
Abstract

We introduce a system that automatically segments
and classifies features in brain MRIs. It takes 22 minutes to
segment 144 structures in a 256x256x124 voxel image on an
SGI computer with three 194 MHz R10K processors. The
accuracy is comparable to manual segmentation, which can
take an expert at least 8 months.

The process starts with an atlas, a hand segmented
and classified MRI of a normal brain. Given a subject’s
data, the atlas is warped in 3-D using a hierarchical
deformable matching algorithm until it closely matches the
subject, i.e. the atlas is customized for the subject. The cus-
tomized atlas contains the segmentation and classification
of the subject’s anatomical structures.

Qualitative and quantitative evaluations of the sys-
tem’s performance show promise for applications in the
quantitative study of brain anatomy. We have obtained ini-
tial results for finding the normal range of variation in the
size and symmetry properties of anatomical structures, and
for detecting pathologies.

1. Motivation

In many medical applications, such as the study of Al-
hzeimer’s disease and schizophrenia, it is important to exam-
ine the relevant anatomical structures quantitatively.
Developments in medical imaging (e.g. magnetic resonance
imaging, MRI) have made it possible to visualize internal an-
atomical structures. However, due to the lack of an automat-
ed segmentation and labelling system with sufficient
accuracy and efficiency, most quantitative assessment of in-
dividual structures has been done manually.

One example is a study of physically abused children.
To examine the volumes of children’s brain structures, the
researchers have hired operators who laboriously label MRI
volumes, slice by slice, using a computer interface. For each
2-D slice, the operator circles an area that contains the struc-
ture of interest. The interface displays the intensity histo-
gram of that area. The operator then picks a threshold based
on the histogram. Segmentation by that threshold gives the
2-D area of the structure in that slice. The 3-D volume of the
structure is computed by summing up the structure’s 2-D
area in all the slices. To examine all the brain structures in

this manner will take at least a year, which makes study of
many subjects prohibitive. Currently, doctors compromise
by studying a limited number of structures over a manage-
able number of subjects. For the study to have sufficient sta-
tistical significance, however, a database for more subjects is
mandatory.

In addition to being time-consuming, such manual seg-
mentation suffers from two deficiencies. One is that there ex-
ist density variations within each anatomical structure, and
single thresholds cannot segment item accurately. The other
is that the segmentation is based on human judgement, and
is prone to be subjective, inconsistent, and non-repeatable,
which reduces the credibility of conclusions drawn from
them.

We will introduce a system that can automatically seg-
ment and classify 144 important brain structures in a
256x256x124 voxel image in 22 minutes, with an accuracy
comparable to manual segmentation, as shown in Figure 1.
The left image is one slice of a subject’s MRI, the right is the
segmentation generated by the system. Different color re-
gions represent different anatomical structures. Once the
segmentation is available, many types of quantitative analy-
sis can be conducted. As shown in the figure, the user can
choose any structure, and the system instantly overlays the
segmentation on the MRI data, and displays the name, vol-
ume, and average density of the structure.

Figure 1: A subject’s data (left), and its automatic
segmentation (right). When the user selects a
structure, the segmentation is overlaid on the
raw data. The structure’s name, volume, and
average density are given at the bottom.
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The following sections will discuss how the system
works, its performance, and examples of its applications.
Please refer to [22] for details on the algorithm and imple-
mentation issues.

2. Automatic Segmentation and Classification

The system achieves automatic segmentation and clas-
sification by taking advantage of anatlas, i.e. an MRI with
known segmentation and classification. When imaged using
the same modality, the corresponding anatomical structures
in the atlas and a subject resemble each other in appearance.
This system applies a hierarchy of deformable models to the
atlas, warping it in 3-D space to match the subject’s data.
Once the atlas fits the subject’s data, the segmentation and
classification in the atlas directly applies to the subject, i.e.
the atlas iscustomized for the subject.

The system works on T1 weighted magnetic resonance
images (MRI). An MRI volume is a series of parallel cross-
sections along one of three principal axes: coronal, axial, or
sagittal. Example slices of a brain MRI taken along each axis
are shown in Figure 2.

Figure 3 shows one slice of the human brain atlas we
use. It is a T1 weighted MRI volume of a normal brain. It
contains 123 slices, and each slice is a 256x256 pixel matrix.
An expert manually segmented 144 structures, and gave
each structure a unique label. The labels of the structures
were color-coded to illustrate the segmentation.

