
Scheduling Multi-Capacitated Resources

under Complex Temporal Constraints

CMU-RI-TR-98-17

Amedeo Cesta1, Angelo Oddi1, Stephen F. Smith2

1 IP-CNR, National Research Council of Italy

Viale Marx 15, I-00137 Rome, Italy, famedeo, oddig@pscs2.irmkant.rm.cnr.it

Phone: +39-6-86090-209

2 The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA, sfs@isl1.ri.cmu.edu

Phone: +1-412-268-8811

June 30th, 1998

1

Abstract

Most CSP scheduling models make the restrictive assumption that a resource

can only support a single activity at a time (i.e., it is either available or in-use).

However, in many practical domains, resources in fact have the capability to si-

multaneously support multiple activities, and hence availability at any point is a

function of unallocated capacity. In this paper, we develop and evaluate algorithms

for solving multi-capacitated scheduling problems. We �rst de�ne a basic CSP

model for this extended problem class, which provides a basic framework for formu-

lating alternative solution procedures. Using this model, we then develop variants of

two di�erent solution approaches that have been recently proposed in the literature:

(1) a pro�le-based procedure - which relies on local analysis of potential resource

con
icts to heuristically direct the problem solving process, and (2) a clique-based

procedure - which exploits a global analysis of resource con
icts at greater computa-

tional cost. In each case, improvements are made to previously proposed techniques.

Performance results are given on a series of problems of increasing scale and con-

strainedness, indicating the relative strengths of each procedure.

2

Contents

1 Introduction 1

2 De�nition of MCM-SP 3

3 CSP Algorithms for MCM-SP 4

3.1 A Pro�le-Based Algorithm . 5

3.2 A Clique-Based Algorithm . 9

4 Experimental Evaluation 14

5 Conclusions 18

3

1 Introduction

Constraint satisfaction problem solving (CSP) techniques have been productively applied

to several classes of scheduling problems in recent years (e.g., [3, 9, 11, 10]). Some of

these techniques assume very general temporal constraint models and support resource

allocation under complex qualitative and quantitative time constraints. However, this

same level of modeling generality has not been achieved with resource representations.

With very few exceptions, CSP scheduling research has restricted attention to problems

that require allocation of simple, \unit-capacity" resources; i.e., resources that must be

dedicated exclusively to performing any given activity and, at any point in time, are

either \available" or \in-use". In many practical domains, this model of resources is

either insu�cient or impractical. Resources (at the appropriate level of modeling detail)

in fact have the capability to simultaneously support multiple activities, and availability

must be determined as a function of unallocated capacity.

Early work on formalizing and solving the scheduling problem as a CSP (Constraint

Satisfaction Problem) (e.g., [11, 12]) focused on the classical Job-Shop Scheduling Prob-

lem (JSSP), where: (a) temporal constraints represent constant durations of activities,

(b) temporal separation constraints between activities are simple qualitative ordering con-

straints, and (c) capacity constraints are binary (a resource is either busy or free). More

recent work has considered various extended JSSP models. A Multi-Capacitated JSSP

(MCJSSP) is de�ned and solved in [9]. This problem class retains the temporal constraint

assumptions of the classical JSSP but allows resource capacities to be greater than one.

In [3] and subsequently in [10] a complementary extension of the JSSP is addressed. In

this case a more general, Simple Temporal Problem (STP) [4] representation of tempo-

ral constraints is incorporated, but the unit-capacity resource assumption of the JSSP is

retained.

In this paper, we focus on development and evaluation of procedures that simultane-

ously accommodate both extended resource capacity and extended temporal constraint

models; i.e., procedures that schedule multi-capacitated resources in the presence of STP-

style temporal constraints on the activities that require resource capacity. We call this

class of problems the Multiple Capacitated Metric Scheduling Problem (MCM-SP). Sum-

marizing the principal features of the MCM-SP: (a) resources are discrete (and not con-

sumable) with capacity cj � 1, (b) there are quantitative time constraints (i.e., lower,

upper bounds) on the starts, ends and durations of activities that require resource capac-

1

ity, and (c) sets of activities corresponding to independent \jobs" are temporally related

(e.g., precedence) with the possibility of metric constraints (lower, upper bounds) on

temporal separation. Variants of the MCM-SP are commonplace in practical domains.

Aircraft transportation scheduling applications, for example, generally require manage-

ment of capacity resources at airports (e.g., onload/o�oad capacity, aircraft parking space,

cargo storage area) while simultaneously enforcing complex temporal constraints on airlift

activities (e.g., minimum time on ground, takeo�/landing separation times). Similarly,

in manufacturing environments, production activities must be synchronized to account

for the �nite processing capacity of various machining centers and operator pools while

respecting the ordering, timing and separation constraints on various production steps.

Representations and solution procedures that are capable of simultaneously account-

ing for STP-style temporal constraints and multi-capacitated resource constraints have

recently been proposed within the planning literature[7, 5]. These works follow two di�er-

ent solution approaches, distinguishable by the basic mechanism used to identify resource

capacity con
icts:

� pro�le-based approaches (e.g., [5]): these approaches are extensions of a technique

quite common in unit-capacity scheduling (e.g., [11, 8]). Most generally, they consist

of characterizing resource demand as a function of time, identifying periods of over-

allocation in this demand pro�le, and incrementally performing \leveling actions"

to (hopefully) ensure that resource usage peaks fall below the total capacity of the

resource.

� clique-based approaches [7]: given a current schedule, this approach builds up a

\con
icts graph" whose nodes are activities and whose edges represent overlapping

resource capacity requests of the connected activities. Fully connected subgraphs

(cliques) are identi�ed and if the number of nodes in the clique is greater than

resource capacity a con
ict is detected.

