di�erence between successive

predictions only.

More formally, suppose the prediction system has observed an experience consisting of a

sequence of observation vectors

x0 ! x1 ! x2 ! � � � ! xT�1 ! xT

which culminated in the scalar outcome Z. The task of our system is to produce, at each

timestep t, a prediction P (xt) estimating the outcome Z given the current observation; the task

of the learning method is to modify the system's prediction function P (x) in light of each new

experience. In the traditional supervised-learning method, the experience above would generate

the training pairs

(P 0(x0); Z); (P
0(x1); Z); . . . ; (P

0(xT�1); Z); (P
0(xT); Z)

adjusting each new prediction P 0 to more closely approximate the actual outcome of the expe-

rience. By contrast, the temporal di�erence method TD(0) would generate the training pairs

(P 0(x0); P (x1)); (P
0(x1); P (x2)); . . . ; (P

0(xT�1); P (xN)); (P
0(xT); Z)

associating each observation vector with only the next timestep's prediction. TD(0), also known

as Q-learning [Wat89], is actually the most extreme instance of the more general TD(�) class of

learning methods, with TD(1) = supervised-learning at the other extreme [Sut88].

Sutton provides the following example from game-playing to demonstrate how TD methods

can generate better predictions than supervised-learning methods. Suppose the system observes

a game that reaches a novel position xt, then progresses to a position xt+1 which is known to be

bad, but �nally happens to result in a win nonetheless. In a supervised-learning system, the novel

state would be associated with the �nal \win" outcome, in spite of its having immediately led to a

bad position. In TD(0) learning, however, the novel state would be associated with its immediate

temporal successor, and the system would learn the correct, unfavourable prediction for that

state. Because TD methods preserve the temporal structure of the experience in generating

training data, they \make more e�cient use of their experience, . . . converge more rapidly and

make more accurate predictions along the way" [Sut88].

8

90%

10%
NOVEL BAD

WIN

LOSS

Figure 1-2: Supervised vs. TD(0) learning (from [Sut88]).

Tesauro's newest backgammon position evaluator is a neural network trained by TD methods

[Tes92]. The \experiences" used for generating training data were not human expert moves (as

were used to train Tesauro's earlier backgammon network), but rather full games played by the

network against itself. Thus, the network is used simultaneously as a predictor and controller:

it predicts the expected game value given the board position, and it controls the progress of the

game by selecting the highest-valued position reachable by a legal move at each step. Tesauro

stresses that there are no theoretical guarantees that such a predictor/controller system will

converge to an optimal or even good solution. In practice, however, the TD training scheme

worked remarkably well on the backgammon task.

Tesauro trained a standard two-layer MLP consisting of a raw input board representation

of 198 units, a hidden layer of 40 units, and an output layer of four units representing the

probability of each possible outcome of a backgammon game.1 After 200; 000 games of training

by self-play, the network had learned enough backgammon strategy to win 50% of the time

against Tesauro's previous best network, which was trained on expert play and had complex

features encoded in the input representation. When Tesauro trained another TD network which

included these complex features in its input, its performance shot beyond that of the human

expert-trained networks. Expert Bill Robertie recently played it and found that, although it

made \obvious technical errors" and \costly errors in complex positions," it was nevertheless

\the strongest backgammon program in existence, most likely better than Berliner's program of

13 years ago" [Rob92]. Tesauro's initial results suggest that a connectionist evaluator trained by

the method of temporal di�erences may eventually reach, or even surpass, human expert-level

ability.

1A backgammon game actually has six possible outcomes (single, double, and triple wins or losses), but triple
games are quite rare. With Tesauro's four-output representation, the overall value of the position is computed
as P (win) + 2P (double win)� P (loss) � 2P (double loss).

9

Chapter 2

Experimental Design and Results

In backgammon as in every complex game, strategies change signi�cantly as the game progresses.

In other words, the game position evaluation function decomposes naturally into several simpler

functions in di�erent regions of its domain. Thus, it is reasonable to expect that a modular neural

network could learn to approximate this evaluation function more accurately|and thereby play

the game better|than a monolithic network could. This was the hypothesis which I proposed

to explore for my summer project. Speci�cally, my goals were as follows:

1. Implement the algorithms for monolithicMLP back-propagation, temporal-di�erence learn-

ing, and game-playing;

2. Apply these algorithms to the task of learning tic-tac-toe and backgammon, comparing my

results with those of Robinson and Fallside [RF89] and Tesauro [Tes92], respectively; and

3. Design and implement several modular neural network architectures for learning context-

sensitive evaluation functions, and compare their performance to that of the monolithic

networks.

2.1 Program Design

2.1.1 Implementation

The complete implementation of the network-training and game-playing algorithms comprises

approximately 3000 lines of C++ code. C++ was chosen for its object-oriented features, which

allow convenient interaction between the various modules of the program, as well as for its

run-time speed. Figure 2-1 illustrates the interrelationships among the seven main program

modules:

� GAMETRAIN provides the top-level interface between the user and the game-learning mech-

anism. According to a set of parameters speci�ed on the command line, this module calls on

10

TRAIN

PLAY

GENGAME

BOARD

game-specific modulesNET

MODNET

GAMETRAIN

Figure 2-1: Organisation of C++ Program Modules

MODNET to initialise or load a neural network, then uses TRAIN to carry out the learning

process.

� TRAIN invokes GENGAME repeatedly to generate new games for use as training information.

It segments the stream of game positions into training epochs consisting of 50 positions each,

uses MODNET to actually train the net, and compiles per-epoch statistics on the training

progress.

� GENGAME has three main functions:

{ To specify the encoding of the game position data structure into the neural network

input representation;

{ To select best moves and generate full games using the neural network evaluation

function; and

{ To provide a stream of training data for the network according to the TD(0) method

of temporal di�erences.

GENGAME is game-speci�c so there are actually two versions of this module: GENBG for

backgammon and GENTTT for tic-tac-toe.

� BOARD de�nes the board representation, rules, board display, move notation, etc. for a

speci�c game. Each BOARD module also includes a hand-written conventional evaluation

function called HAND which can be used to measure the playing ability of the neural

network evaluation function.

� MODNET de�nes the operations for evaluating, training, reading, and writing two kinds

of modular neural networks. These modular architectures are described below in x2.1.3.

MODNET relies heavily on the NET module, which handles the training and evaluation

11

of the modular net's monolithic subnetworks. It may also call the game-speci�c gating

program in GENGAME to determine which subnetwork applies to a given position.

� NET implements the forward-propagation and backward-propagation algorithms for a mul-

tilayer perceptron [RHW86], as well as providing utility routines for reading, writing and

displaying the contents of such networks.

� PLAY provides a general interface for playing two-player games. On the command line, the

user speci�es who will play each side (either human, Hand, or a network) and the number of

games to be played. The games may be played in verbose mode, in which case the board is

displayed after each move, or in quiet mode, in which case the output is simply a number

representing the average number of points per game won by player X.