The atlas may differ from a particular subject’s data in
two ways. One is the innate difference between people. This
causes variations in the shape, size, density, and location of
anatomical structures, i.e. variations that are local and intrin-
sic. The other is the lack of standards in the data acquisition
process. The axis along which the images are taken is gener-
ally at an angle to the principal axis, and the spacings be-
tween consecutive cross-sections may be non-uniform. An
MRI can focus on a sub-section of the brain if so desired, and

Figure 2:  Example slices of brain
MRI along each principal axis.
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there can be inhomogeneities in image intensities. These fac-
tors cause variations in the orientation, scale, resolution, and
intensity consistency between the atlas and subject, i.e. vari-
ations that are global and extrinsic.

These two types of variations have different natures, so
the system addresses them separately, using ahierarchical
deformable matching algorithm. It first applies asimilarity
transformation to the atlas, to address the global and extrin-
sic variations. It then applies asmooth deformation to the at-
las, to roughly adjust for the local and intrinsic variations.
Finally, it uses afine-tuning deformation, which shifts each
voxel to fit the atlas more precisely to the subject.

The following subsections will discuss the algorithm
and its performance, using the example of a subject with pa-
thology, shown in Figure 4.

2.1. Similarity Transformation

The similarity transformation addresses the global and
extrinsic variations between the atlas and the subject by ap-
plying a 3-D rotation, uniform scaling, and 3-D translation to
the atlas volume. Figure 5 defines the coordinate systems of
the volumes. The origins of the coordinate systems in the at-
las and the subject’s data are placed at their centroids (center
of mass). The Z axes coincide with the axes along which the
images were scanned. The atlas is first rotated about its cen-
troid, then uniformly scaled about its origin and translated to
align with the subject. The similarity transformation T has 7
degrees of freedom.

Figure 3: The brain atlas: a T1 weighted MRI
volume of a normal brain (left), and the color-
coded map of an expert’s segmentation and
classification of anatomical structures (right).
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Figure 4: A subject with pathology

Chronic
Subdural
Hematoma



Because the atlas and the subject are inherently differ-
ent, there is no global transformation that exactly matches
them. The best transformation only minimizes the differenc-
es. We define the quality of a match in terms of the sum of
squared differences (SSD) between the intensities of corre-
sponding voxels in the two volumes.  is the
intensity of voxel  in the subject volume, and

 is the intensity of voxel
in the atlas volume.  is  after applying the
similarity transformation T. The SSD is a function of this
transformation T:

We apply the Levenberg-Marquardt non-linear optimi-
zation algorithm to iteratively adjust T to reduce the SSD.
The iteration continues until the changes in T are below a
user defined criteria. The criteria we use requires that the
change in 3-D rotation be less than 2 degrees, that the change
in 3-D scaling be below 1%, and that the change in 3-D trans-
lation be smaller than 1 pixel.

The system employs multi-resolution processing and
stochastic sampling for efficiency and to help prevent the op-
timization from becoming trapped in local minima [18]. Cur-
rently it uses 3 resolution levels.

The transformed coordinates, , may not be in-
tegral. In this case tri-linear interpolation is used to deter-
mine the voxel’s intensity from its eight bounding neighbors.
If the transformed coordinates fall outside of the volume,
that voxel is ignored.

Figure 6 shows the result of matching the atlas to the
subject using the similarity transformation. The atlas is rotat-
ed, scaled, and translated to grossly match with the subject
volume. Outlines of the lateral ventricles in the resampled at-
las are directly overlaid on the subject data. They only
roughly align with their counterparts in the subject, and con-
siderable discrepancies remain between their shapes, sizes,
and locations.
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Figure 5:  The coordinate systems
used in the similarity transformation.
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2.2. Smooth Deformation

Smooth deformation seeks to equalize the local and in-
trinsic variations between the atlas and the subject. Although
the variations can be large, the appearance and location of
corresponding anatomical structures are still consistent
enough for them to be correlated. The intensity difference
between spatially corresponding voxels can act as a deform-
ing force, which shifts atlas voxels spatially towards their
counterparts in the subject.

An intuitive way to represent the deformation is a 3-D
displacement for each voxel in the atlas volume. This would
allow each voxel to deform independently, but it will only
succeed when the voxels’ initial positions are close to their
desired positions. It is clear from Figure 6 that the intrinsic
variations between individuals make the similarity transfor-
mation unable to provide a precise enough initial alignment.