Though each of these approaches o�ers the generality to formulate and solve the general

MCM-SP, the work reported in both [5] and [7] has been concerned principally with

providing resource reasoning subcomponents within larger planning architectures and

attention has been limited to quite restrictive special cases of the MCM-SP (e.g., small,

single resource problems). In [2], the application of pro�le-based procedures to the general

MCM-SP is directly considered. Several derivatives of the approach originally proposed

2

in [5] are de�ned and evaluated in this context, and it is shown that by extending and

incorporating CSP heuristics previously developed for unit-capacity scheduling problems,

a much higher-performance, pro�le-based procedure for solving the MCM-SP is obtained.

In the sections below, we build on these results with pro�le-based solution proce-

dures and consider a more general analysis of pro�le-based and clique-based approaches

to solving the MCM-SP. Pro�le-based methods rely on local, pairwise analysis of resource

capacity con
icts and promote computational e�ciency; clique-based approaches perform

more global analysis and o�er greater accuracy in con
ict detection but at potentially

much higher computational cost. We begin by de�ning the MCM-SP to be addressed

and specifying a common CSP scheduling framework for formulating alternative solution

procedures. We then specify pro�le-based and clique-based procedures for solving the

MCM-SP. Our approach in both cases is least-commitment; i.e., our goal is to produce

solutions which temporally constrain the execution of activities as opposed to �xing their

execution times. We present a set a experiments which evaluate cost/performance trade-

o�s on problem instances of increasing scale and di�culty, and indicate the respective

performance characteristics of each approach.

2 De�nition of MCM-SP

The Multiple-Capacitated Metric Scheduling Problem (MCM-SP) we will consider in-

volves synchronizing the use of a set of resources R = fr1 : : : rmg to perform a set of jobs

J = fj1 : : : jng over time. The processing of a job ji requires the execution of a sequence

of ni activities fai1 : : : ainig, a resource rj can process at most cj activities at the same

time (with cj � 1) and execution of each activity aij is subject to a set of constraints:

� Resource availability - each aij requires the use of a single resource raij for its entire

duration.

� Processing time constraints - each aij has a minimumand maximumprocessing time,

procmin
ij and procmax

ij , such that procmin
ij � e

ij
� s

ij
� procmax

ij , where the variables

sij and eij represent the start and end times respectively of aij.

� Separation constraints - for each pair of successive activities aij and ai(j+1), j =

1 : : : (ni � 1), in job ji, there is a minimum and maximum separation time, sepmin
ik

and sepmax
ik , such that fsepmin

ik � s
i(k+1)

� e
ik
� sepmax

ik : k = 1 : : : (ni � 1)g.

3

� Job release and due dates - Every job ji has a release date rdi, which speci�es the

earliest time that any aij can be started, and a due date ddi, which designates the

time by which all aij must be completed.

A feasible solution to a MCM-SP is any temporally consistent assignment of start and

end times which does not violate resource capacity constraints.

The required capacity (also called resource demand) of resource rj by activity ak is de-

noted rcak;j. The set of activities ak that demand resource rj is calledAj (Aj = fakj rcak ;j 6= 0g).
In this paper we consider the case rcak;j= 1.

3 CSP Algorithms for MCM-SP

In the case of simple, unit-capacity resources, the scheduling problem can be formulated

as a CSP with decision variables Oh;l;r corresponding to each pair of activities ah and

al that requires a given resource r, and each capable of be \assigned" a value of either

ahfbeforegal or alfbeforegah. Here, each decision variable represents a potential resource
con
ict, and an assignment (or posting) of either other precedence constraint, if it can

be done consistently, eliminates this possibility. Our approach to the MCM-SP simply

generalizes this formulation to the case where potential resource con
icts in the use of

resource rj involve (minimally) cj + 1 activities. Decision variables continue to designate

potential con
icts, and possible values correspond to the (now larger) set of ordering

constraints that might be posted to eliminate contention.

To provide an infra-structure for constructing search procedures that exploit this for-

mulation, we assume an underlying temporal representation as a Simple Temporal Prob-

lem (STP) [4]. More precisely, a directed graph Gd(V;E), named distance graph, is de�ned

for, wherein the set of vertexes V represents time-points tpi and the set of edges E rep-

resents temporal distance constraints. The origin, together with the start time, sak and

end time, eak of each activity ak, comprise the set of represented time points in Gd for

any given MCM-SP. Activity processing time constraints, as well as separation constraints

and precedence constraints between pairs of activities, are encoded (naturally) as distance

constraints. Every constraint in Gd is expressed as a bound on the di�erences between

time-points a � tpj � tpi � b and is represented in Gd with two weighted edges 1: the �rst

1We are aware that other researchers in this topic are in favor of reversing the distance graph of [4]

so that an arc of length 0 between x and y corresponds to "x before y" and an arc of length a between

4

one directed from tpi to tpj with weight b, the second one from tpj to tpi with weight �a.
The STP consistency can be determined e�ciently by shortest path computations.

Each time point tpi has associated an interval [lbi; ubi] of the possible time instants, or

temporal values, where the event associated to the time-point may happen. A particular

time-point tp1, called the origin point, has associated the constant interval [0; 0]. We

denote with d(tpi; tpj) the shortest path length from node tpi to node tpj in Gd. As

shown in [4], the interval [lbi; ubi] of time values associated to the generic time variable

tpi is computed on the graph Gd as the interval [�d(i; 1); d(1; i)].
The search for a solution to a MCM-SP can proceed by repeatedly adding new prece-

dence constraints into Gd to resolve detected con
icts and recomputing shortest path

lengths to con�rm that Gd remains consistent (i.e., no negative weight cycles). What

is needed to con�gure a complete search procedure are mechanisms and heuristics for

recognizing, prioritizing and resolving resource con
icts.