The networks were trained on a DecStation 3100 MIPS machine. The playing code was

also ported to an AST 486 PC in order for the backgammon program to compete in the 1992

Computer Games Olympiad.

2.1.2 Details of Neural Network Training

Designing an MLP neural network requires the researcher to de�ne a number of parameters such

as the number of hidden layers, number of units in each layer, squashing function, learning rate,

and momentum coe�cient [RHW86]. In order to establish these, I experimented with di�erent

network parameter settings for learning three small tasks:

exclusive-or This is the classical test of an MLP's ability to learn a nonlinear function.

2-D Euclidean distance from origin This task tests the network's ability to approximate

an analog function accurately.

Bounded random walk This problem, described in [Sut88], tests the ability of a network to

solve a linear prediction problem by the method of temporal di�erences.

Based on the results of these experiments, I set the network parameters as described below.

Note, however, that it was not a primary goal of my project to �ne-tune the network parameters

for the fastest learning rate possible. The following settings seemed to work well:

� Each network had one layer of hidden units, squashed by the sigmoid function �(x) =

1=(1 + e�x), and with a maximum learning rate of 1:0

of input units . The actual learning

rate used during training was the product of this maximum rate with the adaptive learning

rate multiplier �x (described below).

� No squashing function was applied at the output units, which received activation directly

from the input units (via shortcut connections) as well as from the hidden units. The

shortcut links used a maximum learning rate of 0:005

of input units , and the hidden-to-output

links used a maximum learning rate of 0:005

of hidden units .

12

� Network weights were initialised randomly within the range (�0:2;+0:2).

� I designed the following heuristic scheme for adapting the learning rate multiplier �x and

momentum coe�cient � after each epoch of training:

{ If the log-mean-sum-squared-error (LMSSE) has decreased by � since the previous

training epoch, then raise � and lower �x according to

� �+�

1+�
; �x

�x
1+�

{ If the LMSSE has increased by � since the previous training epoch, then lower � and

raise �x according to

� �

2
; �x

�x+�

1+�

� The back-propagation algorithm updated the network weights after each training pattern,

rather than only once per epoch. As suggested in [Fah88], the constant 0.1 was added to

the sigmoid derivative in order to keep the hidden units from getting prematurely \stuck"

near 0 or 1.

� I applied a method similar to that used in [HWSS88] for skipping a training pattern when

the network error on that pattern was already low. Speci�cally, if the pattern's log SSE

was less than the last epoch's log mean SSE by at least 3.0, then no backpropagation was

done on that pattern. This scheme o�ers two advantages: it saves the extra time which

would have been used to backpropagate very small weight changes, and it helps prevent

over-training in cases where the training patterns are not distributed evenly over the input

domain.

2.1.3 Design of Modular Architectures

The MODNET program module implements the algorithms for two types of modular neural

network architecture. The �rst of these I call a DDD network, which stands for Designer Do-

main Decomposition (see �gure 2-2). The DDD network consists of a collection of N monolithic

subnetworks and a hard-coded gating function, written by the designer, which partitions the

domain space into N classes. Like the all-consonant recognition network described in [WSS89],

the DDD net allows the designer to use his or her domain knowledge in specifying a useful de-

composition. The operation of the DDD net is extremely simple: in both forward and backward

propagation, the gating program is called to select an appropriate subnetwork, which is then

evaluated or trained as a monolithic net. Exactly one subnetwork is active at any time; for

example, in �gure 2-2, the gating program classi�es the input pattern as belonging to class #3,

so only subnetwork #3 is used to generate the modular network's output. Thus, assuming that

the gating program can classify an input pattern in a negligible amount of time, the DDD net

runs as quickly as a monolithic network the size of just one of its subnetworks.

13

coded
gating

program

input layer

hard

network output

Figure 2-2: The DDD Modular Network

The second type of modular network implemented in MODNET is the Meta-Pi architecture

[HW89]. The structure of the Meta-Pi network is very similar to that of the DDD net, with

the important exception that the hard coded gating program is replaced by a trainable gating

network (see �gure 2-3). The weight changes for the gating network are computed by backprop-

agating the following error derivative from each output Mk:

@E

@Mk

=
X

N

((On �Dn)(�k;n �On)) =
X

J

Mj

where On is the nth output of the whole network, Dn is the desired target value, and �k;n is the

nth output of subnetwork k.

In training a Meta-Pi net, the subnetworks are assumed to have already been fully trained;

only the gating network is modi�ed. Thus, the procedure I followed was �rst to design and train

a DDD network, then replace the hard-coded gating program with the Meta-Pi gating network

and re-train. Intuitively, it may seem that the Meta-Pi network, initialised in this way, can

never do better than to learn to produce exactly the \hard" classi�cation decisions de�ned by

the DDD net's gating program, and thus can never exceed the performance of the original DDD

net. On the other hand, the \soft" decisions made by the Meta-Pi gating network provide the

advantage of combining the outputs of the subnetworks smoothly. Recall Berliner's smoothness

criterion for evaluation functions: if the function is not smooth, then

a very small change in the value of some feature could produce a substantial change
in the value of the function. When the program has the ability to manipulate such a
feature, it will frequently do so to its own detriment. [Ber79]

14

input layer

trainable
gating

network

network output

Figure 2-3: The Meta-Pi Network [HW89]

For example, suppose our evaluation function is represented by a DDD network and that the

program has to choose between a legal move in domain class #3 and a legal move in domain

class #5. If network #3 has a positive bias and network #5 has a negative bias with respect to

the ideal evaluation function, then our program will tend to leap prematurely to the positively-

biased region of the domain, #3. Berliner labelled this problem the blemish e�ect.

The soft gating function of the Meta-Pi network can smooth out the evaluation function in

the transitional regions between the subnetwork domains. In e�ect, the gating network learns

to produce output coe�cients which are precisely analogous to the Application Coe�cients

of Berliner's 1979 backgammon program: they are slowly-varying features of the input which

smooth the transitions from one region of the evaluation function surface to the next. Ideally,

one would hope that the Meta-Pi network could learn a backgammon evaluation function of a

similar form to, and of a higher quality than, the excellent evaluation function hand-crafted by

Berliner's team 13 years ago.

2.2 Tic-Tac-Toe

Before attacking the complexities of backgammon, I applied the combination of neural networks

and temporal-di�erence learning to the game of tic-tac-toe, also known as noughts-and-crosses.

Tic-tac-toe is a conceptually simple game with a small state space (on the order of 104 reachable

positions), yet the optimal static position evaluator must be a complex nonlinear function of

the input position in order to recognise such features as the potential for forking plays.

15

2.2.1 Design

Since tic-tac-toe is deterministic, a program that is learning by self-play may become stuck in a

local minimum where it plays the same game repeatedly to a draw but has failed to explore large

regions of the input space. In order to force the network into situations where it can learn about

new ways to win the game, the self-play training procedure must involve some nondeterminism.

An alternative approach is to train the network on games played against a high-quality opponent

algorithm. This algorithm would be able to \teach" the network by leading it into new regions

of the game position space. This is the method I used to train my tic-tac-toe networks.

