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Abstract
We study an application of image registration in the medical do-
main. Based on a 3-D hierarchical deformable registration algo-
rithm, we developed a prototype for automatic registering a
standard atlas to a patient’s data to create a customized atlas.
The registration algorithm can also be applied to detect asymme-
try in the patient data to help indicate the existence and location
of any pathology. We have conducted experiments on 11 MRI
scans of normal brains, 3 MRI and 1 CT scan of brains with pa-
thologies.

1. Motivation

Human anatomy presents a challenge to image registration algo-
rithms. Because of genetic and environmental factors and because
of diseases, biological structures have a large range of variation in
appearance. In neuroscience, a major problem in the cross-patient
analysis of brain images is morphological variability. Aside from
the normal variations, various neurological conditions affect the
gross anatomical shapes of the brain. For example, pathologies like
bleeding or tumors can cause a shift of brain structures called mass
effect. Traditionally, doctors have been using manual registration to
detect lesions that make brain structures deviate from the norm, to
analyze variations between normal brains, and to plan surgeries.
Since the manual registration of anatomical structures is labor-in-
tensive and prone to be inconsistent, many researchers are investi-
gating automatic registration methods. While there have been some
encouraging results, due to the complexity of the problem, it re-
mains unsolved.
We present a 3-Dhierarchical deformable registration algorithm,
and a prototype for Anomaly Detection thrOugh REgistration,
ADORE. ADORE is designed to automatically and accurately
match an atlas (a hand-segmented image set of normal anatomy) to
a patient’s data to create a customized atlas, as well as to indicate
any pathologies in the patient’s data. It will facilitate image-based
retrieval of similar cases in medical databases, assist doctors in de-
tecting pathologies, comparing different pathologies’ impact on
brain morphology, observing the development of a pathology over
time, and studying the functions of different parts of the brain.

2. Problem Definition

Considering the human head as a three dimensional volume, the
task of registration is to extract and match the corresponding struc-
tures from different volumes. Registration may be performed on ei-
ther a single imaging modality, or on multi-modal data, e.g.
computerized tomography (CT) andmagnetic resonance imaging
(MRI). MRI is good at revealing soft tissue structures, while CT is
good at uncovering bony structures.
In neurosurgery, the three principal axes of the head are calledaxi-
al, sagittal, andcoronal (see Figure 1). An MRI or CT scan consists
of a series of parallel cross-sections along one of these axes. Figure
2 shows examples of a person’s MRI scans along the three axes.
In practice, there is no enforced standard on the acquisition of the

image data, so the axis along which the cross-sections are scanned
may be at an angle to the principal axes, and the spacings between
consecutive cross-sections may be non-uniform. Moreover, a data
set can focus on a sub-section of the head if so desired. These com-
plications are illustrated in Figure 3, which depicts an example scan
pattern.

One problem we will discuss is matching an atlas to a patient’s data
to create a customized atlas. The brain atlas we use is a set of 123
coronal T1 weighted MRI scans of a normal brain where each voxel
measures 0.9375 x 0.9375 x 1.5 . 144 anatomical structures
were hand segmented and labelled (courtesy of the Brigham and
Women’s Hospital of the Harvard Medical School) (see Figure 4).
By matching the atlas to a patient’s data to create a customized at-
las, we can segment and label the anatomical structures in the pa-
tient’s data. Figure 5 depicts the scenario in which the labels of
anatomical structures in the customized atlas are used to segment
the corresponding anatomical structures of the patient. Note that the
original atlas (Figure 4, right) is warped into a customized atlas for
the patient (Figure 5, left). We could choose to warp the patient data
to match the atlas. However, since the patient’s data will be of more
interest for diagnosis and analysis, we prefer to keep it unchanged
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Figure 1. The three principal axes of a head volume.
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Figure 2. MRI scans along the principal axes.
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Figure 3. A typical axial scan pattern (indicated by the
white lines). Note that the scanning direction is at an angle
to the axial axis, the inter-scan spacings are non-uniform,
and the scans do not cover the entire head volume.
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and warp the atlas instead.

Aside from creating the customized atlas, we will investigate the
problem of using registration to indicate any pathology in the pa-
tient’s data. Figure 6 displays the corresponding axial cross-sec-
tions of the atlas and a brain with pathology. The atlas exhibits an
approximate symmetry about the central line, whereas the symme-
try is destroyed in the patient’s data due to the existence of the pa-
thology. Note that the shape, size, location, and intensity of the
anatomical structures are different in the two data sets.

The variations between different data sets stem from two sources.
Theextrinsicsource is the scanning process, which results in differ-
ent scanning axes, different resolutions, or intensity inhomogene-
ities. The intrinsic sources are differences between different
people’s anatomical structures, or the existence of pathology. Vari-
ations from both sources need to be addressed to bring different im-
age volumes into alignment.

