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Abstract

In this paper, we examine the intuition that TD(�)
is meant to operate by approximating asynchronous
value iteration. We note that on the important class
of discrete acyclic stochastic tasks, value iteration is in-
e�cient compared with the DAG-SP algorithm, which
essentially performs only one sweep instead of many
by working backwards from the goal. The question we
address in this paper is whether there is an analogous
algorithm that can be used in large stochastic state
spaces requiring function approximation. We present
such an algorithm, analyze it, and give comparative
results to TD on several domains.

LEARNING CONTROL

BACKWARDS
Computing an accurate value function is the key to
dynamic-programming-based algorithms for optimal
sequential control in Markov Decision Processes. The
optimal value function V �(x) speci�es, for each state x
in the state space X, the expected cumulative reward
when starting in state x and acting optimally thereafter.
It is also the unique solution to the Bellman equations
(using the notation of [11]): 8x 2 X,

V (x) =

n
R(x) if x is a terminal state

maxa2A(x)

�
R(x; a) + 


P
y2X

Prob(x
a
! y)V (y)

�
otherwise

(1)

The Bellman equation at x also reveals the optimal
control from x: any action which instantiates the max
is an optimal choice [2].
For small discrete problems, the value function can

be stored in a lookup table and computed by iterative
algorithms such as value iteration (VI) [2]. VI com-
putes V � by repeatedly sweeping over the state space,
applying Equation 1 as an assignment statement (this
is called a \one-step backup") at each state in parallel.
If the lookup table is initialized with all 0's, then after
i sweeps of VI, the table will represent the maximum
expected return of a path of length i from each state.
For certain goal-oriented domains, this corresponds to
the intuition that VI works by propagating correct V �

values backwards, by one step per iteration, from the
terminal states.

More precisely, there are two classes of MDPs for
which correct V � values can be assigned by working
strictly backwards from terminal states:

1. deterministic domains with no positive-reward cycles
and with every state able to reach at least one ter-
minal state. This class includes shortest-path and
minimum cost-to-go problems.

2. stochastic, acyclic domains: domains where no
legal trajectory can pass through the same state
twice. Many domains naturally have this property
(e.g. games like tic-tac-toe and Connect-Four; the
job-shop scheduling formulation of [12]; any �nite-
horizon problem for which time is a component of
the state).

Using VI to solve MDPs belonging to either of these
special classes can be quite ine�cient, since VI per-
forms backups over the entire space, whereas the only
backups useful for improving V � are those on the
\frontier" between already-correct and not-yet-correct
V � values. In fact, there are classical algorithms for
both problem classes which compute V � more e�-
ciently by explicitly working backwards: for the de-
terministic class, Dijkstra's shortest-path algorithm;
and for the acyclic class, Directed-Acyclic-Graph-
Shortest-Paths (DAG-SP) [6].1 DAG-SP �rst topo-
logically sorts the MDP, producing a linear ordering
of the states in which every state x precedes all states
reachable from x. Then, it runs through that list in re-
verse, performing one backup per state. Worst-case
bounds for VI, Dijkstra, and DAG-SP in determin-
istic domains with X states and A actions/state are
O(AX2), O(AX logX), and O(AX), respectively.

1Although [6] presents DAG-SP only for determin-
istic acyclic problems, it applies straightforwardly to the
stochastic case.



Another di�erence between VI and working back-
wards is that VI repeatedly re-estimates the values at
every state, using old predictions to generate new train-
ing values. By contrast, Dijkstra and DAG-SP are
always explicitly aware of which states have their V �

values already known, and can hold those values �xed.
This will be important when we introduce generaliza-
tion and the possibility of approximation error.

VALUE FUNCTION APPROXIMATION

The VI, Dijkstra and DAG-SP algorithms all apply ex-
clusively to MDPs for which the state space can be
exhaustively enumerated and the value function rep-
resented as a lookup table. For the high-dimensional
state spaces characteristic of real-world control tasks,
such enumeration is intractable. Computing V � re-
quires generalization: a natural technique is to encode
the states as real-valued feature vectors and to use a
function approximator to �t V � over this feature space.
Perhaps the most successful application of VI-based

algorithms with function approximation has been in the
domain of backgammon [10]. Tesauro modi�ed Sut-
ton's TD(�) algorithm [9], which is normally thought
of as a model-free algorithm for learning to predict,
into a model-based algorithm for learning to control.
Table 1 shows a TD(0) variant of Tesauro's algorithm
adapted for the general MDP case. It is closely related
to VI; the key di�erence is that its backups are done
along sample trajectories through the process, rather
than along sweeps of the entire state space.2