The network's training opponent, T-HAND, plays a reasonable game of tic-tac-toe by follow-

ing this simple algorithm: on each turn, always complete a line if possible; else always block the

opponent if she is about to complete a line; else make a legal move at random. I estimate that

an optimal player could expect to win 58% of the time and draw the remaining 42% against

T-HAND.1 The network training data was generated from the games played by the TD(0) re-

inforcement learning method. As in [RF89], no attempt was made to take advantage of the

symmetries of the game.

Two tic-tac-toe evaluator networks were trained: a monolithic network and a modular net-

work. The monolithic network was a standard MLP (as described above in x2.1.2) with 18

binary input units, 20 hidden units, and a single output unit. The modular network was a DDD

net with 8 subnetworks, each having the same 18-20-1 architecture as the monolithic network.

The DDD gating program assigned a position with N pieces on it (1 � N � 8) to subnetwork #

N ; e.g., subnetwork #6 was responsible only for evaluating tic-tac-toe positions with six total

marks on the board. This particular decomposition of the domain has the advantage that all

legal moves at each turn are evaluated by the same subnetwork. Thus, the program does not

have the ability to manipulate \to its own detriment" [Ber79] the subnetwork it uses for a given

move, so there is no need to use a Meta-Pi network to smooth the overall evaluation function.

2.2.2 Results

The networks trained against the T-HAND algorithm learned to play an extremely strong game

of tic-tac-toe. Figure 2-4 compares the learning curves of the monolithic and modular networks

trained in this manner. On this graph, each range of ten units on the x-axis corresponds to

approximately 70,000 training games, or one hour on a DEC 3100 workstation. The monolithic

network learned more quickly at �rst than its modular counterpart, no doubt because each

modular subnetwork saw only 9%{14% as many training patterns per epoch as the monolithic

net did. However, the performance of the modular network soon surpassed that of the monolithic

1When the optimal player goes �rst, she wins 7=8 of the time by starting in a corner, forcing T-HAND's
random move selector to select the center square immediately to avoid being forked two turns later. When
T-HAND goes �rst, the optimal player must be both clever and lucky to be able to set up a winning forking
play; she can expect to do this in 92=315 of these games. So the overall expected equity is the average of 7=8
and 92=315, which is about +0:583.

16

-150

-100

-50

0

50

100

150

0 20 40 60 80 100(
W
i
n
s

-

L
o
s
s
e
s
)

o
v
e
r

2
0
0

g
a
m
e
s

v
s
.

T
-
H
A
N
D

1000’s of Training Epochs

monolithic
modular

Figure 2-4: Performance of tic-tac-toe networks trained against T-HAND

network, and indeed approached the optimum expected equity of 0:58 (or 116 wins out of 200).

In a match of 10,000 games, the best modular network won 4780 and lost only 45, for an average

equity of +0.47 (see table 2.1). These results compare very favourably with those reported by

Robinson and Fallside [RF89], whose best tic-tac-toe network attained an equity of +0.18 against

an opponent algorithm considerably weaker than T-HAND.

Network Type Training Wins Draws Losses Equity

monolithic vs. T-HAND 3502 5976 522 +0:2980
modular vs. T-HAND 4780 5175 45 +0:4735

Table 2.1: Performance of best networks in 10,000 games vs. T-HAND

2.3 Backgammon

Unlike tic-tac-toe, backgammon has several aspects that suit it particularly well for learning by

self-play :

� The game begins in a unique starting state and proceeds stochastically through a transition

network of states each of which conveys perfect (i.e. complete) information about the likely

eventual outcome;

17

� One player is guaranteed to win eventually even if both sides play randomly, thus each

game is guaranteed to produce a useful nonzero reinforcement signal;

� The nondeterministic element introduced by the dice rolls forces the learning system into

many di�erent types of positions without the need for explicit \exploration"; and

� Backgammon's aesthetic nature means that in general, good strategies build on each other

smoothly, i.e. they may be discovered incrementally. By contrast, strategies for other games

(say, a chess endgame problem) o�er more of an all-or-nothing reinforcement signal, which

would reward the learning system only after it had managed to discover a complicated

sequence of positions.

The �rst two aspects identify backgammon as a Markov decision problem to which reinforcement

learning techniques may conveniently be applied, and the last two aspects largely relieve the

learning system of the need to attempt risky and time-consuming techniques for exploring the

space [Thr92].

2.3.1 Monolithic Networks

2.3.1.1 Design

I wanted to test backgammon learning both from games generated by self-play and from games

played against a good conventional algorithm. In backgammon, however, it is no trivial task

to write a high-quality opponent. My algorithm, B-HAND, knows only a minimum of basic

backgammon heuristics such as \make inner board points", \hit your opponent", and \try not

to get hit". Although it beats a random player 90% of the time, it could almost never win

against a skilled human player, and indeed would often lose bonus points (called \gammons").

Nevertheless, between the two extremes of a random player and a skilled human, the B-HAND

algorithm gives us a useful yardstick for measuring the ability of its opponents.

For both the \versus B-HAND" and self-play training paradigms, I trained MLP's (con�gured

as described in x2.1.2) with 0, 20, and 50 hidden units, respectively. The input layer to all the

networks was somewhat more compact than Tesauro's 198-input network [Tes92], with 156 units

distributed as follows:

� For each of the 25 \points" on a backgammon board, six binary units encoded whether

there was one X piece, two X pieces, three or more X pieces, one O piece, two O pieces,

or three or more O pieces on that point. (Tesauro's network truncated at four rather than

at three pieces, explicitly encoding the number of pieces beyond three with an additional

analog unit for each point.)

� Two analog units encoded each side's \pipcount", a ubiquitous statistic in backgammon

which measures the total distance all of a player's pieces must travel to reach the end of

18

the board.2 The pipcount is in fact a linear feature of the complete raw board position,

but because of my truncated position encoding, it provides important information about

the game which could not be deduced from the other input units.

� Two analog units encoded the percentage of pieces each side has removed from the board,

and two more binary units encoded whether any pieces have yet been removed from the

board. These statistics are very important in the endgame for determining how close each

side is to winning and whether there is a possibility of winning bonus points.

� Unlike Tesauro's network, my nets used no input units to identify the player whose turn

it was to move. Rather, the network always saw positions in which it was player O's turn

to move; when it was X's turn the board position was simply re
ected and the X and O

labels swapped.

This representation is \raw" in that the input units are set directly from the board position

without any involved calculation. On the other hand, the representation does take advantage of

a bit of the designer's knowledge of backgammon strategy|for example, the knowledge that it is

useful to have a separate representation for the cases of one, two or three pieces on a point, but

not usually important to distinguish among cases with more than three pieces on a point. The

goal is to provide a representation which is compact enough that learning can proceed quickly,

yet full enough to allow the network to discover relevant higher-order features of the position.