3. Current Approach for Matching

Variations caused by extrinsic sources affect the orientation, scale,
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Figure 4. Coronal and sagittal cross-sections of the atlas.
Two anatomical structures are annotated for illustration.

Figure 5. The scenario in which anatomical structures in a
patient volume (right) are precisely segmented and
labelled using information from the customized atlas (left).
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Figure 6. The corresponding axial cross-sections of the atlas
(left) and a brain with pathology (right). Note the exhibition of
symmetry in the atlas, and the loss of symmetry in the patient.
Also note the difference in the shape, size, location, and
intensity between the corresponding anatomical structures.
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and intensity consistency of the volumes, while variations resulting
from intrinsic sources are manifested as differences in the shape,
size, texture, and location of the corresponding anatomical struc-
tures. Because of their different natures, we decompose the regis-
tration problem to address them separately.
We adopt avoxel-based approach which assumes no prior segmen-
tation among voxels in a volume. An alternative is afeature-based
approach, in which features, such as boundaries of the anatomical
structures, are extracted and employed in the registration. Because
the anatomical structures in the human brain have complex shapes,
non-uniform textures, and ill-defined boundaries, we wish to avoid
additional errors incurred by inaccurate feature detection. Alterna-
tive approaches to anatomical registration are reviewed and com-
pared in section 7.

3.1. Highlights of the Approach

The major points of the current matching method are listed below.
We will elaborate on them in the following sections.

• Preprocessing
• Apply amaximum-connected-component method to extract

the data of interest (the head volume), from the background
to reduce distortions caused by background noise (4.1.1).

• Normalizethe intensities of the volumes to the same range
so they are comparable (4.1.2).

• Hierarchical deformable registration
• Apply aglobal transformation (3-D rotation, uniform scal-

ing, and translation) to the atlas to grossly align it with the
patient volume. An iterative optimization algorithm is used
to determine the transformation parameters (3.2). This pro-
cess adjusts for variations caused by all extrinsic factors
except for intensity inhomogeneities (which was dealt
within preprocessing).

• Employ asmooth deformation represented by the warping
of a grid of 3-D control points to approximately align the
corresponding anatomical structures in the atlas to those of
the patient. An iterative optimization algorithm is used to
determine the deformation parameters (3.3.1). This process
partially adjusts variations caused by intrinsic factors.

• Employ a fine-tuning deformation in which each voxel
moves independently to improve the alignment. An itera-
tive optimization algorithm is used to determine the defor-
mation parameters (3.3.2). This process further adjusts for
variations caused by intrinsic factors.

3.2. Registration via Global Transformation

We address the variations from extrinsic sources by applying aglo-
bal transformation to the atlas volume to grossly align it with the
patient volume. Thisglobal transformation is composed of 3-D ro-
tation, translation, and uniform scaling.

3.2.1 Representation of the Global Transformation

Figure 7 shows the coordinate systems employed in theglobal
transformation. The origins of the coordinate systems in the atlas
volume and the patient volume are placed at their centroids (center
of mass). The Z axis coincides with the axis along which the vol-
ume was scanned.



The three dimensional rotation is represented by a quaternion.

A quaternion can be thought of as a complex number with three
imaginary parts. A 3-D rotation by an angle  about an axis defined
by the unit vector  can be represented by a unit
quaternion.

Thus the imaginary part of the unit quaternion gives the direction of
the rotation axis in 3-D space, whereas the angle of rotation can be
recovered from the real part or the magnitude of the imaginary part
of the quaternion [3].
The three dimensional translation is represented by vector

, which represents the displacement of the origin of the
atlas coordinate system with respect to the origin of the patient co-
ordinate system.
The uniform scaling is denoted by a scalars.
The order in which we apply these transformations to the atlas vol-
ume is first rotation about the centroid of the atlas, then scaling,
then translation. Rotation aligns the atlas volume to the same orien-
tation as the patient volume. Scaling adjusts the size of the atlas vol-
ume grossly to that of the patient. Translation removes any position
difference not accounted for by the alignment of the centroids of the
volumes.