Figure 1 gives an algorithmic template that operationalizes this approach and will

be used below to specify alternative MCM-SP solution procedures. The template identi-

�es three basic steps that require instantiation: Exists-Unresolvable-Conflict which

detects an infeasible state, Select-Conflict-Set which identi�es the set of activities

included in the resource con
ict to be resolved next, and Select-Leveling-Constraint

which chooses a temporal ordering constraint to solve the con
ict by reducing (leveling)

resource requirements in con
ict.

3.1 A Pro�le-Based Algorithm

We �rst consider the speci�cation of a pro�le-based approach to the MCM-SP. For each

resource rj theDemand Pro�leDj(t) represents the total capacity requirements of ak 2 Aj

at any instant of time. For rj then, the resource capacity constraint requires Dj(t) � cj

for all t.

Pro�le based solution methods proceed generally by detecting time instants where the

pro�le Dj(t) of a given rj is greater than the available capacity cj and then sequencing

selected activities that are contributing to these detected usage peaks.

In a previous paper [2], several pro�le-based solution procedures were developed and

evaluated, each descendant from the approach to multiple-capacity planning originally

proposed in [5]. The procedure developed in [5], owing to its orientation toward solution

x and y means x+ a � y. We use here the convention of [4] for consistency with previous work of ours.

5

MCM-SP-Solver(Mcmsp)
1. CSolution Mcmsp

2. if Exists-Unresolvable-Con
ict(CSolution)
3. then return(NIL)
4. else begin

5. Cset Select-Con
ict-Set(CSolution)
6. if (Cset = NIL)
7. then return(CSolution)
8. else begin

9. Lc Select-Leveling-Constraint(Cset)
10. Post-Leveling-Constraint(Lc,CSolution)
11. MCM-SP-Solver(CSolution)
12. end

13. end

Figure 1: MCM-SP Solver

of fairly simple scheduling problems, paid little attention to the heuristics employed for

choosing resource con
icts and ordering constraints. The derivative procedures devel-

oped in [2], in contrast, were predicated on the hypothesis that incorporation of stronger

heuristics would result in higher-performance solution procedures, and they were designed

to exploit extended versions of heuristics originally developed for unit-capacity resource

scheduling. Experimental results con�rmed the superior performance of these derivative

procedures in solving the MCM-SP, but, at the same time, indicated that all tested proce-

dures tended to produce solutions that contained a large number of unnecessary ordering

constraints. This de�ciency motivated the design of a di�erent style of pro�le-based pro-

cedure, referred to as ESTA (Earliest Start Time Algorithm), and from a performance

standpoint, this procedure was found to dominate all others. Accordingly, we choose

ESTA as a representative example of the pro�le-based approach for our purposes in this

paper, and subject it to a broader experimental analysis. In the rest of this section we �rst

present some preliminary motivations that justify ESTA and then specialize the template

in Figure 1 to the ESTA case.

Preliminaries. We pursue development of a two step procedure where (a) a �rst step

�nds a solution which is con
ict-free only in a particular set of time instants, and (b) a

second, post-processing step transforms the solution into one that is con
ict free for all

sets of times implied by the �nal set of temporal constraints.

6

As just mentioned, an interval of possible time values [lbi; ubi] is associated with any

time-point tpi in a STP representation. It is known [4] that the extremes of such intervals,

either the lower bounds lbi or the upper bounds ubi of all time variables tpi identify a con-

sistent solution to the STP. If in correspondence with either of these two sets of temporal

values also the resource capacity constraints are satis�ed, then we have constructed a so-

lution for the correspondent MCM-SP. We call these two particular solutions the earliest

start time solution and the latest start time solution; and both are logical candidates to

be the target solution for step (a).

We focus attention on the development of the earliest start time solution because

of its potential for better makespan. The demand pro�le for a resource rj is thus a

temporal function ESTDj
(sai) that takes the start time sai of activity ai computes the

resource utilization in the instant lbsai . Without loss of generality, such resource demand

is computed taking into account only activity start times. This is because it is in such

points that a positive variation of the demand pro�le happens. Given a resource rj and

the set of activities Aj which request rj , the earliest start time demand pro�le is de�ned

as follows:

ESTDj
(sai) =

X

ak2Aj

Pik � rcak;j

where Pik = 1 when lbsak � lbsai < lbeak and Pik = 0 otherwise.

Given a MCM-SP, a resource con
ict, or peak, is a tuple < rj; sai; cai >, where cai is

a set of activities cai = fak j Pik = 1g, such that ESTDj
(sai) > cj.

A peak < rj; sai; cai > can be leveled by posting precedence constraints between any

pair of activities ah; al 2 cai. It is worth noting that in this algorithm a con
ict <ah; al>

is composed of two activities. We refer generally to <ah; al> as a pairwise con
ict set.

Using shortest path length information contained in the graph Gd, it is possible to

de�ne a set of dominance conditions which identify unconditional decisions and promote

early pruning of alternatives [3, 10]. For any pair of activities ah and al competing for

the same resource, four possible cases of con
ict are de�ned:

1: d(eah; sal) < 0 ^ d(eal; sah) < 0

2: d(eah; sal) < 0 ^ d(eal; sah) � 0 ^ d(sah ; eal) > 0

3: d(eal; sah) < 0 ^ d(eah; sal) � 0 ^ d(sal ; eah) > 0

4: d(eah; sal) � 0 ^ d(eal; sah) � 0

7

Condition 1 represents a pairwise unresolvable con
ict. There is no way to sort ah and al

without inducing a negative cycle in graph Gd(V;E). Conditions 2, and 3, alternatively,

distinguish pairwise uniquely resolvable con
icts. Here, there is only one feasible ordering

of ah and al and the decision of which constraint to post is thus unconditional. In the

case of Condition 2, only alfbeforegah leaves Gd(V;E) consistent and similarly, only

ahfbeforegal is feasible in the case of Condition 3. Condition 4 designates a �nal class of

pairwise resolvable con
icts. In this case, both orderings of ah and al remain feasible and

it is necessary to make a choice.