The networks have just two output units|again a more compact representation than Tesauro's

nets, which used four outputs. The �rst of these predicts the outcome of the game (+1 for a sure

win by X, down to �1 for a sure win for O) regardless of possible bonus wins. The second unit

predicts the expected number of bonus points (for example, +1 for a likely X gammon, or�2 for a

likely backgammon by O). A weakness of this output representation is its inability to distinguish

between \mutually gammonish" positions|in which both sides have a good chance of winning

bonus points|and positions in which neither side is likely to win a gammon. This distinction

could in
uence move selection during matches played to a �xed number of points.3 However,

the more compact network does have fewer weights and thus should train more quickly than

Tesauro's larger networks. Using this representation, the overall game expectation for player X

is given simply by the sum of the two output activations.

2.3.1.2 Results

Training the monolithic neural networks by TD(0) on the game of backgammon produced con-

trasting results: the self-trained networks learned to play impressively well, while the networks

2Since each player's pipcount in the starting position is 167, the pipcount is scaled by 1=167 before being
input to the network.

3It would also be important for making good \doubling cube" decisions during match play. However, like
Tesauro, I ignored backgammon's doubling cube option since including it would have complicated the payo�
calculation considerably.

19

trained by playing games against B-HANDmade only slight progress and were never able to beat

B-HAND consistently. Figure 2-5 shows the learning curves of the three monolithic architectures

trained against B-HAND. In this and all following graphs, each unit on the X-axis represents

an epoch of 50 training positions, or approximately one game; the Y-axis represents the average

number of points per game won by the network in a 100-game match against B-HAND. The

margin of error at each data point is approximately 0:15 ppg.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5000 100001500020000250003000035000400004500050000A
v
e
r
a
g
e

p
p
g

w
o
n

o
v
e
r

1
0
0

g
a
m
e
s

v
s
.

B
-
H
A
N
D

Training Epochs

0 hidden units
20 hidden units
50 hidden units

Figure 2-5: Performance of backgammon networks trained against B-HAND

These networks, although they improved substantially over their initial (random) move selec-

tion, did not achieve excellent performance because of the weakness of the opponent algorithm

they trained against. To see how a weak training opponent can stall learning, consider tic-tac-

toe position P shown in �gure 2-6. Suppose the teaching algorithm, playing X, is weak and fails

Figure 2-6: E�ect of a Weak Training Opponent. X to Play

to make the winning play in position P . In this case, the network will not learn to associate P

with winning, and thus it will learn neither how to reach nor how to defend against P . Even

20

if the network does stumble upon the winning play from position P on its own, the positive

reinforcement signal to P would only be cancelled by the negative reinforcement generated the

next time its opponent misplayed the same position.

My backgammon algorithm B-HAND is evidently weak enough to mislead the networks in

this way. A possible remedy would be to train the network on only half of the game positions|

namely, those in which the network had just moved. The network would then see only positions

from its own perspective and learn only about the e�ects of its own actions. On the other hand,

this strategy would result in a network speci�cally �ne-tuned to take advantage of its opponent's

weaknesses. I did not have time to test this remedy, and in any event, for backgammon the

success of the learning by self-play paradigm would appear to make hand-written teaching

algorithms super
uous.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50000 100000 150000 200000 250000 300000A
v
e
r
a
g
e

p
p
g

w
o
n

o
v
e
r

1
0
0

g
a
m
e
s

v
s
.

B
-
H
A
N
D

Training Epochs

0 hidden units
20 hidden units
50 hidden units

Figure 2-7: Performance of monolithic backgammon networks trained by self-play

In learning from self-play, the problems of a poor teacher are eliminated because each side

agrees with the choices made by the other; thus, there are no con
icting behaviours to muddle

the propagation of the reinforcement signal. My monolithic networks trained by self-play were

able to learn an impressive amount of backgammon strategy: after 80,000 training epochs, the

20-hidden-unit network was able to beat B-HAND 8 times out of 10|a tremendous advantage

in backgammon. The learning curves (see �gure 2-7) show that the networks with hidden units

reached an expected value of more than 1.0 points per game, re
ecting the substantial number

of bonus points won against B-HAND. Even the linear perceptron with 0 hidden units was able

to learn enough strategy to play as well as the hand-written algorithm. These results provide

independent con�rmation of Tesauro's successful application of TD methods to backgammon

21

learning [Tes92].

What the graph of �gure 2-7 does not re
ect is the dramatically di�erent training times

required for the three network topologies. On the DEC workstations, the amount of time

required to perform 5000 training epochs was approximately one hour for the 0 hidden unit

network, ten hours for the 20 hidden unit network, and one day for the 50 hidden unit network.

In fact, the best 20-hidden network not only learned faster but also played slightly better than

the best 50-hidden network: in a 500-game match played between them, the 20-hidden network

won by a total point score of 380 to 335 (see table 2.2, page 27 for details). However, with

further weeks of training, the 50-hidden network might be able to take advantage of its greater

information capacity to surpass the smaller net's playing ability.

The best monolithic networks play a good game of backgammon, demonstrating an excellent

ability to recognise important patterns of pieces on the board and evaluate the strategic trade-

o�s involved. As Tesauro found, they are especially good in the most frequently-encountered

situations such as running, holding, and blitzing games. However, my networks err badly in

certain positions for which the normal rules of thumb do not apply. For example, they will

continue to attack their opponent's pieces agressively even if the opponent has built a \prime"

formation which makes such attacks futile. They also play weakly in the endgame, after contact

is no longer possible. In this phase of the game, the normal rules of thumb such as \maintain

points" and \don't leave blots" are totally irrelevant; yet the network's play still seems biased

by these heuristics. Learning proper endgame play is also di�cult because the plays are often

very close: more often than not, the precise move chosen will not a�ect the outcome of the

game.

For example, consider the endgame position of �gure 2-8, in which O is well ahead in the race

and will win easily. X, to play the dice roll of [5]-[4], should bring his furthest pieces around

towards his inner board (points 1{6) so as to avoid losing bonus points. However, the monolithic

network chooses to make its 3-point (8/3; 7/3) in this situation, a serious error. Making the

3-point would have been correct if X still had a chance of contact with O; however, in the

context of this racing game, the 3-point has no value whatsoever. In my opinion, the correct

play here is either 15/6 or 21/12, but these were ranked 9th and 15th out of the 30 possible

moves. This example typi�es the weakness of the monolithic networks in contexts which require

the network's usual heuristics (e.g., make the 3-point) to be violated. It was my hope that a

modular neural network could provide the added context-sensitivity needed to play such moves

correctly.