The system employs a more robust representation, a 3-
D control grid which is a coarser grid than the voxel grid.
The vertices of the control grid are control points that can
shift independently in 3-D space. The 3-D displacements of
the control points determine the displacements of the voxels
they enclose. Figure 7 is a 2-D illustration of the 3-D smooth
deformation process. Szeliski used a similar representation
in 2-D registration [7] and 3-D registration of surfaces [6].
Since the number of control points is orders of magnitude
lower than the number of voxels, there are fewer parameters
to estimate, making the deformation process more stable.

Similar to section 2.1, the sum of squared differences
(SSD) between corresponding voxels’ intensities in the atlas
and the subject acts as the error function, and the Levenberg-
Marquardt iterative non-linear optimization algorithm is
used to determine the smooth deformation parameters.
When the change in location of each control point drops be-
low 1 pixel, the smooth deformation is considered to be re-
covered. To avoid problems with local minima and to
improve efficiency, the system uses multi-resolution control
grids and multi-resolution image volumes. The control grid

Figure 6:  Corresponding slices of the
atlas and the subject after the similarity
transformation. The atlas is grossly
aligned with the subject. The outlines
of the lateral ventricles in the atlas are
overlaid on the subject’s data.
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has 5 resolution levels, in which the numbers of control
points along the x, y, and z directions are 2x2x2, 3x3x3,
4x4x4, 5x5x5, and 6x6x6.

Figure 8 shows the result after the smooth deformation
is applied to the intermediate result in Figure 6. The atlas is
warped in 3-D to match the subject volume. Note that the
outlines of the anatomical structures in the deformed atlas
roughly align with their counterparts in the subject. The
shapes of the lateral ventricles in the atlas appear to be dif-
ferent from those in Figure 6. This is because the atlas has
deformed in 3-D, and we are looking at the same cross-sec-
tion with respect to the subject’s data.

2.3. Fine-Tuning Deformation

While the smooth deformation significantly improved
the segmentation of individual anatomical structures, there
still exists considerable inaccuracy. This is because only the
control points can shift independently in 3-D space, and vari-
ations smaller than the size of a control grid cell cannot be

Similarity Transformation

Figure 7: A 2-D illustration of the 3-D smooth
deformation. The control points in the atlas
shift to match their counterparts in the subject.
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accounted for. A fine-tuning deformation is necessary to ad-
just to the finer details.

To fine-tune the deformation, the intensity difference
between spatially corresponding voxels in the atlas and the
subject’s data again serves as the deforming force. The de-
formation parameters are the 3-D displacements of each vox-
el. This is similar to the approach Thirion discussed in [10].
Because the number of deformation parameters is 3 times the
number of voxels, the problem is under-constrained. After
each iteration, 3-D Gaussian smoothing is applied to the de-
formation parameters to regularize the problem. This pro-
cess is similar to an optical flow algorithm. The iteration
stops when the root-mean-square (RMS) between the inten-
sities of spatially corresponding voxels decreases by less
than 0.5%.

Figure 9 shows the result after applying the fine-tuning
deformation to the result in Figure 8. The atlas is further
warped in 3-D to better align with the subject. Outlines of an-
atomical structures in the atlas match well with their counter-
parts in the subject’s data. Note that the outline of the skull
is jagged, and the skull is thicker at certain locations. This is
because the subject has a pathology that is not present in the
atlas. The surrounding structures in the atlas were warped to
match with the pathology. This will be discussed more in
Section 5.

Figure 8: Corresponding slices of the atlas
and the subject after the smooth deformation.
The atlas is deformed to match the subject.
The outlines of the atlas’ lateral ventricles
approximately align with those in the subject.
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Figure 9: Corresponding slices of the atlas and
the subject after the fine-tuning deformation.
The outlines of the atlas’ lateral ventricles
align well with those in the subject.
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2.4. Intensity Equalization

The quality of matching is represented by the intensity
difference between corresponding voxels in the atlas and the
subject’s data. However, in general the intensity distribution
in the atlas is different from that in the subject. Equalization
is necessary to make the intensities comparable.

At each stage in the deformation hierarchy, the system
applies a normalization scheme to compensate for the inten-
sity discrepancy:

• Before the similarity transformation, the atlas and the
subject volume can be of significantly different orientations
and scales. The system normalizes the intensities in the vol-
umes to have the same mean and standard deviation.