The ESTA Algorithm. We are now in a position to specify an algorithm which �nds

a solution by leveling the earliest start time demand, which we will refer to as ESTA

(Earliest Start Time Algorithm). We make this precise by describing the three basic steps

of the general schema in Figure 1.

The predicate Exists-Unresolvable-Conflict is implemented straightforwardly, by

identifying peaks < rj; sai; cai > where, for each pairwise con
ict set <ah; al> with

ah; al 2 ca and ah 6= al, the dominance condition 1 holds.

The heuristic methods for selecting a pairwise con
ict set to resolve and for deciding

which leveling constraint to post are derived from [3]. The general least-commitment

principle behind both methods is to retain the maximum amount of temporal
exibility

possible in the solution at each step; and shortest path values d(eah; sal) (or d(eal; sah))

are used to quantify how many time values a given pair of activities<ah; al> may assume

with respect to each other while respecting the time constraints.

The function Select-Conflict-Set is concerned with selection of a pairwise con
ict

<ah; al> inside a resolvable peak. Two cases are distinguished. When all pairwise con-

icts in the current solution satisfy Condition 4, then the con
ict set <ah; al> with the

minimum value !res(ah; al) is selected 2, where:

!res(ah; al) = minfd(eah; sal)p
S

;
d(eal; sah)p

S
g

with S =
minfd(eah ;sal);d(eal ;sah)g

maxfd(eah;sal);d(eal ;sah)g
. Instead when a subset of pairwise con
icts set satisfy

Conditions 2 or 3, the heuristic selects the con
ict with the minimum (and negative)

2As suggested in [3] a balancing factor
p
S is used. It is possible to see that S 2 [0; 1]: S = 1 when

d(sah ; sal) = d(eal ; sah) and it is close to 0 when d(sah ; sal) >> d(eal ; sah) or d(eal ; sah) >> d(sah ; sal).

The aim of this balancing factor is to select �rst con
icts in which both choices are strongly constrained

and close to the failure state (dominance condition 1).

8

value !res(ah; al) = minfd(eah; sal); d(eal; sah)g, i.e., the pair of activities that are closest
to having their ordering decision forced.

Select-Leveling-Constraintwithin ESTA simply returns the constraint which leaves

the most temporal
exibility. If d(eah; sal) > d(eal; sah) the leveling constraint chosen is

ahfbeforegal, otherwise alfbeforegah.
Postprocessing Step. Given an earliest start time solution, one way to generate a con-

ict free solution is to create a set of cj chains of activities on the resource rj. That is,

we can partition the set of activities which require rj, into a set of cj linear sequences of

activities. This operation can be accomplished by deleting all of the leveling solution's

constraints and posting a new set of leveling constraints according to the division in lin-

ear sequences. In this situation, which we refer to as chain-form, if Nrj is the number of

activities which request rj , then the number of precedence constraints posted is at most

Nrj � cj. In contrast, we would generally expect the step 1 process of determining an

earliest start time solution to insert a greater number of leveling constraints. A solution

in chain-form is a di�erent way to represent a solution that presents two advantages:

(a) the solution is con
ict free for on line modi�cations of start or end time of activities;

(b) there are always O(Na) leveling constraints (where Na is the total number of activi-

ties). So, every temporal algorithm whose complexity depends on the number of distance

constraints can gain advantages from this new form of the solution.

3.2 A Clique-Based Algorithm

We now turn attention to speci�cation of a second type of solution procedure, where

con
ict graphs are substituted for demand pro�les and clique detection drives con
ict

analysis. Let G(V;E) be a �nite undirected graph with no parallel edges and no self-

loops. A clique C is a completely connected subset of V (C � V). The size of C is the

number of vertexes in C. The clique in G with maximum size is called the maximum

clique. Given a vertex vi, we denote with Ji the set of vertexes vj connected with vi

(Ji = fvj 2 V j (vi; vj) 2 Eg). We denote with di the cardinality of Ji (or degree of vi,

di =j Ji j).
The use of cliques for managing multiple-capacity constraints was �rst proposed in [7].

The basic idea follows from the observation that, given a current solution, it is possible to

establish if any two activities may reciprocally overlap from the temporal information in

the corresponding distance graph Gd. We can represent this \overlapping information" for

9

each resource rj in a graph, named Possible Intersection Graph (PIGj), whose vertexes

are the activities requiring the resource rj and such that an edge represents the fact

that the execution intervals of its two vertexes (activities) may overlap/intersect in the

current solution. According to our previous formalization, if the temporal bounds of any

two activities (both 2 Aj) verify one of the 4 dominance conditions introduced in the

ESTA preliminaries, then they are connected by an undirected edge in the graph PIGj.

Note that if two activities in the current solution are connected by an explicit or implicit

ordering constraint, then they are not connected in the PIGj. Given rj with capacity

cj , a clique of size at least cj +1 in the graph PIGj (called a critical clique) represents

a possible resource con
ict in the current solution. It can be immediately observed that

this is an alternative representation of resource con
icts with respect to peaks in the

demand pro�le Dj(t). Note also that posting an ordering (leveling) constraint between

a pair of activities whose vertexes are in a critical clique may cause elimination of the

possible resource con
ict (i.e., if the size of such a critical clique is exactly cj +1, one

leveling constraint eliminates the potential con
ict). A current solution is con
ict free

with respect to resource constraints when no PIGj contains any critical cliques.