Tesauro's combination of TD(�) and neural networks
has been applied successfully to other domains, includ-
ing combinatorial optimization [12]. Nevertheless, it is
important to note that when function approximators
are used, TD(�) provides no guarantees of optimality.
In the case of undiscounted, absorbing MDPs and lin-
ear function approximators, TD(�) will converge [7],
but even then not necessarily to a good approximation
of V � when � 6= 1|as was recently demonstrated by
an example of Bertsekas [4]. Moreover, in the gen-
eral function-approximation case, repeatedly applying
one-step backups may propagate and enlarge approx-
imation errors, leading to instability [5].
Thus, we have presented two reasons why working

strictly backwards may be desirable: e�ciency, because
updates need only be done on the \frontier" rather than
all over state space; and robustness, because correct V �

values, once assigned, need never again be changed.
We have therefore investigated generalizations of the
Dijkstra and DAG-SP algorithms speci�cally modi�ed
to accommodate huge state spaces and value function

2This algorithm also bears a close resemblance to the
RTDP algorithm [1].

approximation. Our variant of Dijkstra's algorithm,
called Grow-Support, was presented in [5] and will not
be discussed further here. Our variant of DAG-SP is
an algorithmwe call ROUT, introduced below. Table 2
summarizes the relationships among these algorithms.

THE \ROUT" ALGORITHM

In the huge domains for which ROUT is designed,
DAG-SP's key preprocessing step|topologically sort-
ing the entire state space|is no longer tractable. In-
stead, ROUT must expend some extra e�ort to identify
states on the current frontier. Once identi�ed (as
described below), a frontier state is assigned its op-
timal V � value by a simple one-step backup, and this
fstate!valueg pair is added to a training set for a func-
tion approximator. Thus, ROUT's main loop consists
of identifying a frontier state; determining its V � value;
and retraining the approximator (see Table 3). The
training set, constructed adaptively, grows backwards
from the goal.
ROUT's key subroutine, HuntFrontierState, is

responsible for identifying a good state x to add to the
training set. In particular:

1. All states reachable from x should already have their
V � values correctly approximated by the function ap-
proximator. This ensures that the policy from x on-
ward is optimal, and that a correct target value for
V �(x) can be assigned.

2. x itself should not already have its V � value cor-
rectly approximated. This condition aims to keep the
training set as small as possible, by excluding states
whose values are correct anyway thanks to good gen-
eralization.

3. x should be a state that we care to learn about. For
that reason, ROUT considers only states which oc-
cur on trajectories emanating from one of a set of
problem-speci�c \start states."

The HuntFrontierState routine returns a state
which with high probability satis�es these properties.
It works by generating a number of trajectories from x,
each time checking to see whether all states along the
trajectory are self-consistent (i.e., satisfy Equation 1
to some tolerance �). If all states after x on all sample
trajectories are self-consistent, then x is deemed ready,
and ROUT will add x to its training set. If, on the
other hand, a trajectory from x reveals any inconsist-
encies in the approximated value function, then we 
ag
that trajectory's last such inconsistent state, and re-
start HuntFrontierState from there. Figure illus-
trates how the routine works.
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TD0(start states X̂, �tter F ):
/* Assumes known world model MDP; F is parametrized by weight vector w. */
repeat forever:

let x := a random start state 2 X̂ ;
while x is not a terminal state, do:

8a 2 A(x), let q[a] := R(x; a) + 

P

y2X Prob(x
a
! y)F (y);

update F 's weights by delta rule: �w := �(maxa q[a]� F (x))rwF (x);
choose an action a with probability / eq[a]=T ;
execute action a from x, and update x := the new outcome.

Table 1: TD(0) for learning V � from an MDP

Alg. for lookup-table V � Applicable MDPs Alg. for fun.approx. V �

Value Iteration arbitrary TD(�)
Dijkstra deterministic Grow-Support
DAG-SP acyclic ROUT

Table 2: Algorithms for generating optimal value functions

START

Figure 1: A schematic of ROUT working on an acyc-
lic two-dimensional navigation domain, where the al-
lowable actions are only !;%; and ". Suppose that
ROUT has thus far established training values for
V � at the triangles, and that the function approxim-
ator has successfully generalized V � throughout the
shaded region. Now, when HuntFrontierState

generates a trajectory from the start state to termin-
ation (solid line), it �nds that several states along
that trajectory are inconsistent (marked by crosses).
The last such cross becomes the new starting point
for HuntFrontierState. From there, all trajector-
ies generated (dashed lines) are fully self-consistent, so
that state gets added to ROUT's training set. When
the function approximator is re-trained, the shaded re-
gion of validity should grow, backwards from the goal.

The parameters of the ROUT algorithm are H,
the number of trajectories generated to certify a
state's readiness, and �, the tolerated Bellman resid-
ual. ROUT's convergence to the optimal V �, assuming
the function approximator can �t the V � training set
perfectly, can be guaranteed in the limiting case where
H ! 1 (assuring exploration of all states reachable
from x) and � = 0. In practice, of course, we want
to be tolerant of some approximation error. Typical
settings we used were H = 20 and � = 0:05.