2.3.2 Modular Networks

2.3.2.1 Design of DDD Nets

With the Designer Domain Decomposition architecture (�gure 2-2, page 14), the network may

learn easily that a given pattern of pieces is important in one context but irrelevant in another|

22

24 23 22 21 20 19 bar 18 17 16 15 14 13

/--v-----v-----v-----v-----v-----v---+-+---v-----v-----v-----v-----v-----v--\

| [O] [O] [O] <X> | | <X> |

| [O] [O] [O] | | |

| [O] | | |

| [O] | | |

| [O] | | |

| | | |

| | | |

| | | |

| | | |

| <X> | | |

| <X> <X> | | |

| <X> <X> | | |

| <X> <X> | | <X> <X> |

| <X> <X> | | <X> <X> |

\--^-----^-----^-----^-----^-----^---+-+---^-----^-----^-----^-----^-----^--/

0 1 2 3 4 5 6 7 8 9 10 11 12

Ranking of legal plays for [5]-[4] by bgselfnet.20.251000:

(1) : 8/3; 7/3 -1.90 <--- selected play

(2) : 15/10; 10/6 -1.93

(3) : 15/10; 8/4 -1.93

(4) : 8/4; 7/2 -1.94

(5) : 7/2; 6/2 -1.94

... 25 more ...

Figure 2-8: Poor Play Due to Context-Insensitivity of Monolithic Network

(a) DDD Network

Ranking of legal plays for [5]-[4] by pipnet9.hd.250000:

(1) : 21/16; 16/12 -1.81 <--- selected play

(2) : 21/16; 8/4 -1.82

(3) : 15/10; 8/4 -1.82

(4) : 15/10; 10/6 -1.84

(5) : 21/17; 15/10 -1.85

(b) Meta-Pi Network

Ranking of legal plays for [5]-[4] by mp5net9.hd:

(1) : 15/10; 10/6 -1.59 <--- selected play

(2) : 21/16; 16/12 -1.64

(3) : 21/17; 15/10 -1.65

(4) : 15/10; 8/4 -1.66

(5) : 21/16; 15/11 -1.67

Figure 2-9: Good Play by the Context-Sensitive Modular Networks

23

so long as the gating program assigns those two contexts to di�erent subnetworks. The better

our gating program is at isolating regions requiring context-sensitive evaluations, the better the

quality of learning we can expect. On the other hand, if we partition the space into too many

separate classes, then each subnetwork will see proportionately fewer training examples, and

the learning process will be slower. For classes which require evaluation functions that are quite

similar, the hidden units of an MLP should provide enough context-sensitivity to distinguish

between them, so they should be treated as the same class for the purposes of designing a DDD

network.

For a game evaluation function, an e�ective gating program should consider the board posi-

tion and try to classify it according to each side's current best strategy and the phase of game,

much as human players classify positions. For example, classes of backgammon positions include

\saving the gammon" (as in �gure 2-8), \holding", \running", \blitzing", \prime vs. prime", and

\back game" positions. However, the de�nitions of these classes are fuzzy at best, and usually

several di�erent strategies are all relevant to evaluating a position. For my experiments, rather

than struggling to design the best possible partitioning of the space of backgammon positions,

I opted for a 12-class scheme based only on the current race statistics (\pipcounts"):

� Nine of the classes model contact positions. X's and O's pipcounts are separately quantised

as large, average, or small; this de�nes 3 � 3 = 9 distinct regions of the domain.4

� The other three classes represent non-contact positions, separating the cases where O has a

large racing lead (� 24 pips), X has a large racing lead (� 32 pips), or the race is relatively

close.5

As with the encoding of the raw board position into the input units, I again used only a

minimum of domain knowledge to structure the learning network. Backgammon players recog-

nise that this modularisation overemphasises the importance of the racing situation, and that

the value of \deeper" structural features will need to be discovered independently by many of

the 12 subnetworks. I also did not attempt to match the architecture of each subnetwork to

the structure of its particular subproblem, as was shown e�ective in [JJB91]. Nevertheless, the

modular network does provide a greater degree of context-sensitivity than the monolithic one.

When Bill Robertie judged Tesauro's monolithic backgammon network, he observed that

in backgammon positions (including back games) in which the race has gotten longer
than in the starting position . . . the race is relatively less important, and priming
points are much more important. These positions arise relatively rarely, and as a
result TD-Gammon hasn't yet learned that it needs a di�erent evaluation function for
these complex positions. [Rob92] (emphasis added)

4Because the network always evaluates positions fromX's perspective with O to play, we cannot use symmetry
to collapse together opposite classes, e.g. the \X-large O-small" class and the \X-small O-large" class.

5The discrepancy between 24 and 32 accounts for the fact that O will gain an average of 8 pips on his next
dice roll.

24

My DDD modular network does in fact provide di�erent subnetworks, and hence di�erent

evaluation functions, for unusual racing situations.

Another implementation decision concerned how the 12 DDD subnetworks would be ini-

tialised. Should they be given random weights (as the tic-tac-toe networks were), or should

they all be initially cloned from a good monolithic network? The latter method gives the modu-

lar network the bene�ts of the monolithic network's faster early training, but on the other hand,

it may be di�cult for each subnetwork to re-assign its hidden units to improve accuracy on its

new, more specialised task. I tested both initialisation methods and two di�erent subnetwork

topologies, making four DDD backgammon networks in all:

� 0 hidden units per subnetwork (i.e., 12 linear perceptrons), each initialised randomly;

� 0 hidden units per subnetwork, each initialised as a clone of a linear perceptron trained for

250,000 epochs;

� 20 hidden units per subnetwork, each initialised randomly; and

� 20 hidden units per subnetwork, each initialised as a clone of a monolithic MLP trained for

80,000 epochs.

2.3.2.2 DDD Network Results

Figures 2-10 and 2-11 show the learning curves of the DDD networks with 0 and 20 hidden

units, respectively. In both cases, the modular networks learned to play a strong game of

backgammon, overwhelming the B-HAND algorithm by approximately the same margins as

had their monolithic counterparts. The nets whose component subnetworks were initialised as

clones of a monolithic network appeared to learn more quickly and slightly better than those

whose subnetworks were trained from scratch, although further independent training runs would

have to be conducted in order to establish this conclusively.

It surprised me that the modular networks with 0 hidden units were unable to do better

against B-HAND than the monolithic perceptron had done. After all, the monolithic perceptron

with no hidden units can provide no context-sensitivity whatsoever for the evaluation function,

while the modular net can at least change its evaluation function based on the racing situation.

To see which network was really the better backgammon evaluator, I pitted the two nets against

one another in a match of 500 games. The outcome was that the modular network soundly

defeated the perceptron, winning an average of +0:35 points per game (see table 2.2). So how

can we explain the perceptron's success against B-HAND? The answer lies in the fact that the

B-HAND evaluator is itself largely a linear function of the board position. Because B-HAND's

structure is similar to that of the linear perceptron, the perceptron (trained by self-play) may

actually anticipate B-HAND's moves better than the ideal evaluation function, which expects its

opponent to play optimally! In e�ect, the linear perceptron takes advantage of a \user model"

of B-HAND's style of play. This user model does not help it, however, in head-to-head play

25

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000A
v
e
r
a
g
e

p
p
g

w
o
n

o
v
e
r

1
0
0

g
a
m
e
s

v
s
.