To support the implementation described below, we introduce, for each resource rj

a further graph named the De�nite Intersection Graph (DIGj), whose vertexes are the

activities in Aj and such that an edge exists between a pair of vertexes if the execution

intervals of the corresponding activities verify dominance condition 1 (pairwise unresolv-

able con
ict) in Gd. A clique in DIGj of size at least cj +1 represents an unresolvable

resource con
ict in the current solution. In this case, it is not possible to post an ordering

constraint between elements of this clique to decrease its size. It should be clear that

DIGj � PIGj, and that both evolve during solution development. So we assume the

existence of a dynamic update function that at each step of the solver maintains these

graphs for any resource rj.

Searching Con
icts. A problem solving algorithm based on clique-detection requires

a basic algorithm �nding the critical clique sets in a con
ict graph. For reasons elabo-

rated in [6] we are interested in identifying so-called minimal critical sets (mcss), which

represent the minimally sized sets of activities that may potentially con
ict. In a MCM-

SP, where the resource demand of the activities is one (rcak ;j= 1), we are interested in

detecting cliques of size cj + 1 in PIGj and DIGj .

Figure 2 shows an algorithm, named Clique-Tree, which systematically traverses the

10

Clique-Tree(C,I�)
1. mcsSet ;
2. loop

3. if (I�= ;) then return mcsSet

4. vi SelectVertex(I�)
5. I� I��fvig
6. I�new I�\Ji
7. if (jCj + jI�newj+ 1 � cj)
8. then return ;
9. else if (jC [fvigj > cj)
10. then mcsSet mcsSet [fC [fvigg
11. else mcsSet mcsSet[Clique-Tree(C [fvig,I�new)
12. end-loop

Figure 2: To �nd a set of critical cliques (mcss)

edges of a undirected graph, incrementally detecting each mcs and collecting it inmcsSet.

Our algorithm relies on the current assumption rcak;j= 1 and takes into account the basic

idea used in [7].

Clique-Tree takes as input two parameters: a current clique C and a set of vertexes

I� used to enlarge the current clique C as search progresses. Given an undirected graph

G(V;E) the algorithm starts with C = ; and I�= V (this situation corresponds to the

search level i = 0). At any level i of the search tree, the set C is a clique with i vertexes

C = fv1; v2; : : : ; vig and the set I� is obtained by the incremental intersection I�= V \
J1 \ J2 \ � � � \ Ji, where the sets J1 : : : Ji have been de�ned above.

At each step of the search process one of the three following cases may hold: (1) The

current clique C has size less or equal to the resources capacity cj and it is not possible to

enlarge it over the treshold cj (i.e., jCj+ jI�newj+1 � cj), in this case the search process

stops with failure on that path; (2) the set C [fvig is a clique with size greater than the

resources capacity cj (jC [fvigj > cj), in this case the clique with size cj + 1 is collected

in mcsSet (note that the vertex vi is selected from the set I�= V \ J1 \ J2 \ � � � \ Ji, so
it is surely connected to all the vertexes in C, i.e., C [fvig is a clique with size jCj+ 1;

(3) in all the other cases the procedure is recursively invoked on the parameters C [fvig
and I�new to check for larger cliques.

The CCSA Algorithm. We can now de�ne the clique-based algorithm for the MCM-SP

called CCSA (Critical Clique Selection Algorithm). As before, we do so, by specifying the

11

three basic steps of the generic MCM-SP-Solver.

The predicate Exists-Unresolvable-Conflict is realized by invoking for each re-

source rj the function Clique-Tree(;,VDIGj
) where VDIGj

are the vertexes of the De�nite

Intersection Graph DIGj . If all calls return nil, all existing con
icts are solvable.

The function Select-Conflict-Set is instantiated for CCSA as shown in Figure 3.

It is designed to take into account both the concept of retaining temporal
exibility and

the need for an e�cient implementation of the clique procedure. To select a mcs we

use the heuristic estimator K suggested in [7]. The function K calculates a numerical

value such that, the closer a mcs is to a clique in the DIGj graph (which represents an

unresolvable con
ict), the higher is the evaluation function K(mcs). This idea imple-

ments a least commitment strategy and looks to the set of activities that is either closer

to an unresolvable state or has the smallest number of precedence constraints that can

still be posted to �x the con
ict. The evaluator K(mcs) uses a function commit which

estimates the loss of temporal
exibility in the current solution as a result of posting a

given precedence constraint aifbeforegaj between two activities.

Given a candidate mcs and a set fpcig of precedence constraints that can be posted

between pairs of activities in the mcs, K is de�ned as follows

1

K(mcs)
=

kX

i=1

1

1 + commit(pci)� commit(pcmin)

where pcmin is the precedence constraint with the minimum value of commit(pc).

To complete the speci�cation of CCSA we de�ne the Select-Leveling-Constraint

function. According to the least-commitment strategy, after selecting an mcs to be lev-

eled, the leveling constraint aifbeforegaj correspondent to pcmin is chosen.

The algorithm described so far follows the spirit of a complete planning algorithm

proposed in [7], but such an approach is simply not practical for the kind of problems

addressed here. The function Clique-Tree, in particular, is the critical point, given the

frequency that the function is invoked and the exhaustive nature of the search it performs.

Following some preliminary experimentation, the need for a more e�cient counterpart

was clear, and the present implementation of CCSA thus contains a number of distinctive

features.

There are two di�erent situations where we need to search for cliques: in the detection

of an unresolvable con
ict and in the collection of the minimal critical sets in the PIG

12

Select-Con
ict-Set(CSolution)
1. mcsmax ;
2. foreach rj 2 R do begin

3. CV VPIGj

4. while (j CV j > cj) do begin
5. vi Select-Vertex(CV)
6. CV CV � fvig
7. mcsSet Clique-Tree(fvig,CV \ Ji)
8. mcs maxfK(mcsi) j mcsi 2 mcsSetg
9. if K(mcs) > K(mcsmax) then mcsmax mcs

10. end

11. end

12. return(mcsmax)

Figure 3: To select a set of con
icting activities

graphs for applying the heuristic strategy. In the �rst case, it is su�cient to demonstrate

that at least one mcs exists on the DIG graph. This task is not too critical because

generally DIGs are very sparse. In the second case, however, we need to potentially

detect all the mcss associated with a given PIG. This task is more critical since, when

the solution method starts, PIG graphs are close to the complete status and the number

of mcss can reach
�
jAjj
cj+1

�
.