3.2.2 Determining the Global Transformation

There are eight parameters to be determined for theglobal transfor-
mation T, . Because the atlas and the pa-
tient volumes are innately different, we should not expect to find a
transformation that exactly matches them. We can only pursue a
transformation that minimizes the error.
We define the quality of a match in terms of the sum of squared dif-
ferences (SSD) between the intensities of corresponding voxels in
the two volumes:

 is the intensity of voxel  in the pa-
tient volume, and  is the intensity of voxel

 in the atlas volume.  is  after
applying theglobal transformation T. The SSD is a function of this
transformationT. We apply the Levenberg-Marquardt non-linear
optimization algorithm to iteratively adjust the transformation pa-
rameters to reduce the SSD. The iteration continues until the chang-
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Figure 7. The coordinate system.
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es in the transformation parameters are below a user defined
threshold, at which point theglobal transformation is considered to
be recovered. We employ multi-resolution processing and stochas-
tic sampling for efficiency and to help prevent the optimization pro-
cess from being trapped in local minima (see section 4.2).
After applying the transformation, the voxel coordinates in the atlas
may not have integral coordinates. Tri-linear interpolation is em-
ployed to determine a voxel’s intensity from its eight bounding
neighbors (see Figure 8). Notice that the result of the tri-linear in-
terpolation is not affected by the order of the three linear interpola-
tions along the three axes. If the voxel falls outside of the range of
the volume, its effect is ignored.

Figure 9 displays the gray level data of the atlas, a patient’s data,
and the result of using the global transformation to align the atlas
with the patient. Note that the atlas volume is rotated (approximate-
ly 90 degrees, from the coronal view to the sagittal view), translat-
ed, and scaled to grossly match with the patient’s volume. Labels of
several anatomical structures in the transformed atlas are directly
projected to the patient volume. They only roughly align with the
corresponding anatomical structures of the patient, and consider-
able discrepancies remain in their shape, size, and location.

3.3. Registration via Deformation

After the global transformation, the extrinsic variations between
the atlas and the patient volumes are reduced. However, the exist-
ence of intrinsic variations impedes accurate segmentation and cor-
respondence of anatomical structures, as shown in Figure 9.
Because brain morphology is intricate, the discrepancy between the
atlas and the patient cannot be fully addressed by applying one
transformation to the whole atlas volume. Localized deformation is
necessary.

3.3.1 Smooth Deformation

Although the variations across individuals can be large, the shape
and density of corresponding anatomical structures are still distinct
enough for them to be related. Therefore, the intensity difference
between spatially corresponding voxels can act as the deforming
force. The deformation process causes atlas voxels to be spatially
shifted towards their counterparts in the patient volume.
The most intuitive way to represent the deformation would be a 3-
D displacement for each voxel. This will allow each voxel to de-
form freely, but it can only succeed when the voxels’ initial posi-
tions are close to their sought positions. The intrinsic variations
across individuals make theglobal transformationunable to align

Figure 8. Tri-linear interpolation gives the intensity of a
voxel by interpolating among its 8 bounding neighbors.

Linear interpolations
among 8 neighbors
along x axis results in
4 intermediate values

Linear interpolation
among the 4 inter-
mediate values along
y axis then yields 2
intermediate values

Linear interpola-
tion between the 2
intermediate values
along z axis gives
the voxel intensity
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the atlas to the patient precisely enough for a good initial alignment.
We need a more robust representation for intermediate deforma-
tions.

• Representing the Smooth Deformation
Our solution is to ensure asmooth deformation by placing a 3-D
control grid in each volume. The vertices of the control grid are
control points. The 3-D displacements of the control points deter-
mine the deformation of the voxels they enclose. Therefore al-
though the control points can deform freely, the voxels inside each
control grid cell are forced to deform smoothly. Since the number
of control points is orders of magnitude lower than the number of
voxels, there are fewer parameters to estimate, making the defor-
mation process more stable.
The simplest 3-D grid is composed of rectangular prisms, in which
case the control grid is a regular sub-sampling of the voxel grid.
Figure 10 shows an example of a control grid cell and an arbitrary
deformation of it. Szeliski employed similar representation in 2-D
registration [7] and 3-D registration of surfaces, [6]. Figure 11 is a
2-D illustration of the smooth deformation process.

• Estimating the Smooth Deformation
Although we represent thesmooth deformation using only the 3-D
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Figure 9. Cross-sections of the atlas volume and a patient’s
volume, before (top row) and after (bottom row) registration
via global transformation. Notice the atlas is rotated from a
coronal view to align with the sagittal view of the patient.
The outlines of anatomical structures in the transformed atlas
are directly projected on the patient volume. Note that they
only roughly align with their counterparts in the patient data.
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Figure 10. A control grid cell whose vertices are
control points (left), and an arbitrary deformation of
it due to movements of the control points (right).
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displacements of the control points, we estimate the deformation
force using the intensity differences over the whole volumes. For a
voxel  in the patient volume with intensity