B
-
H
A
N
D

Training Epochs (each consists of 50 positions)

monolithic
modular from random

modular from monolithic.250000

Figure 2-10: Performance of DDD Modular Backgammon Networks, 0 hidden units

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 50000 100000 150000 200000 250000A
v
e
r
a
g
e

p
p
g

w
o
n

o
v
e
r

1
0
0

g
a
m
e
s

v
s
.

B
-
H
A
N
D

Training Epochs (each consists of 50 positions)

monolithic
modular from random

modular from monolithic.80000

Figure 2-11: Performance of DDD Modular Backgammon Networks, 20 hidden units

26

against a decent opponent. The upshot of this discussion is that we should be wary of using

results against B-HAND to draw �ne comparisons between other networks.

Player X Player O X wins O wins X equity
bonus bonus

hidden, epochs hidden, epochs games points games points (avg. ppg)

monolithic monolithic
20, 284K 0, 500K 370 234 130 47 +0:854

monolithic monolithic
20, 284K 50, 132K 265 115 235 100 +0:090

modular DDD monolithic
0, 856K 0, 436K 301 197 199 124 +0:350

modular DDD monolithic
20, 250K 20, 284K 274 114 226 75 +0:174

modular DDD monolithic
20, 259K 20, 265K 287 115 213 81 +0:216

DDD 2-ply DDD 1-ply
20, 250K 20, 250K 30 11 20 8 +0:26

Meta-Pi DDD
0, 824K 0, 800K 58 35 62 32 +0:01

Meta-Pi DDD
20, 178K 20, 171K 40 16 40 22 +0:07

Table 2.2: Results of head-to-head backgammon matches

As opposed to the linear perceptron, the monolithic network with 20 hidden units does have

the ability to model a nonlinear, context-sensitive evaluation function. Thus, we might expect a

modular network to produce only slight gains over the monolithicMLP. In fact, though, the gains

were substantial: head-to-head matches between the best monolithic and best modular networks

consistently favoured the modular networks by about 0.2 points per game (see table 2.2). The

modular networks did especially well in the \bonus" column, usually winning about 50% more

bonus points than their monolithic opponents. These statistics indicate that the modular net-

works have indeed improved their play in complex situations with uneven pipcounts|precisely

the type of situation which tends to lead to the award of bonus points. For a concrete exam-

ple, in the endgame position discussed above (�gure 2-8, page 23), the modular network does

choose a good play (21/12) for the current context, and it ranks the monolithic network's poor

choice (8/3; 7/3) 23rd out of 30 possible moves. The top alternate move choices of the modular

network (see �gure 2-9a) clearly indicate that the network has learned the proper strategy for

this endgame context. In sum, the experiment of modularising the networks to increase their

context-sensitivity was a success.

27

2.3.2.3 Competition Results: The Computer Games Olympiad

From August 5{8, 1992, my best modular networks competed in the backgammon division of

the Fourth Computer Games Olympiad. The program, which I called MAESTRO 1.06, faced

two conventional non-learning backgammon program opponents|VideoGammon and BAX. For

the competition, I modi�ed the playing algorithm in two ways:

� I allowed the program to search to the 2-ply level to resolve close calls among the network's

top �ve 1-ply move choices. In other words, for each of the top �ve moves, the program

would generate the opponent's best response to that move for each possible dice roll. The

values of these 21 response plays were averaged to determine the ranking of the current

position. This modi�cation, though computationally expensive7, improved the network's

playing ability considerably (see table 2.2, page 27). Qualitatively, the network's judgment

concerning when to take risks and when to play safely seemed very much improved. The

extra ply of lookahead helped the network make up for its lack of pre-computed input

features such as the risk of being hit.

� I implemented a rudimentary doubling cube strategy based on the current match score and

the network's estimate of the position equity. In fact, MAESTRO's doubling behaviour

was rather too optimistic: �ve times against BAX it lost while holding a cube at value 4,

and the deciding game of the �nal match had a value of 8 points.

MAESTRO began the competition as the 20 hidden unit DDD network with 234,000 training

epochs. During the �rst two days, this network beat VideoGammon 17{15 but lost to BAX by

a score of 17{11. On the �nal day, MAESTRO was updated to the most recent network, which

had been trained for 250,000 epochs; it beat VideoGammon 13{3, but lost to BAX 17{13, thus

�nishing in second place in the tournament. All three programs played at a solid intermediate

level by human standards, with VideoGammon perhaps slightly weaker than MAESTRO and

BAX. The other competitors and I agreed that with backgammon's strong chance element, a

longer series of matches would be needed to determine which of the programs was truly strongest.

There is no doubt, however, that a human expert could have defeated all three programs. For

further details of the Olympiad results, please refer to [Boy93].

2.3.2.4 Meta-Pi Networks: Preliminary Experiments

As discussed earlier in x2.1.3, the function de�ned by a DDD network is not continuous; thus

a control system which uses a DDD network evaluator may be subject to Berliner's \blemish

e�ect". This e�ect can occur whenever the controller has the option of choosing between actions

which will lead it into di�erent classes of the input domain. In my tic-tac-toe DDD network,

6\M" for Modular, \AESTRO" for Tesauro (almost!).
7Move selection took between 15 and 45 seconds on an AST 486 PC.

28

the blemish e�ect was absent because on any given turn, all legal moves necessarily fell into the

same class. In my backgammon DDD network, it is also usually the case that all legal moves will

fall into the same pipcount class; however, in certain situations the system's choices do belong

to di�erent classes. An important example of such a situation occurs when the system must

choose whether to break contact (turning the game into a straight race) or maintain contact.

By the de�nition of my gating program, these two move choices will be evaluated by di�erent

subnetworks, so the blemish e�ect is theoretically possible here. In practice, the blemish e�ect

did indeed appear in these positions, which MAESTRO frequently misplayed.8

The Meta-Pi modular network is immune from the blemish e�ect because it de�nes a function

which is continuous over all regions of the domain. My method for training a Meta-Pi net was to

freeze a trained DDD network, discard its hard-coded gating program, and then train the Meta-

Pi gating network from scratch according to the equation given in x2.1.3. Using this method, I

converted two DDD networks to Meta-Pi networks: the 0 hidden unit modular net (frozen after

800K training epochs), and the 20 hidden unit modular net (frozen after 171K epochs). For both

of these, the Meta-Pi gating network had a topology consisting of 156 input units (the raw board

position), 5 hidden units, and 12 output units corresponding to the 12 DDD subnetworks. The

training data, as usual, was gotten by applying TD(0) learning to games generated by self-play.

Unfortunately, the Meta-Pi network was quite slow to generate training data because its

output is composed from the results of not one but all 12 subnetwork evaluations. Figure 2-12

shows the learning curves for both Meta-Pi nets, and for reference shows as horizontal lines

the performance of the frozen DDD networks which they were trying to exceed. In head-to-

head competition, the trained Meta-Pi networks played to a statistical draw against the DDD

networks which spawned them (see table 2.2). This shows that after relatively few training

epochs, the Meta-Pi gating network has learned enough to be as e�ective as the hard-coded

DDD gating program. With further training, it seems likely that the performance of the Meta-

Pi network could continue to rise.