• After the similarity transformation, the two volumes
are globally aligned, but there exists considerable mis-
matches between individual structures. The system com-
putes the mean intensity difference between corresponding
voxels in the atlas and the subject, and uses the difference to
adjust the intensities in the atlas during the smooth deforma-
tion process.

• After the smooth deformation, individual structures in
the atlas approximately align with those in the subject, espe-
cially the ones with distinct shapes and densities, such as the
corpus callosum and the skull. The system equalizes the
intensities based on this intermediate segmentation. The
process involves first computing the intensity histograms of
the corpus callosum and the skull in the atlas, and finding
the representative intensities at the histogram peaks. Simi-
larly, histograms of the regions labelled as corpus callosum
and skull in the subject’s data are computed. The peak with
the highest intensity in the corpus callosum’s histogram is
considered representative of that structure’s intensity, as is
the lowest intensity peak in the skull’s histogram. The sys-
tem then linearly adjusts the intensity distribution in the
atlas to match these representative intensities. Figure 10
shows examples of the aforementioned histograms.

Figure 10: Histograms of the corpus callosum
(top) in the atlas (dotted line) and the subject
(solid line ), as well as those of the skull (bottom ).
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3. Performance Evaluation

Figure 11 is a close-up of the previous subject’s lateral
ventricles, overlaid with the segmentation given after each
level of the deformation hierarchy. The alignment accuracy
increases along the deformation hierarchy.

For quantitative evaluation, we hand segmented thecor-
pus callosum in the mid-sagittal plane (a reference plane
used by doctors) of 18 subjects, and compared the results
with the segmentation given by the customized atlas, as illus-
trated in Figure 12. We use the percentage of mislabelled
voxels relative to the size of the corpus callosum in the hand-
segmentation to quantify the segmentation accuracy. Misla-
belled voxels include those labelled as corpus callosum in
the customized atlas but not in the hand-segmentation and
vice versa. For the particular subject shown in Figure 12,
12.3% of the voxels are mislabelled.

Figure 13 shows distributions of the percentage of mis-
labelled voxels after each stage of the hierarchical deforma-
tion. After the similarity transformation, only 10% of all the
cases have less than 20% mislabelled voxels, and 5% of the
cases have almost all of the labels wrong. This improved af-
ter the smooth deformation, when 61% of the cases have less
than 20% mislabelled voxels, the worst 11% of the cases

Deformation Hierarchy

Alignment Accuracy

Figure 11: A close-up on the segmentation
of the subject’s lateral ventricles at each
level in the deformation hierarchy.

Figure 12: Comparison of segmentation results.
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have 50% mislabelled voxels. After the fine-tuning deforma-
tion, 78% of the cases have less than 20% mislabelled vox-
els, only 11% of the cases have as much as 40% mislabelled
voxels. This is consistent with the qualitative observation,
that the segmentation accuracy increases after each level of
the deformation hierarchy.

To show the importance of the intensity equalization
procedure, we also computed the percentage of mislabelled
voxels of the same 18 subjects, using only the first intensity
adjustment (matching the mean and standard deviation of the
intensities). As shown in Figure 14, the fraction of cases with
less than 20% mislabelled voxels improves from 60% to
78% when the full intensity equalization procedure is used.
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Figure 13: Distributions of the percentage
of mislabelled voxels after each stage of
the hierarchical deformation.

Figure 14: Comparison of the percentage
of mislabelled voxels with only initial or
the full intensity equalization.
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The above evaluations are subject to a single person’s
decisions in segmenting the data for comparison. In medical
imaging, quantitative evaluation is difficult due to the ab-
sence of ground truth. A more objective standard may be de-
veloped by fusing multiple experts’ opinions.

4. Statistical Study of Brain Structures

The performance of this system is promising for the
quantitative study of the anatomy. This is a fully automatic
algorithm. Thesimilarity transformation is initialized by try-
ing many random initial transformations and picking the one
which gives the minimum SSD [21]. The entire process takes
22 minutes to customize the atlas for a 256x256x124 voxel
volume on an SGI computer with three 194 MHz R10000
processors. Parameters such as the number of stochastic
samples, the number of levels in the image pyramids, and the
number of control points can be tuned to improve efficiency.
The convenience and speed makes it possible to study a large
number of subjects in great detail. We have used the system
to make initial explorations of two areas.