, suppose the control grid cell it belongs to is theith
in the array of all control grid cells . The correspond-
ing grid cell for the atlas volume is . From the relative
position of  with respect to the 8 control points of

 in the patient volume, we can tri-linearly interpolate
the location of its counterpart in the atlas volume
using the 8 control points of . Should

 have non-integral coordinates, tri-linear interpo-
lation is applied to compute its intensity from its 8 neighboring vox-
els in the atlas (see Figure 8). In the case that
falls outside the atlas volume, it is ignored.
Under an idealsmooth deformation, the atlas volume should com-
pletely align with the patient volume, and
should equal to . In practice,
and  differ; the best deformation minimizes these
differences. We take a similar approach to that of solving for the
global transformation in 3.2.2. We use the sum of squared differ-
ences (SSD) between all voxels’ intensities in the volumes as the
error function, and employ the Levenberg-Marquardt iterative non-

Figure 11. A 2-D illustration of thesmooth deformation.
The first row is the original data. The second row is the
original data overlaid with the regular control grids. In
the third row the control points of the atlas are shifted
towards their counterparts in the patient. In the last row
the atlas is deformed to match the patient.
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linear optimization method to determine thesmooth deformation
parameters that best match the two volumes.
The only difference between this optimization process and the one
in 3.2.2 is that the parameters we compute are not the global trans-
formation parameters, but the collection of localsmooth deforma-
tion parameters for each control grid cell. The control grid cells do
not deform independently, the deformations are linked by shared
control points across the 3-D control grid. They collectively define
thesmooth deformation.
Figure 12 shows the effect of thesmooth deformationon the previ-
ous example. Notice that the atlas volume is deformed in 3-D to
match the patient volume. The labels of the anatomical structures in
the deformed atlas approximately align with the corresponding
structures of the patient.

3.3.2 Fine-Tuning Deformation

Thesmooth deformation is effective and robust at deforming the at-
las to approximately match its anatomical structures to that of the
patient, even when the global transformation gives poor initial
alignment. However, since only the control points are allowed to
deform independently, it can not account for any details smaller
than the size of a control grid cell. To adjust to finer details, we ap-
ply a fine-tuning deformation.

• Representing the Fine-Tuning Deformation
Similar to the smooth deformation, the intensity difference between
spatially corresponding voxels acts as the deforming force. The dif-
ference is that the 3-D displacement of each voxel in the atlas vol-
ume partakes in the representation of thefine-tuning deformation.
Therefore each voxel can deform freely, allowing the deformation
to attend to details. This procedure is similar to the approach dis-
cussed in [10].

• Estimating the Fine-Tuning Deformation
For a voxel  in the patient volume with intensity

, its corresponding voxel  in the
atlas volume has intensity .  is

 after applying the current deformationD. Suppose
 is the difference between the current deformationD

and the optimum deformation, then we have:

The first order Taylor expansion of the first term in (4) gives

Figure 12. Corresponding cross-sections of the atlas (left) and
the patient (right) after registration viasmooth deformation.
Note the atlas is deformed to match the patient. Labels of
anatomical structures in the atlas approximately align with the
corresponding structures in the patient.
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From (4) and (5), one solution for  is:

To prevent the deformation parameters from going out of bounds
when the atlas’ gradient  is close to zero, we
add a stabilizing factor :

The deformationD is recovered by iteratively solving for , until
is smaller than a user defined threshold. Because the number of

deformation parameters is 3 times the number of voxels, the prob-
lem is under-constrained. We apply 3-D Gaussian smoothing to the
3-D deformation parameters after each iteration to constrain the de-
formation. This process is similar to an optical flow algorithm. Tri-
linear interpolation is used to compute when the
voxel coordinates after deformation are not integers.
Figure 13 is the result of the previous example after the fine-tuning
deformation. Note that the atlas is further warped in 3-D to better
align with the patient. Labels of anatomical structures in the atlas
match well with their counterparts in the patient.

Once the atlas is deformed to align with the patient, we call it acus-
tomized atlas. Labels of anatomical structures in thecustomized at-
las can be used to directly segment and label the patient volume.

4. Algorithm Implementation Details

4.1. Preprocessing

To improve the robustness of the algorithm, we apply two types of
preprocessing: background separation and histogram normaliza-
tion.

4.1.1 Background Separation

Since we take a voxel-based approach with no prior segmentation,
each voxel in the data is assumed to play an equal role in the regis-
tration process. There is usually background noise in the data,
which necessitates background separation to ensure only relevant
data contributes to the registration procedure.
We first automatically threshold the volume to eliminate some of
the dim background noise. The threshold is the first valley of the in-
tensity histogram, after it is smoothed using a Gaussian filter (see
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Figure 13. Corresponding cross-sections of the atlas (left)
and the patient (right) after registration viafine-tuning
deformation. Note the atlas is warped more to match the
patient. Labels of anatomical structures in the atlas match
well with their counterparts in the patient volume.
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Figure 14). Since the region containing the head is connected, we
apply a connected-component algorithm to the binary volume and
find the largest connected component. Any holes caused by dark re-
gions inside the head are filled in. We only consider data within that
component in later processing.