To provide a more tractable procedure for this latter case, we introduce the notion

of a sampling strategy - aimed at only partially computing the mcsSet for each PIGj.

Given a PIGj we sample a subset of mcss while paying attention to \cover" the entire

graph. The present sampling strategy works as follows: the Clique-Tree is iteratively

applied starting from each activity ai 2 Aj For each call, when the �rst mcs is found,

the detection of further mcss continues with two restrictions: (1) only a limited number

of cliques is collected (at present 5) and (2) only a limited number of nodes is explored

(at present 100). For example, in the case of a resource rj with 25 activities and capacity

cj = 5, the number of mcs cliques can reach
�
25
6

�
= 177; 100. Employing the sampling

strategy, the maximumnumber of mcss sampled is 25�5 = 125. The experimental results

presented later clearly indicate the utility and power of this \bounded search strategy"

within CCSA.

A second heuristic adjustment to Clique-Tree concerns the function Select-Vertex.

At present it �rst selects the vertex vi with the maximum value of di, and in this way, the

13

probability of �nding a clique as soon as possible is heuristically maximized. The same

Select-Vertex function is used at Step 5 in the algorithm Select-Coflict-Set. This

intuition has been con�rmed by empirical comparative analysis of computation times. For

example, when the minimum value of di is chosen �rst instead of the maximum, the CPU

time lengthens by up to the 30%.

4 Experimental Evaluation

In this section we establish a common basis for experimental comparison of alternative

solution procedures to the MCM-SP. We �rst specify relevant evaluation criteria. Second,

we describe a reproducible procedure for generating test problems.

Evaluation Criteria. For purposes of this paper, we consider the quality of a given

solution procedure to be given as

� number of solved problems from a �xed set (Nps);

� average CPU time, in seconds, spent to solve instances of the problem (CPU);

� the number of leveling constraints posted in the solution S (NLC). This number

gives a further structural information of the kind of solution created;

� the average quality of the solutions generated. Two factors contribute to judgements

of this aspect. From an optimization viewpoint, we will measure the compactness of

the solution and from an executability viewpoint, we will characterize its robustness.

As a measure for compactness we use the solution's overall makespan (Mks), a standard

and well-known measure of schedule quality.

Robustness is a trickier notion to formalize. It is generally believed to relate to the

likelihood of being able to absorb minor variations to a solution without incurring a major

disruption to the overall solution. When considering strongly temporalized domains (such

as the problem of interest in this paper) this capability seems connected to the degree of

\
uidity" of solutions, as de�ned by the temporal
exibilities in the execution intervals

of scheduled activities. Building on this intuition, we de�ne as the robustness RB of a

solution S the average width, relative to the temporal horizon H, of the distance, for all

pairs of activities, between of start time of one activity and end time of the other. More

precisely,

14

RB(S) =
X

ah2S;al2S;ah 6=al

jd(eah; sal) � d(sal ; eah)j
H � (Na � (Na � 1))

� 100

where Na is the number of activities in the solution, ah and al are generic scheduled

activities, d(sal ; eah) is the length of the shortest path between the start-time of al and

the end-time of ah, and 100 is a scaling factor.

Experimental Design. The �rst step toward establishing a reproducible experimental

setting is the implementation of a controlled random number generator. We adopt the

generator proposed in [13] (pag.179). In this way we obtain the uniform distribution

function U [a; b] which generates a random number n, where n, a and b are positive numbers

such that a � n � b (if a and b are integers then n is obtained as an integer, if one of them

is real n is real). To generate di�erent problem instances we use the time seeds reported

in Figure 1 of [13] (in particular we use the �rst 50 seeds).

Next, we de�ne the dimensions along which problem instances will be varied. Ac-

cording to the usual format for formulating job shop scheduling problems, we use the

terminology Njobs �Nres and de�ne problems with Njobs each of them composed of a se-

quence of Nres activities that must be executed on one of the Nres di�erent resources. For

our purposes in this paper, we create problem sets of 50 instances at each of the following

sizes: 5� 5, 10 � 5, 15 � 5, 20 � 5 and 25 � 5.

The remaining data to generate the instances of MCM-SP are assigned as follows:

(a) every resource rj has a capacity cj, generated randomly as either U [2; 3] or U [2; 5], and

a full availability on the horizon; (b) the minimum processing time of activities is drawn

from a uniform distribution U [10; 50], and the maximum processing time is generated

by multiplying the minimum processing time by the value (1 + p), where p = U [0; 0:4];

(c) the separation constraints [a; b] between every two consecutive activities in a job are

generated with a = U [0; 10] and b = U [40; 50]; (d) release and due dates for jobs are not

considered explicitly in the current experiments so they are �xed to 0 and H respectively

for all the jobs.

Finally, the horizon H is computed as H = mvH0 where H0 is adapted from [3]:

H0 = (Njobs � 1)pbk +
PNres

i=1 pi, where pbk is the average minimum processing time of

the activities on the bottleneck resource, and pi is the average minimum processing time

of the activities on resource ri. The bottleneck resource is the resource with maximum

value of the sum of the minimum processing time of the activities which request the

15

resource. The parameter mv is used to reduce the horizon and increase the problem con-

strainedness. We use either mv = 1 or mv = 0:7.