4.1. The Range of Normal Variation

The automated segmentation of anatomical structures
enables statistical study of their sizes. Researchers who
study abused children examine the sizes of certain brain
structures. They spend much time and effort segmenting and
assessing the structures for each subject, as mentioned in
section 1. Table 1 gives the statistics on these structures’ siz-
es estimated by our system, based on 105 normal brain im-
ages.

Table 1. Statistics on the sizes of brain structures.

Structure Name
mean

( )

standard
deviation
( )

3rd ventricle 995 238

4th ventricle 1421 897

amygdala left 2347 1070

right 2502 1147

caudate
nucleus

left 4885 1120

right 4620 1059

cerebellum
cortex

left 32023 17912

right 32839 19172

corpus callosum 19758 5354

mm
3

mm
3



This statistical analysis has revealed certain quantitative
characteristics of the anatomy. There is considerable varia-
tion in the sizes of the same structures across individuals but
the variation among normal subjects falls within a certain
distribution. The identification and verification of the range
of normal variationis important in cross-patient analysis and
abnormality detection. Experienced doctors acquire a sense
of this through practice. Little quantitative study, however,
has been done because it requires tremendous effort to man-
ually segment a number of structures for a significant num-
ber of subjects. This system brings promise to this area of
research.

4.2. Symmetry within the Human Brain

A great number of brain structures have counterparts
across the mid-sagittal plane, and they are approximately
symmetric (Figure 15, left). Certain pathologies causemass
effect, which forces nearby structures to shift from their nor-
mal positions and destroys this symmetry (Figure 15, right).
Neuroradiologists find this property an important clue in pa-
thology detection. We used this system to compute the abso-
lute difference in volumes of the left and right lateral
ventricles for 105 normal brains, and one brain with pathol-
ogy. In Figure 16, the horizontal axis is the absolute volume
difference in mm3, the vertical axis is the percentage of nor-
mal brains whose lateral ventricle differences fall between
certain range. The mean of the absolute volume difference is
794 mm3, and the standard deviation is 681 mm3. Approxi-
mately 72% of the normal brains have lateral ventricles that
are symmetric within 1 cm3, whereas about 7% of the sub-

hippocampus left 2921 822

right 2860 753

lateral
ventricle

left 6705 1778

right 6193 1706

midbrain 8211 2220

occipital
lobes

left 34632 6693

right 34507 5659

pons 8900 5740

precental
gyrus

left 13038 2398

right 17213 3051

Table 1. Statistics on the sizes of brain structures.

Structure Name
mean

( )

standard
deviation
( )

mm
3

mm
3

jects have lateral ventricles that differ by more than 2 cm3.
These quantities help reveal the symmetric characteristic of
the human brain.

5. Applications of the Statistics

Quantitative study of anatomical structures brings broad
prospects to medical research. It allows measurement of the
range of normal variation, and the detection of abnormali-
ties. Statistics on anatomy and pathologies can help express
expert knowledge so as to enhance medical education. More-
over, quantitative description of medical image content will
facilitate efficient retrieval in the ever increasing medical da-
tabases.

For pathology detection, we learned in section 4.2 that
the mean of the absolute difference in the volumes of the left
and right lateral ventricles in normal brains is 794 mm3, and
the standard deviation is 681 mm3. The pathological case
shown in Figure 15, right, has an absolute size difference of
9677 mm3, as shown in Figure 16. This is much larger than
the normal cases, indicating an abnormal asymmetry, possi-

Lateral
Ventricles

Figure 15: There exists approximate symmetry
in the normal brain, but pathologies that cause
mass effect destroy this symmetry.

Normal Brain Brain with Pathology

Figure 16: The distribution of the absolute
difference in volumes of the left and right
lateral ventricles for 105 normal brains.
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bly due to mass effect caused by a pathology. The relative
size difference between the left and right ventricles indicates
the side of the brain containing the pathology.

In section 2.3 the system created the customized atlas
for this particular subject. We noted the segmentation of the
skull yielded a non-uniform outline. The skull volume esti-
mated by the system is 1035833 mm3. Table 1 shows our sta-
tistical study of the skull size for 105 normal brains gives a
mean of 318079 mm3, and a standard deviation of 102558
mm3. The size of this subject’s labelled skull is beyond the
normal range, and hence suggests that an abnormality exists
close to the skull.