4.1.2 Histogram Normalization

We adopted an intensity-based method to avoid errors introduced
by unreliable feature extraction processes, but inter-scan intensity
variations make this approach problematic. The current solution is
to perform histogram normalization on each volume prior to the
registration process. To prevent outlier voxels with extreme inten-
sities from stretching the histogram, we set the intensity of the dark-
est 2% of the voxels to 0, the intensity of the brightest 2% of the
voxels to 255, and then linearly scale voxel intensities in between
to the range of 0 to 255.

4.2. Efficient and Effective Processing

The volumes we deal with typically have 8 million voxels. There-
fore it is imperative to carry out the registration in an efficient, yet
accurate, manner.

4.2.1 Multi-resolution Processing

A multi-resolution strategy is used not only to improve efficiency,
but also to help the optimization procedure to first focus on global
patterns and gradually shift to the details. We employ two kinds of
multi-resolution processing: an image pyramid (used in theglobal
transformation and thesmooth deformation), and a control grid
pyramid (used in thesmooth deformation).
The image pyramid is a hierarchy of data volumes generated by
successive subsampling. Currently it has 3 levels, each level being
half the resolution of the next higher level. At the lower resolutions
there are fewer details present, so the minimization process has less
tendency to become trapped in local minima. By inheriting results
from a lower resolution, the higher resolution registration can start
closer to the global minimum. Optimization at the higher resolu-
tions uses the finer details to refine the result.
The control grid pyramid is a hierarchy of different resolution con-
trol grids. Currently it has 5 levels, in which the numbers of control
points along x, y, and z directions are 2x2x2, 3x3x3, 4x4x4, 5x5x5,
and 6x6x6. By starting with coarser control grids the deformation
can focus on global patterns before plunging into details. The result
from the lower resolution control grid initializes the registration
with finer control grids close to the optimum.Smooth deformation
with finer control grids allows for a more precise registration.

Number of Voxels

Intensity

Threshold

0

Figure 14. Thresholding based on the intensity histogram.

4.2.2 Stochastic Sampling

While estimating theglobal transformation and thesmooth defor-
mation, we do not process every voxel of the volumes during each
iteration of the optimization process. Instead, we sample a random
set of voxels at each iteration. This improvement in computation ef-
ficiency is possible because the optimizations are over-constrained.
Moreover, the stochastic nature of the sampling helps the minimi-
zation process to escape from local minima [20]. Note that because
the fine-tuning deformationhas 3 times as many parameters as the
number of voxels, the problem is highly underconstrained, so sto-
chastic sampling is not appropriate.

4.2.3 Parallel Processing

In our approach, the computation at each voxel is identical, so the
process is voxel-wise parallelizable. To reduce overhead, we em-
ploy parallel processing at a higher level than the voxel representa-
tion. During the registration viaglobal transformation and during
the fine-tuning deformation, we parallelize the processing of each
cross-section of the volumes; whereas in the registration viasmooth
deformation, we parallelize the processing of each control grid cell.
Because a voxel in the atlas volume can map to any position in the
patient’s volume, it is difficult to partition the volumes so each part
can be processed independently. Therefore, we used a shared-mem-
ory multi-processor computer in which each processor has access to
the full volumes.

5. ADORE

Based on the 3-Dhierarchical deformable registration algorithm,
we developed a prototype, ADORE (Anomaly Detection thrOugh
REgistration). ADORE is designed to create a customized atlas for
the patient, and use registration to indicate pathologies in the pa-
tient data. Experiments on actual medical data were carried out to
evaluate the performance in matching and pathology indication.

5.1. Registration Performance

We conducted experiments on eleven MRI data sets. The perfor-
mance was successful on five data sets, reasonable on four data sets,
and poor on two data sets. Consistent satisfactory performance is
impeded by two factors: one is that our approach is intensity-based,
and suffers when the patient volume has a considerably different in-
tensity distribution from the atlas; another factor is that if the pa-
tient data is coarsely sampled or only covers part of the head
volume, it will not contain sufficient information for accurate reg-
istration.
The result of matching the atlas to one normal brain was presented
in Section 3. Figure 15 shows the progressive results of the 3-Dhi-
erarchical deformable registrationbetween the atlas and a brain
with pathology. Note that theglobal transformation only addresses
the extrinsic variations between the atlas and the patient using 3-D
rotation, scaling, and translation. The atlas is rotated approximately
90 degrees from the coronal view to match the axial view of the pa-
tient. Labels of anatomical structures in the atlas can not align with
the corresponding structures in the patient data. The intrinsic varia-
tions are adjusted roughly during thesmooth deformationvia 3-D
warping of the control grid. Labels of anatomical structures in the
atlas approximately align with the corresponding structures in the
patient data. The deformation is refined using thefine-tuning defor-



mation,where each voxel moves independently to align with its
counterpart. Labels of anatomical structures in the atlas align well
with the corresponding structures in the patient data. Figure 16 is a
close-up on the registration of the lateral ventricles along the defor-
mation hierarchy. The improvement of alignment accuracy is sig-
nificant. The contours of the lateral ventricles appear to change
during the registration process because the transformation and de-
formations move the 3-D volumes with respect to the fixed cross-
section we are observing.