RESULTS

We present here results with ROUT on three domains:
a prediction task, a two-player dice game, and a k-
armed bandit problem. For all problems, we compare
ROUT's performance with that of TD(0) and TD(1)
given the equivalent function approximator.3 We meas-
ure the time to reach best performance (in terms of
total number of state evaluations performed) and the
quality of the learned value function (in terms of Bell-
man residual, closeness to the true V �, and perform-
ance of the greedy control policy).

Task 1: Hopworld

The \hopworld" is a small domain designed to illus-
trate how ROUT combines working backwards, adapt-
ive sampling and function approximation. The domain

3Unlike TD, ROUT can work with arbitrary function
approximators, including batch methods such as projection-
pursuit and local weighted regression. For the comparative
experiments, however, we used linear or neural net �ts for
both algorithms.
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ROUT(start states X̂ , �tter F ):
/* Assumes that the world model MDP is known and acyclic. */
initialize training set S := ;, and F := an arbitrary �t;
repeat:

for each start state x 2 X̂ not yet marked \done", do:
s := HuntFrontierState(x; F );
add fs 7! one-step-backup(s)g to training set S and re-train �tter F on S;
if (s = x), then mark start state x as \done".

until all start states in X̂ are marked \done".
HuntFrontierState(state x, �t F ):

/* If the value function is self-consistent on all trajectories from x, return x. (That is
determined probabilistically by Monte Carlo trials.) Otherwise, return a state on a
trajectory from x for which the self-consistency property is true. */

for each legal action a 2 A(x), do:
repeat up to H times:

generate a trajectory ~T from x to termination, starting with action a;

let y be the last state on ~T with Bellman residual > �;
if (y 6= ;) and (y 6= x), then break out of loops, and

restart procedure with HuntFrontierState(y; F ).
/* reaching this point, x's subtree is deemed all self-consistent and correct! */
return x.

Table 3: The ROUT main loop and HuntFrontierState subroutine

is an acyclic Markov chain of 13 states in which each
state has two equally probable successors: one step to
the right or two steps to the right. The transition re-
wards are such that for each state V �(n) = �2n. Our
function approximator F makes predictions by inter-
polating between values at every fourth state. This
is equivalent to using a linear approximator over the
four-element feature vector representation depicted in
Figure 2.

In ROUT, we �t the training set using a batch least-
squares �t. In TD, the coe�cients are updated using
the delta rule with a hand-tuned learning rate. The
results are shown in Table 4. ROUT's performance is
e�cient and predictable on this contrived problem: at
the start, HuntFrontierState �nds F is inconsist-
ent and trains F (1) and F (2) to be -2 and -4, respect-
ively. Linear extrapolation then forces states 3 and 4
to be correct. On the third iteration, F (5) is spotted
as inconsistent and added to the training set, and be-
ne�cial extrapolation continues. By comparison, TD
also has no trouble learning V �, but requires many
more evaluations. This is because TD trains blindly
on all transitions, not only the useful ones; and because
its updates must be done with a fairly small learning
rate, since the domain is stochastic. TD could be im-
proved by an adaptive learning rate, but even the most

baroque scheme for adaptation would have a hard time
making the direct least-squares �ts that ROUT is able
to do.

Task 2: The Game of Pig

\Pig" is a two-player children's dice game. Each player
starts with a total score of zero, which is increased
on each turn by dice rolling. The �rst to 100 wins.
On her turn, a player accumulates a subtotal by re-
peatedly rolling a 6-sided die. If at any time she rolls
a 1, however, she loses the subtotal and gets only 1 ad-
ded to her total. Thus, before each roll, she must decide
whether to (1) add her currently-accumulated subtotal
to her permanent total and pass the turn to the other
player; or (2) continue rolling, risking an unlucky 1.
Pig belongs to the class of symmetric, alternating,

Markov games. This means that the minimax-optimal
value function can be formulated as the unique solution
to a system of Bellman equations like Equation 1.4 The
state space, with two-player symmetry factored out,

4The only di�erence is that some of the \probabilities"

Prob(x
a
! y) will be negative, re
ecting the minimax nature

of the game. Some MDP-solving methods (e.g. linear pro-
gramming) can no longer be used for this class of prob-
lems; however, VI and DAG-SP do still apply, as do their
function-approximation counterparts, TD and ROUT.
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Figure 2: The Hopworld Markov chain, with features for each state.

has 515,000 positions|large enough to be interesting,
but small enough that computing the exact V � is tract-
able.