6. Related Work

The registration of medical images via optimization in
transformation space has been an active research area--the
comprehensive survey article by van den Elsen et al. [11]
lists 161 citations. Two popular schools of registration using
image properties arefeature-based and voxel-based. Fea-
ture-basedmethods attempt to extract the anatomical struc-
tures in different images, and find the correspondences
between them. They have the characteristic of being efficient
in representation and independent of imaging modality.
However, feature-based registration is critically dependent
on the quality of the feature extraction, which is not trivial
since anatomical structures tend to have complex shapes and
ill-defined boundaries. Human interaction is generally nec-
essary to help select and extract features or to guide the
matching procedure. Consequently, it is subject to user sub-
jectivity, time-consuming, and inconvenient. As an alterna-
tive, voxel-based algorithms obviate the need for an explicit
segmentation. The most intuitive voxel-based approach uses
voxel intensities.

Bajcsy et al. developed a system that elastically deforms
a 3D atlas to match anatomical brain images [8], [9]. The at-
las is modelled as a physical object and is given elastic prop-
erties. Although their approach is similar to our current one,
they assume the intrinsic variations between people can be
modelled by an elastic deformation, whereas we only en-
force smooth deformation in an intermediate stage. Without
user interaction, their atlas can have difficulty matching
complicated object boundaries. Their method is computa-
tionally expensive and requires interactive and time-con-
suming preprocessing.

Christensen et al. presented a method very close to ours,
except that they used a fluid dynamic model for the deforma-
tion [1], [2]. It takes 1.8 hours to match two 128x128x100
volumes on a 16384-processor MasPar computer.

In [10], Thirion takes a similar approach to ours, except
that he assumes the volumes are already globally aligned,
and applies optical flow from the beginning. To reduce com-
putation time, he used the gradient of the subject volume in-
stead of the deformed atlas, because the computation of the

latter is more expensive, requiring tri-linear interpolation of
each voxel’s gradient. However, this quicker method may
cause errors when the deformed atlas does not resemble the
subject closely. Because optical flow relies heavily on the
constant brightness assumption, it is prone to failure when
there are large intensity variations between different images.

Although voxel intensity-based approaches have shown
encouraging results, they are problematic when there are in-
tensity inhomogeneities. Moreover, they only work for
multi-modal data if there exists a linear mapping between in-
tensity values. Viola and other researchers have investigated
registration based on mutual information (MI), [17], [18],
[19]. MI is a basic concept from information theory, which
measures the statistical dependence between two random
variables, or the amount of information that one variable
contains about the other. The MI registration criterion as-
sumes that the statistical dependence between corresponding
voxel intensities is maximal if the images are geometrically
aligned. Because no assumptions are made regarding the na-
ture of this dependence, the MI criterion is highly data inde-
pendent. Current applications of MI to registration only
perform affine transformations to register image data of the
same person from different modalities. The possibility of ap-
plying the MI criterion in deformable registration remains to
be studied.

7. Discussion and Future Directions

We introduced a system that automatically segments
and classifies features in 3-D images. The system accom-
plishes this by starting with anatlas, an MRI of a normal
brain hand segmented and classified by an expert. Given a
subject’s data, the atlas is warped using a 3-Dhierarchical
deformable matching algorithm until it closely matches the
subject, i.e. the atlas iscustomizedfor the subject. Then the
customized atlas can be used directly to segment and classify
the subject’s anatomical structures.

It takes 22 minutes to segment and classify 144 brain
structures in a 256x256x124 voxel image, while similar data
took an expert 8 months to segment and label. We performed
quantitative evaluation of the segmentation for one anatom-
ical structure. Of 18 subjects for which classification correct-
ness was examined voxel by voxel, a mislabelling rate of less
than 20% was achieved for 14 subjects, and less than 10%
for 7 subjects.

The efficiency and accuracy of the system’s perfor-
mance show promise for detailed quantitative studies of
brain structures. The system’s potential has been demon-
strated for finding the range of normal variation of anatomi-
cal structures, studying brain symmetry, and detecting
abnormalities.

Several issues remain to be addressed. Currently the
performance suffers when there are significant differences
between the intensity distributions of the atlas and the sub-



ject. A more effective intensity normalization scheme or a
criterion not based on intensity similarity may improve the
algorithm. More objective and extensive validation of the
segmentation accuracy is important to justify the quantita-
tive studies based on the system’s results. To study the inher-
ent properties of anatomical structures, statistics of
properties other than volume will need to be examined, and
larger databases should be collected. Close collaboration
with medical professionals will be essential in each of these
areas.
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