5.2. Anomaly Detection

It is of great clinical significance to create the customized atlases
and to indicate pathologies for patients with neurological condi-
tions. Certain pathologies cause mass effect, which shifts the brain
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Figure 15.The progressive result of the 3-D hierarchical
deformable registration between the atlas and a patient
with pathology. The atlas was warped in 3-D to match the
patient. The alignment of the corresponding anatomical
structures improve along the registration hierarchy.

Atlas Patient

Chronicle
Subdural
Hematoma

structures, and causes anatomical features close by to deform sig-
nificantly (see Figure 6). However, since our deformation process
allows local deformations, it can still create the customized atlases
with anatomical structures matching their counterparts in the pa-
tients’ data, such as the case in Figure 15.
For the experiments on anomaly detection, we matched the pa-
tient’s mirror volume (with left and right exchanged) to itself. Since
a normal brain is approximately symmetric about the central line
(visible from the axial and coronal view), not much deformation is
needed to align its mirror volume to itself. A significant amount of
deformation will indicate the absence of symmetry, and the possi-
ble existence of pathologies. In Figure 17, the left column displays
an axial cross-section of each patient’s volume, the right column is
the same cross-section overlaid with the deformation vectors of
matching the patient’s mirror volume to itself. For the normal brain
(first row), there is very little deformation, because it is approxi-
mately symmetric. For the brain with chronicle subdural hematoma
(second row), there is significant and uniform deformation. This is
because the pathology caused mass effect and destroyed the sym-
metry of the brain, forcing the anatomical structures (such as the
lateral ventricles) to shift considerably. The direction of the defor-
mation vectors reveals the source of the mass effect, which is the
possible location of the pathology. For the brain with a tumor (third
row), aside from the uniform deformation caused by the shifting of
the lateral ventricles, there is a swirl pattern in the deformation vec-
tors. This is because the tumor is so close to the central line that its
“counterpart” in the mirror volume managed to shift back (partly)
to match with itself. Note that unlike the other data sets, this is a CT
scan. The characteristics of the deformation vectors combined with
domain knowledge can provide indications of the existence and lo-
cation of anomalies.

6. Evaluation and Analysis of Matching

It is difficult to quantitatively evaluate registration results in medi-
cal images, due to the lack of ground truth. We give a qualitative
assessment of our algorithm in terms of simplicity, accuracy, and
speed.

Deformation Hierarchy

Registration Accuracy

Figure 16.A close-up on the registration of the lateral
ventricles at each stage in the registration hierarchy.
The improvement in accuracy is significant.



6.1. Simplicity

Our current approach, from preprocessing, registration viaglobal
transformation, registration viasmooth deformation, to registration
via fine-tuning deformation, is completely automatic. The role of
the user is to specify the principal scanning axis. This can be stan-
dardized so the user can simply select among different settings.

6.2. Speed

Currently it takes 12 minutes to match 256x256x124 volumes on an
SGI computer with four 194 MHz R10000 processors. There are
parameters that can be tuned to improve efficiency, such as the
number of stochastic samples, the number of levels in the pyramids,
and the number of control points.

6.3. Accuracy

Quantitative evaluation of a matching method is hard to perform
due to the lack of ground truth. Figure 18 compares ADORE’s seg-
mentation and labelling of a patient volume with an expert’s result,
and it is noticeably less accurate at fine details. This is because
ADORE adopts an intensity-based approach, but the same anatom-
ical structure in different data sets can have different intensities.

Figure 17. An axial cross-section of each patient volume
(left), and the same cross-section overlaid with corresponding
deformation vectors (right). The pattern, magnitude and
direction of the deformation vectors indicate the possible
existence and location of the pathologies.