8For example, if MAESTRO is even in the race but has a stronger board than his opponent, he will waste
pips in his inner board and refuse to break technical contact even if his opponent is extremely unlikely to have
to leave a shot.

29

-0.5

0

0.5

1

1.5

2

0 5000 10000 15000 20000A
v
e
r
a
g
e

p
p
g

w
o
n

o
v
e
r

1
0
0

g
a
m
e
s

v
s
.

B
-
H
A
N
D

Training Epochs

Meta-Pi, 0 hidden units
from DDD, 0 hidden units
Meta-Pi, 20 hidden units
from DDD, 20 hidden units

Figure 2-12: Performance of Meta-Pi Backgammon Networks

30

Chapter 3

Conclusions

In the three months allotted for this summer project, I have had time to investigate and synthe-

size some of the recent developments in reinforcement learning, game-playing, and modularity

in neural networks. Although some of the graphs are sketchy and the training runs still in-

complete, the experimental results I obtained do suggest several conclusions and directions for

future research.

3.1 Summary

One of the main goals of this project was to replicate and con�rm the results of [Tes92]|namely,

that a connectionist network trained by the method of temporal di�erences is capable of learning

a complex pattern-recognition and evaluation task. I demonstrated that such a network could

learn strategies in a deterministic game, tic-tac-toe, by playing games against a teacher algo-

rithm. The network thus trained soon far surpassed its teacher's playing ability. Furthermore,

the tic-tac-toe network achieved its success without having to perform any lookahead search,

which has been the crutch of most game-playing algorithms. Indeed, one characterisation of the

TD training method is as a kind of dynamic programming algorithm which attempts to compile

lookahead results into a static evaluation function.

In the domain of backgammon, a complex stochastic game, I con�rmed Tesauro's �ndings

that a TD-learning system could induce a signi�cant amount of strategy solely on the basis of

games generated by self-play. A 20 hidden unit monolithic MLP, whose inputs encoded only

the raw board position and whose network parameters were not carefully optimised for quickest

learning, raised its playing ability from a random move selector to a solid intermediate level

within approximately one week of training on a DECstation 3100.

Inspired by Waibel's work with modular networks for phoneme recognition [WSS89, HW89],

I tested two modular architectures in an attempt to enhance the ability of the game-playing net-

work to change its strategic priorities depending on the current context. The �rst architecture,

the DDD network, is simply a collection of monolithic subnetworks along with a hard-coded pro-

31

gram to select an appropriate subnet for any given input. The DDD networks learned to play

substantially better backgammon than the comparable monolithic nets, particularly in contexts

where the game's usual heuristics needed to be violated. The second modular architecture, the

Meta-Pi network, uses a separate gating network to weight the outputs of all the subnetworks.

By analogy with Berliner's SNAC (Smoothness, Nonlinearity, Application Coe�cients) method-

ology for evaluation functions, I hoped that the Meta-Pi network would be able to improve on

the DDD net. However, perhaps because of the limited amount of training time, the Meta-Pi

network was only able to equal the performance of the best DDD net, not surpass it.

3.2 Backgammon: Problems and Prospects

As my DDD network competed at the Computer Games Olympiad, one particularly serious

aw in its play became apparent: the network badly underestimated X's chances in positions

where X had two pieces on his 10 or 11 point, and similarly overestimated X's chances when

O had two pieces on her 10 or 11 point. This mis-evaluation was directly responsible for many

of MAESTRO's weakest plays and worst doubling cube decisions. Later, I observed the same

weakness in the 20 hidden unit monolithic network from which MAESTRO's subnetworks had

been originally cloned.

The most likely explanation of this
aw is that the network evaluator weights those two

inputs so negatively that, while training by self-play, it never actually tries the option of placing

two pieces on those two points. Although I argued that backgammon's dice rolls will force

the network into exploring many areas of the space, it does seem possible that if a feature is

severely underrated (perhaps by virtue of an unusually low random initial weight on the shortcut

connection from input to output), then the network may never try it, and thereby never learn

anything about it.

If this explanation is correct, then such problems could be avoided in the future by simply

biasing the random initialisation of the network so that all features were overrated. During

self-play training, the feature weights would gradually settle down to their correct level, but no

feature could be left untried. Another possibility would be to train multiple networks indepen-

dently, then have them learn by playing games against each other. Playing against an opponent

with a style di�erent from its own could help a network explore new regions of the domain, and

thereby improve its play.

One way to substantially improve the overall performance of the backgammon system would

be to apply more human intelligence on the design end. As Tesauro has shown, the use of

pre-computed input features causes a dramatic improvement in the quality of the evaluation

function learned. Similarly, the DDD network's hard-coded gating program would undoubtedly

be even more e�ective if it re
ected a backgammon player's view of a useful partitioning of the

space of backgammon positions. The Meta-Pi network could subsequently be trained to smooth

the transitions between these classes of positions.

32

Ideally, we would like our network to be able to decide for itself during the learning process

what topology provides it with the right amount of context-sensitivity. To this end, the Cascade

Correlation architecture [FL90] seems promising because of its ability to dynamically build very

high-order feature detectors. Such high-order feature detectors could provide an alternative to

modular networks for achieving the goal of context-sensitive function evaluation.

3.3 Applications to Speech Processing

In this thesis, I have shown that the combination of temporal-di�erence training with connec-

tionist networks can provide an e�ective solution to the problem of learning to predict in a

complex, noisy domain. Can the model's success at backgammon pattern recognition be ex-

tended to speech pattern recognition? There are two important di�erences between the two

problems, but I believe neither is an obstacle to the model's potential:

� Backgammon is Markovian, i.e. all the information needed to predict the eventual outcome

is present in the input vector at every timestep. In speech, by contrast, the information

relevant to the �nal outcomemust be accumulated over time. This di�erence can be handled

by the same techniques that have enabled neural networks to be trained by supervised-

learning for phoneme recognition: recurrence and time-delay windowing. Recent research

into the promise of TD learning for non-Markovian domains has been discussed in [LM92].

� The desired quantity at each step of a backgammon game is the continuous-valued proba-

bility of winning, whereas the desired output of a phoneme recognition problem is a classi-

�cation decision among 50 or more discrete choices. Nevertheless, if the 50 output units are

viewed as probabilities as in [RF91], I believe TD methods will be more e�ective than the

supervised-learning method, which trains the network to output a single 1 and the rest 0's

at each timestep. Such hard classi�cation decisions can be inappropriate, especially during

the �rst few speech frames of a phoneme. The TD methods will be better able to pinpoint

the moment when a phoneme truly becomes distinguishable, and thus provide more accu-

rate phone probability information to the HMM or other higher-level speech recognition

system.