Experimental Results. In this section we consider the performance characteristics of

ESTA and CCSA on sets of MCM-SP problem instances of increasing scale, varying both

the temporal horizon (a�ecting tightness of temporal constraints) and resource capacity

levels. Each of the 4 experiments summarized below consist of 50 random problem in-

stances of each of 5 problem sizes.

Experiment 1. mv = 1 and cj 2 [2; 3].

mv = 1, cj 2 [2;3]

Method Problem Nps RB Mks NLC CPU

5� 5 50 9.1 210.5 1.8 1.0

10� 5 50 7.5 300.0 21.1 5.8

ESTA 15� 5 50 5.4 430.1 71.9 18.2

20� 5 50 4.9 545.2 143.4 41.0

25� 5 50 4.6 664.1 233.2 81.3

5� 5 50 9.5 203.2 18.3 2.5

10� 5 50 7.8 299.1 118.6 40.9

CCSA 15� 5 50 6.6 448.2 264.8 162.4

20� 5 50 5.6 597.4 447.3 430.3

25� 5 50 4.7 754.3 677.3 925.6

Experiment 1 provides the basic scenario also used in [2] for comparison of alternatives.

ESTA and CCSA perform almost equivalently on this problem set with respect to solution

quality (ESTA is actually slightly better). This is signi�cant, since CCSA CPU times are

an order of magnitude higher than ESTA's. CCSA also posts considerably more leveling

constraints than ESTA; interestingly, however, these leveling constraints are much more

\well chosen" (as indicated by the relatively high values obtained for RB).

Experiment 2. To investigate the impact of increased resource capacity levels on algo-

rithm performance, a 2nd problem set was generated with settings mv = 1 and cj 2 [2; 5].

Results are given below.

16

mv = 1, cj 2 [2;5]

Method Problem Nps RB Mks NLC CPU

5� 5 49 10.1 205.7 0.8 0.9

10� 5 50 9.5 259.3 10.6 4.7

ESTA 15� 5 50 6.6 357.7 41.0 14.7

20� 5 50 5.5 457.2 94.3 33.8

25� 5 50 4.9 563.8 160.3 65.3

5� 5 50 10.0 201.7 10.4 1.7

10� 5 50 8.9 261.6 85.4 44.9

CCSA 15� 5 50 6.9 405.2 204.9 200.7

20� 5 50 6.3 536.5 355.9 544.5

25� 5 50 5.8 667.6 533.8 1152.1

Two points are noteworthy here. First, though ESTA does miss one solution out of

the total set of 250, it consistently produces solutions with better makespan that does

CCSA. Second, the ratio between CCSA's CPU times and ESTA's CPU time increases on

this problem set, with CCSA requiring greater computation and ESTA requiring slightly

less. This fact is explained by the observation that the complexity of the Clique-Tree

algorithm increases as the size of mcss increases; in contrast, ESTA needs to post fewer

leveling constraints to solve these problem instances (compare NLC values in the case of

Experiment 1 and 2).

Experiment 3. In this experiment, resource capacity levels are kept as in experiment 2,

but the overall scheduling horizon is tightened, i.e., mv = 0:7 and cj 2 [2; 5], producing

problems that are more temporally constrained.

mv = 0:7, cj 2 [2;5]

Method Problem Nps RB Mks NLC CPU

5� 5 49 4.4 202.0 0.9 1.0

10� 5 50 8.8 252.1 11.2 5.0

ESTA 15� 5 50 7.0 338.2 43.4 15.1

20� 5 50 5.6 437.8 94.8 34.6

25� 5 49 4.9 527.4 159.3 66.2

5� 5 49 4.5 200.4 3.9 1.1

10� 5 50 10.3 220.3 90.1 42.6

CCSA 15� 5 50 8.0 295.6 231.4 216.7

20� 5 50 6.5 408.4 406.1 594.6

25� 5 50 5.8 507.7 599.4 1241.0

In this case, the computation times of both algorithms remain about the same. However,

CCSA is seen to �nd slightly better quality solutions.

Experiment 4. Finally, we consider the case of tighter temporal horizon with lower

resource capacity levels | mv = 0:7 and cj 2 [2; 3] | yielding the most constrained

problem set of all.

17

mv = 0:7, cj 2 [2;3]

Method Problem Nps RB Mks NLC CPU

5� 5 48 4.2 203.6 1.8 1.0

10� 5 50 6.4 271.8 21.3 5.5

ESTA 15� 5 47 4.6 384.7 73.1 18.4

20� 5 44 4.0 483.9 143.8 41.9

25� 5 38 3.3 598.0 247.4 84.0

5� 5 48 4.3 201.7 7.6 1.3

10� 5 50 8.7 232.3 121.5 38.4

CCSA 15� 5 50 6.2 333.5 295.5 177.7

20� 5 50 5.1 448.3 503.1 469.9

25� 5 50 4.4 555.2 736.0 972.6

In this last case, performance trends are clearly reversed; CCSA consistently �nds better

quality solutions and ESTA solves less problems. Thus CCSA appears well suited for

solution of more highly constrained problems.

One �nal observation relating to the leverage provided by the sampling strategy em-

ployed in CCSA is appropriate. If we examine the ratio between CPU times in moving

from one problem size to the next, we see that it decreases as function of Njobs. This

fact can be directly attributed to the sampling strategy, since cuto�s are more limiting at

higher problem sizes. Thus, while drastically reducing the number of mcss considered, the

sampling strategy nonetheless enables CCSA to consistently �nd good quality solutions.