Normal

Chronicle
subdural
hematoma

Tumor

7. Related Work

The registration of medical images via optimization in transforma-
tion space has been an active research area--the comprehensive sur-
vey article by van den Elsen et al. [11] lists 161 citations. The
primary division of registration approaches is into methods using
external and internal image properties for matching, because this
distinction is important for the clinical protocol.External image
properties are introduced by artificial objects that are “added” to
the patient, such as head frames or skin markers.Internal image
properties are patient related characteristics of the image data set,
such as the intensity differences between anatomical structures.
External, marker-based registration methods have the advantage
that any two modalities can be matched, as long as a marker can be
constructed that is detectable in both modalities. They yield high
accuracy matching with respect to rigid transformations [4]. But to
ensure accuracy, the markers must be rigidly attached to the patient
(by driving screws into the patient’s skull), so as to indicate precise-
ly the patient’s position and orientation. Obviously, this is invasive
and inconvenient.
Registration methods using internal image properties have the ad-
vantage of being non-invasive and fully retrospective, which means
that one does not need to know prior to the acquisition of the images
whether matching will be required. They also have the potential to
deal with non-rigid transformations between different image sets.
This makes them more favorable for anatomical registration across
individuals, where a rigid transformation will not suffice.
Two popular schools of registration using internal image properties
arefeature-based andvoxel-based. Feature-basedmethods attempt
to extract the anatomical structures in different data sets, and find
the correspondences between them. They have the characteristic of
being efficient in representation and independent of imaging mo-
dality. However, feature-based registration is critically dependent
on the quality of the feature extraction, which is not trivial since an-
atomical structures tend to have complex shapes and ill-defined
boundaries. Human interaction is generally necessary to help select
and extract features or to guide the matching procedure. Conse-
quently, it is subject to user subjectivity, time-consuming, and in-
convenient.
Many researchers usedeformable modelsfor feature-based non-
rigid registration. [5] gives a comprehensive survey. The initial
placement of the deformable model must be very close to the
sought feature to guarantee a successful result for elastically de-
formable models, therefore human intervention is generally neces-
sary. The approach in [16] employs a 3-D elastic warping

Figure 18. Labels from hand segmentation
compared to the result of ADORE’s.

ADORE’s ResultHand-Segmentation



transformation to register 3-D images. The transformation is driven
by an external force field defined on a number of distinct anatomi-
cal surfaces, which were acquired in an interactive manner.
As an alternative,voxel-based algorithms obviate the need for an
explicit segmentation, although the representation is not as concise.
The most intuitive voxel-based approach is based on voxelintensi-
ties. Bajcsy et al. develop a system that elastically deforms a 3D at-
las to match anatomical brain images [9],[8]. The atlas is modelled
as a physical object and is given elastic properties. Although their
approach is similar to our current one, they assume the intrinsic
variations between people can be modelled by an elastic deforma-
tion whereas we only enforce smooth deformation in an intermedi-
ate stage. Without user interaction, their atlas can have difficulty
converging to complicated object boundaries. Also their method is
more computationally expensive and requires interactive and time-
consuming preprocessing.
Christensen et al. presented a method very close to ours, but they
used a fluid dynamic model for the deformation [1], [2]. It con-
strains neighboring voxels to have similar deformations, while al-
lowing large deformation for small sub-volumes. It takes 1.8 hours
to match 128x128x100 volumes on a 16384-processor MasPar,
while our algorithm takes 12 minutes to match 256x256x124 vol-
umes on an SGI with four 194 MHz R10000 processors.
In [10], Thirion takes a similar approach as ours, except that he as-
sumes the volumes are already globally aligned, and he applies op-
tical flow from the beginning. To reduce computation time, he used
the gradient of the patient volume instead of the deformed atlas, be-
cause the computation of the latter is more expensive, requiring tri-
linear interpolation of each voxel’s gradient. However, this quicker
method can cause errors when the deformed atlas does not resemble
the patient closely. Because optical flow relies heavily on the con-
stant brightness assumption, it is prone to failure when there are
large intensity variations between different image sets.
Although voxel intensity-based approaches have shown encourag-
ing results, they are problematic when there are intensity inhomo-
geneities. Moreover, they only work for multi-modal data if there
exists a linear mapping between intensity values, which is unfortu-
nately almost never the case. Viola and other researchers have in-
vestigated registration based on mutual information (MI) [18], [19],
[20], [21]. MI is a basic concept from information theory, which
measures the statistical dependence between two random variables,
or the amount of information that one variable contains about the
other. The MI registration criterion assumes that the statistical de-
pendence between corresponding voxel intensities is maximal if the
images are geometrically aligned. Because no assumptions are
made regarding the nature of this dependence, the MI criterion is
highly data independent and allows for robust and completely auto-
matic registration. Current applications of MI to registration only
perform rigid transformations to register image data of the same
person from different modalities. The possibility of applying the MI
criterion in deformable registration remains to be studied.
To date, most efforts are focused on exploring the information con-
tent in the images to achieve registration. Little work has been done
in using domain knowledge to guide the process, and to tackle
pathological cases which are of more clinical importance.

8. Research Directions

Our experiments demonstrated the strength and promise of the hi-
erarchical deformable registration algorithm, and the automatic
registration and pathology detection prototype, ADORE. However,

for them to be applied to real medical practice, much research re-
mains to be done.