For input to the function approximator, we represent
states by their natural 3-dimensional feature represent-
ation: X's total, O's total, and X's current subtotal.
The approximator is a standard MLP with 10 hidden
units. In ROUT, the network is retrained to conver-
gence (at most 1000 epochs) each time the training set
is augmented. Note that this extra cost of ROUT is not
re
ected in the results table (for practical applications,
a far faster approximator than backprop would be used
with ROUT).
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Figure 3: Performance of Pig policies learned by TD
and ROUT

The Pig results are charted in Table 4 and graphed in
Figure 3. The graph shows the learning curves for the
best single trial of each of four classes of runs: TD(0)
and TD(1), with and without exploration. The best TD
run, TD(0) with exploration, required about 30 mil-
lion evaluations to reach its best performance of about
-0.16. By contrast, ROUT completed successfully in
under 1 million evaluations, and performed at the sig-
ni�cantly higher level of -0.09. ROUT's adaptively-

generated training set contained only 133 states.

Task 3: Multi-armed Bandit Problem

Our third test domain is the �nite-horizon k-armed
bandit problem [3, 8]. While an optimal solution in
the in�nite-horizon case can be found e�ciently us-
ing Gittins indices, solving the �nite-horizon problem
is equivalent to solving an acyclic, stochastic MDP in
belief space [3]. The size of this MDP is O(n2k) for a
horizon of length n. We show results for k = 3 arms
and a horizon of n = 25 pulls, where the resulting MDP
has 736,281 states. Solving this MDP by DAG-SP pro-
duces the optimal exploration policy, which has an ex-
pected reward of 0.6821 per pull.
We encoded each state as a six-dimensional feature

vector of

[#succarm1;#failarm1;#s2;#f2;#s3;#f3]

and attempted to learn a neural network approxima-
tion to V � with TD(0), TD(1), and ROUT. Again, the
parameters for all algorithms were tuned by hand.
The results are shown in Table 4. All methods do

spectacularly well, although the TD methods again re-
quire more trajectories and more evaluations. Careful
inspection of the problem reveals that a globally linear
value function, extrapolated from the states close to
the end, has low Bellman residual and performs very
nearly optimally. Both ROUT and TD successfully ex-
ploit this linearity.

DISCUSSION

When a function approximator is capable of �tting V �,
ROUT will, in the limit, �nd it. However, for ROUT
to be e�cient, the frontier must grow backward from
the goal quickly; and this depends strongly on good
extrapolation from the training set. When good extra-
polation does not occur, ROUT becomes stuck, adding
many hundreds of points near the goal region and never
progressing backwards.
Moreover, in many cases the approximator may not

even be adequate for �tting V � at all. In this case,
we wish to �nd the best evaluation function|a �ttable
function that produces the best policy. At that point
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# training total eval- RMS RMS Policy
Problem Method samples uations Bellman kV ��Fk Quality

HOP Discrete� 12 21 0 0 -24 �

ROUT 4 158 0. 0. -24.
TD(0) 5000 10,000 0.03 0.1 -24.
TD(1) 5000 10,000 0.03 0.1 -24.

PIG Discrete� 515,000 3.6M 0 0 0 �

ROUT 133 0.8M 0.09 0.14 -0.093
TD(0) + explore 5 M 30 M 0.23 0.29 -0.157
TD(1) + explore 6 M 40 M 0.22 0.30 -0.264
TD(0) no explore 8+ M 50+ M 0.12 0.54 -0.717
TD(1) no explore 6 M 30 M 0.23 0.32 -0.186

BAND Discrete� 736,281 4 M 0 0 0.682 �

ROUT 30 15,850 0.01 0.05 0.668
TD(0) 150,000 900,000 0.07 0.14 0.666
TD(1) 100,000 600,000 0.02 0.04 0.669

Table 4: Summary of results. For each algorithm on each problem, we list two measurements of time to quiescence
followed by three measurements of the solution quality. The measurements for TD were taken at the time when,
roughly, best performance was �rst consistently reached. (Key: M=106; * = denotes optimal performance for each
task.)

all our intuitions about how to derive the best function
break down, and the behaviors of ROUT, TD(0) and
even TD(1) become ill-understood. For example, in re-
cent preliminary experiments on the game of Connect-
4, we found that ROUT was unable to represent V �

near the goal region and became stuck, whereas TD
learned to play well despite the approximator's inad-
equacy. Understanding how TD manages this is an
important open question for reinforcement learning.

CONCLUSIONS

Working backwards from the goal has been success-
ful in other areas of computer science (planning,
DAG-SP, Grass�re algorithm, endgame databases), so
it is natural to ask whether it can similarly bene-
�t function-approximation-based methods for learn-
ing control. The ROUT algorithm addresses this
question. An important consideration was to avoid
sampling all states in order to work backwards; the
HuntFrontierState method provides a basis for
sampling adaptively. Empirically, ROUT's results look
promising on simple domains, and there are interesting
avenues of future research.
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