I conclude with a quote from Sutton, who is also optimistic about the application of TD

learning to speech processing:

Perceptual learning problems, such as vision or speech recognition, are classically
treated as supervised learning, using a training set of isolated, correctly-classi�ed input
patterns. When humans hear or see things, on the other hand, they receive a stream
of input over time and constantly update their hypotheses about what they are seeing
or hearing. People are faced not with a single-step problem of unrelated pattern-class
pairs, but rather with a series of related patterns, all providing information about the
same classi�cation. To disregard this structure seems improvident. [Sut88]

33

Acknowledgments

I would like to thank Frank Fallside, David Montgomery, Barney Pell and Tony Robinson for

many helpful discussions about this project, and the Winston Churchill Foundation of the United

States for funding my year of study in Britain.

34

Bibliography

[All88] L. V. Allis. A knowledge-based approach to connect-four. The game is solved: White
wins. Master's thesis, Faculty of Mathematics and Computer Science, Free Univer-
sity, Amsterdam, 1988.

[All89] J. D. Allen. A note on the computer solution of Connect-Four. In D. N. L. Levy
and D. F. Beal, editors, Heuristic Programming in Arti�cial Intelligence: The First

Computer Olympiad, Chichester, England, 1989. Ellis Horwood Limited.

[BBB89] M. Burton, S. Baum, and S. Blumstein. Lexical e�ects on the phonetic categoriza-
tion of speech: The role of acoustic structure. Journal of Experimental Psychology:
Human Perception and Performance, 15, 1989.

[Ber79] H. Berliner. Backgammon computer program beats world champion. Arti�cial In-
telligence, 14, 1979.

[Boy93] J. Boyan. MAESTRO 1.0: A modular neural network for learning context-dependent
backgammon strategies by self-play. In D. N. L. Levy and D. F. Beal, editors,
Heuristic Programming in Arti�cial Intelligence 4: The Fourth Computer Olympiad,
Chichester, England, 1993. Ellis Horwood Limited. In press.

[CBK89] G. Collins, L. Birnbaum, and B. Krulwich. An adaptive model of decision-making
in planning. In 11th International Joint Conference on Arti�cial Intelligence, 1989.

[Dre81] M. Dresher. The Mathematics of Games of Strategy: Theory and Applications. Dover
Publications, Inc., New York, 1981. First published in 1961 by Prentice-Hall, Inc.

[Fah88] S. Fahlman. An empirical study of learning speed in back-propagation networks.
Technical Report CMU-CS-88-162, Carnegie Mellon University, 1988.

[FL90] S. Fahlman and C. Lebiere. The Cascade-Correlation learning architecture. In David
Touretzky, editor, Advances in Neural Information Processing Systems 2. Morgan
Kaufmann, 1990.

[FLW90] M. Franzini, K. Lee, and A. Waibel. Connectionist Viterbi training: A new hybrid
method for continuous speech recognition. In IEEE Proceedings of the ICASSP,
1990.

[Hop82] J. J. Hop�eld. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences, 79, 1982.

35

[HW89] J. B. Hampshire and A. Waibel. The Meta-Pi network: Building distributed knowl-
edge representations for robust pattern recognition. Technical Report CMU-CS-89-
166, Carnegie Mellon University, August 1989.

[HWSS88] P. Ha�ner, A. Waibel, H. Sawai, and K. Shikano. Fast back-propagation learning
methods for neural networks in speech. Technical Report TR-1-0058, ATR Inter-
preting Telephony Research Labs, November 1988.

[JJB91] R. Jacobs, M. Jordan, and A. Barto. Task decomposition through competition in
a modular connectionist architecture: The what and where vision tasks. Cognitive

Science, 13, 1991.

[Kan88] P. Kanerva. Sparse Distributed Memory. MIT Press, 1988.

[KBC88] T. Kohonen, G. Barna, and R. Chrisley. Statistical pattern recognition with neural
networks: Benchmarking studies. In IEEE Proceedings of the ICNN, volume 1, July
1988.

[Koh88] T. Kohonen. The `neural' phonetic typewriter. IEEE Computer, March 1988.

[LHR89] K. Lee, H. Hon, and R. Reddy. An overview of the SPHINX speech recognition
system. IEEE Transactions on Acoustics, Speech and Signal Processing, January
1989.

[LM88] K.-F. Lee and S. Mahajan. A pattern classi�cation approach to evaluation function
learning. Arti�cial Intelligence, 36, 1988.

[LM92] L.-J. Lin and T. Mitchell. Memory approaches to reinforcement learning in non-
Markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon University,
May 1992.

[LN91] D. N. L. Levy and M. Newborn. How Computers Play Chess. Computer Science
Press (W. H. Freeman and Company), 1991.

[Rab90] L. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. In AlexWaibel and Kai-Fu Lee, editors, Readings in Speech Recognition.
Morgan Kaufmann, 1990.

[RF89] T. Robinson and F. Fallside. Dynamic reinforcement driven error propagation net-
works with application to game playing. In Eleventh Annual Conference of the

Cognitive Science Society, 1989.

[RF91] T. Robinson and F. Fallside. A recurrent error propagation network speech recogni-
tion system. Computer Speech and Language, 5, 1991.

[RHW86] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by
error propagation. In D. Rumelhart and J. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 8. MIT Press, 1986.

36

[RL81] L. Rabiner and S. Levinson. Isolated and connected word recognition|theory and
selected applications. The IEEE Transactions on Communications, COM-29, May
1981.

[RMB+91] S. Renals, N. Morgan, H. Bourlard, M. Cohen, H. Franco, C. Wooters, and P. Kohn.
Connectionist speech recognition: Status and prospects. Technical Report TR-91-
070, University of California at Berkeley, December 1991.

[Rob92] B. Robertie. Carbon versus silicon: Matching wits with TD-Gammon. Inside

Backgammon, 2(2), March-April 1992.

[Sam59] A. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3, 1959.

[SCT+92] J. Schae�er, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world
championship caliber checkers program. Arti�cial Intelligence, 53(2-3), February
1992.

[Sut88] R. Sutton. Learning to predict by the methods of temporal di�erences. Machine

Learning, 3, 1988.

[Tes89] G. Tesauro. Neurogammon: A neural network backgammon learning program. In
D. N. L. Levy and D. F. Beal, editors, Heuristic Programming in Arti�cial Intel-

ligence: The First Computer Olympiad, Chichester, England, 1989. Ellis Horwood
Limited.

[Tes92] G. Tesauro. Practial issues in temporal di�erence learning.Machine Learning, 8(3/4),
May 1992.

[Thr92] S. Thrun. E�cient exploration in reinforcement learning. Technical Report CMU-
CS-92-102, Carnegie Mellon University, March 1992.

[Tou90] D. Touretzky, editor. Advances in Neural Information Processing Systems 2. Morgan
Kaufmann, 1990.

[TS89] G. Tesauro and T. J. Sejnowski. A parallel network that learns to play backgammon.
Arti�cial Intelligence, 39, 1989.

[Wat89] C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge,
1989.

[WSL89] A. Waibel, K. Shikano, and K. Lang. Phoneme recognition using Time-Delay Neural
Networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37, March
1989.

[WSS89] A. Waibel, H. Sawai, and K. Shikano. Modularity and scaling in large phonemic
neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37,
December 1989.

37