8.1. Improve Registration Performance

Although the histogram normalization step can address consider-
able intensity discrepancies between data sets, the performance of
our approach still decreases if the discrepancy is large. It may also
fail to align data from different imaging modalities. Since mutual
information can discern similar patterns despite differences in in-
tensities, and has been successfully applied to multi-modality reg-
istration via rigid transformations, it is promising to apply this
criterion to deformable registration.

8.2. Use Domain Knowledge as Guidance

Our current approach has no constraints on the deformations. If the
deformation could be limited to shapes within the normal anatomi-
cal variation of structures, or the characteristic deformation caused
by pathologies, potential local minima could be avoided.
Knowledge of natural shape variability and pathology-afflicted de-
formation can be used to define allowable deformations, as well as
to assist pathology detection. Figure 19 compares the correspond-
ing cross-sections of the atlas after global transformation (left) and
then local deformation (right) to match a patient. After deforma-
tion, the anatomical structure labelled asskull becomes thicker and
uneven. Since this is out of the normal range of variation, it implies
the possible existence of pathology. This applies to pathologies that
only cause intensity variations as well. After matching the atlas to
the data, the area of pathology will have an anatomical label. If the
intensity distribution of the pathology does not conform to that of
the labelled anatomical feature, it suggests an abnormality.

Domain knowledge can be acquired from the statistics of training
samples. The challenge is how to formulate a representation of the
knowledge that can be incorporated into the registration procedure.
For information described by a large number of possibly highly cor-
related parameters, principal component analysis (PCA) may offer
a promising solution by characterizing the few largest eigendefor-
mations, reducing the dimensionality substantially. To represent
the information in a way that is appropriate for applying PCA, Fou-
rier descriptors or modal representations have been examined in
previous work [17], [19], [20].
Knowledge of anatomy, such as symmetry and relative positions of
structures, can also provide guidance. Moreover, some anatomical
structures are more distinctive and therefore more easily registered.

Figure 19. The corresponding cross-sections from the atlas
after global transformation (left) and local deformation
(right) to match a patient volume. Note that after deformation
the region labelled as the skull becomes thicker and uneven.

Skull



These structures should be given more weight in the estimation of
the deformation.

8.3. Quantitative Evaluation

Quantitative evaluation of registration results is important because
that will allow researchers to compare different approaches, and to
assess the trade-off between computational efficiency and accura-
cy. One way to quantitatively evaluate the performance of ADORE
would be to employ hand-labelled multiple atlases. Using one of
the atlases as the patient, the registration process creates its custom-
ized atlas. The registration accuracy could be quantified by the frac-
tion of voxels whose labels given by an expert agree with the labels
in the customized atlas. We are currently investigating potential
sources for additional atlases to make this type of evaluation possi-
ble.

9. Conclusion

The goal of this research is to perform automatic, fast and accurate
registration of volumetric data in 3-D space, as well as anomaly de-
tection using registration and domain knowledge. One important
application domain is medical image registration. Anatomical
structures vary considerably in appearance across individuals or
within one individual over time, and any pathology may aggravate
these variations.
We adopted an intensity-based approach for registration, which as-
sumes no prior segmentation of the voxels in a volume. To address
the appearance variations of anatomical structures, we have devel-
oped a three-level hierarchical deformable registration algorithm.
First, a 3-Dglobal transformation (rotation, uniform scaling, and
translation) aligns the different image volumes. This procedure cor-
rects for variations induced during the image acquisition process.
Secondly, asmooth deformation, represented by the warping of a 3-
D grid of control points, approximately matches the corresponding
anatomical structures in the image volumes. This step partially ad-
justs for the inherent variations in the appearances of the anatomical
structures across individuals. Several grid resolutions are used to
progressively change the emphasis from global alignment to align-
ment of specific anatomical structures. Finally, afine-tuning defor-
mation, which allows each voxel to move independently, refines
the matching of corresponding anatomical features. For computa-
tional efficiency, we use a hierarchy of image resolutions, stochas-
tic sampling, and parallel processing.
Based on this algorithm, we have developed a prototype for auto-
matic registration and pathology detection, ADORE (Anomaly De-
tection thrOugh REgistration). We conducted experiments on 12
sets of real image data of the brain. ADORE can match two
16MByte volumes in 12 minutes on an SGI workstation with four
194 MHz R10000 processors, with an accuracy qualitatively com-
parable to manual registration. By matching an expert-segmented
atlas to a patient’s data, ADORE can automatically build a custom-
ized atlas for different individuals. Moreover, ADORE is able to in-
dicate the possible existence and location of pathologies by
measuring the asymmetry of the anatomical features.
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