5 Conclusions

In this paper, we developed and analyzed least-commitment CSP-based procedures for

solving scheduling problems with metric temporal constraints and multiple capacitated

resources, referred to formally as the Multiple Capacitated Metric Scheduling Problem

(MCM-SP). We considered both pro�le-based and clique-based solution approaches to

this class of scheduling problem, setting both within a common CSP search framework to

facilitate comparison. In both cases, we started from previously developed techniques for

reasoning with multiple capacitated resources. With respect to pro�le-based approaches,

we adopted the highly e�cient, two-stage ESTA procedure, which was previously shown to

signi�cantly outperform basic pro�le-based methods. In the case of clique-based methods,

the procedure originally outlined in [7] was taken as a starting point and a heuristic

variant was developed. This development was necessitated by early recognition of the

impracticality of applying exhaustive search procedures to this class of scheduling problem,

and led to speci�cation of the CCSA procedure, which incorporates a highly e�ective

18

heuristic sampling strategy to bound the con
ict detection search.

Experimental results obtained on a range of problems of increasing scale, varying

both the tightness of temporal constraints and size of resource capacity levels, have indi-

cated the relative strengths of ESTA and CCSA. From the standpoint of computational

cost, CCSA (even with use of the sampling procedure) is considerably more expensive

than ESTA, and the di�erential increases as resource capacity levels are increased. In

this circumstance, both algorithms perform comparably with respect to solution quality,

suggesting the advantage of ESTA in this region of the problem space. This is quite

impressive, given the relatively simple idea that motivates ESTA's design. In highly con-

strained regions of the problem space, on the other hand, CCSA consistently produces

better quality solutions and the performance of ESTA falters.

Given the performance potential of CCSA as a solution approach to the MCM-SP, one

obvious area for further investigation would concern the development of more e�cient

clique-detection algorithms. For example, computational leverage might be gained by

relying on particular properties of the PIGj and DIGj graphs such as the fact that they

are weakly chordal graphs.

Two other approaches in the literature address multi-capacitated scheduling problems

which di�er from MCM-SP. As previously mentioned [9] has developed procedures to

solve the MCJSSP problem, a class of scheduling problem which assumes only qualitative

separation constraints (i.e., precedence) between pairs of activities and does not allow

metric quanti�cation. In [1] the cumulative scheduling problem is de�ned, which di�ers

from MCM-SP in that for each activity a constraint is imposed only on the product

duration � resource requirement and because again the separation constraints between

pair of subsequent activities are not quantitative. However, despite these di�erences in

the types of problems considered, it would be interesting to examine if the techniques

developed in this work can be extended and applied to the MCM-SP.

One extension that we are currently working on is a relaxation of the current as-

sumption regarding rcak;j to allow values greater than one. This restriction has been

introduced to simplify the algorithms and to focus the attention on the pure comparison

between pro�le-based and clique-based approaches. But we also recognize the necessity

of this more
exible modeling assumption in many practical domains.

19

Acknowledgments

Amedeo Cesta and Angelo Oddi's work is supported by Italian Space Agency, by CNR

Committee 12 on Information Technology (Project SCI*SIA), and CNR Committee 4 on

Biology and Medicine. Angelo Oddi is currently supported by a scholarship from CNR

Committee 12 on Information Technology. Stephen F. Smith's work has been sponsored

in part by the National Aeronautics and Space Administration under contract NCC 2-976,

by the US Department of Defense Advanced Research Projects Agency under contract

F30602-97-20227, and by the CMU Robotics Institute.

References

[1] Y. Caseau and F. Laburthe. Cumulative scheduling with task intervals. In M. Maher,

editor, Logic Programming, Proceedings of the Joint International Conference and

Symposium on Logic Programming, Bonn, Germany, 1996. MIT Press.

[2] A. Cesta, A. Oddi, and S.F. Smith. Pro�le Based Algorithms to Solve

Multiple Capacitated Metric Scheduling Problems. In Proceedings of the

Fourth Int. Conf. on Arti�cial Intelligence Planning Systems (AIPS-98), 1998.

http://www.cs.cmu.edu/afs/cs/user/sfs/www/AIPS98/aips-98.html.

[3] C. Cheng and S.F. Smith. Generating Feasible Schedules under Complex Metric

Constraints. In Proceedings 12th National Conference on AI (AAAI-94), 1994.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Arti�cial Intelli-

gence, 49:61{95, 1991.

[5] A. El-Kholy and B. Richards. Temporal and Resource Reasoning in Planning: the

parcPLAN Approach. In Proceedings of the 12th European Conference on Arti�cial

Intelligence (ECAI-96), 1996.

[6] J. Erschler, P. Lopez, and C. Thuriot. Temporal reasoning under resource constraints:

Application to task scheduling. In G.E. Lasker and R.R. Hughes, editors, Advances

in Support System Research. International Institute for Advanced Studies in Systems

Research and Cybernetics, 1990.

20

[7] P. Laborie and M. Ghallab. Planning with Sharable Resource Constraints. In Pro-

ceedings of the International Joint Conference on Arti�cial Intelligence (IJCAI-95),

1995.

[8] N. Muscettola. Scheduling by Iterative Partition of Bottleneck Con
icts. In Proc.

9th IEEE Conference on AI Applications, 1993.

[9] W.P.M. Nuijten and E.H.L. Aarts. A Computational Study of Constraint Satisfaction

for Multiple Capacitated Job Shop Scheduling. European Journal of Operational

Research, 90(2):269{284, 1996.

[10] A. Oddi and S.F. Smith. Stochastic Procedures for Generating Feasible Schedules.

In Proceedings 14th National Conference on AI (AAAI-97), 1997.

[11] N. Sadeh. Look-ahead Techniques for Micro-opportunistic Job-shop Scheduling. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

1991.

[12] S.F. Smith and C. Cheng. Slack-Based Heuristics for Constraint Satisfaction Schedul-

ing. In Proceedings 11th National Conference on AI (AAAI-93), 1993.

[13] E. Taillard. Benchmarks for Basic Scheduling Problems. European Journal of Oper-

ational Research, 64:278{285, 1993.

21

