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ABSTRACT

In this paper, we present novel techniques for performing topic

adaptation on an-gram language model. Given training text la-
beled with topic information, we automatically identify the most

relevant topics for new text. We adapt our language model toward

these topics using an exponential model, by adjusting piititoes

in our model to agree with those found in the topical subset of the
training data. For efficiency, we do not normalize the model; that

is, we do not require that the “probabilities” in theguage model

sum to 1. With these techniques, we were able to achieve a mode

reduction in speech recotjion word-error rate in the Broadcast
News domain.

1. INTRODUCTION

A language model is a probiity distribution p(w|h) estimating
how frequently a worde occurs given that théistory (or pre-
vious words in the sentence)fs Language models have many
applications, most notably in speech recitign in helping to dis-
ambiguate acoustically ambiguous utterances.

The dominant technology in language modeling argram
models. In speech recotgon, typically a singler-gram model
(usually a trigram model) is built on the training data. The task
of topic adaptatioris concerned with identifying the topic of new

}@cs.cmu.edu

and Seymore and Rosenfeld[16] use linear interpolation to com-
bine topicrn-gram models with a generatgram model.
In this work, we extend the research in [16] by using unnor-
malized exponential models to combine topic information. In [16],
a first-pass transcription hypothesis is generated for each article in
the test set using an unadapted trigram model. The twenty most
relevant topics for each hypothesis are identified using a Bayes
classifier. Then, a trigram model is built for each of these top-
ics by just using those articles in the training data labeled with the
iven topic. (Each article in the training data is manually annotated
ith topic information.) Finally, these twenty models are linearly
interpolated with a trigram model built on the entire training set to
yield the language model used for speech redamm
Recently, there has been evidence that exponential models are
superior to linear interpolation in combining multiple information
sources[13, 5, 4]. Exponential models have the following form

Z(lh) exp (Z fi(h, w))\,) po(wl|h) @)

whereZ(h) =" exp()_. fi(h,w)Xi)po(w|h) is a normaliza-

tion term,po (w|h) Is aprior probability, fi(h, w) are thefeatures

of the model, and; are parameters associated with these features.
As an example, consider the case where we take|h) to

be a trigram model. If there are no featuyesthen we will simply

plwl|h) =

data and adapting the language model toward that topic. For examhave thap(w|k) = po(w|h). However, let us say that we want to
ple, if a speech document is recognized as describing O.J. Simp-model the phenomenon that the wétato is more common when

son’s trial, then the probability of the wokhto occurring should
be boosted.
There has been much previous work in topic adaptdtidn-

merous efforts have demonstrated large improvements in the mea-

sure ofperplexity[2, 4, 9]; however, perplexity has been shown
to correlate poorly with speech recation performance. Sev-
eral papers have reported modest speech rétmgnvord-error

the topic isO.J. SimpsonwWe can do this by creating a feature

_ 1 topick) = O.J. Simpsonw = Kato
Fi(h, w) _{ 0 otherwise

and by setting\; suchthae™ equals how many times more prob-
able the worcKato becomes. This will have the effect of boosting

rate (WER) improvements of about 0.5% absolute: Sekine and the probability ofkato when the topic i€0.J. Simpsoifand con-

Grishman[14] adéd hoctopic and cache scores to their language
model score in log probability sge, and lyer and Ostend|@]
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sequently depressing other probabilitieotigh the normalization
termZ(h)), and leaving probabilities unchanged when the topic is
not0.J. SimpsonThis procedure is the basis of how we perform
topic adaptation onr-gram models.

Unfortunately, the evaluation of exponential models is expen-

clusions contained in this document are those of the authors and shouldsjye due to the calculation of the normalization faciih); this

not be interpreted as representing the official policies, either expressed o

implied, of the U.S. government.

1Here, we only discuss research where it is necessary to identify the
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calculation generally makes exponential models orders of magni-
tude slower than trigram models. In this research, we omit the

topic of the current text automatically. This contrasts with the situation Normalization termZ(h). As a result, we no longer hayeoba-

where a topic-specific adaptation text is explicitly given, aspok& 2 of
the 1994 ARPA CSR evaluation[6].

bilities in our model but insteasicores and we can no longer cal-
culate perplexities. On the other hand, our models are virtually as



fast as trigram models and can easily be used to calculate WER’s
in expensive tasks such as lattice rescoring. To prevent scores from

rising above 1, we use the following formulation

__pau{wlh)
plw|h) = T ol
where
pauiw|h) = exp (Z fi(h, w))u) %

The use of the ter f‘;;fg]h) instead ofpo (w|h) maintains the
property thap(w|h) = po(w|h) when there are no features.
We considerthree types of exponential features for performing

topic adaptation.

e We consider features that depress the probabilities of topi-
cal words that are off-topie.g, the wordKato if the topic
is Libya. (We use the terrtopicalto describe a word whose
frequency depends strongly on topécy, the wordKatoas
opposed to the worthat)

We consider features that boost the prdlitéds of topical
words andr-grams when they are on-topie.g, the word
Kato or bigramKato Kaelinif the topic isO.J. Simpson

We consider features that boost the prdligs of words
andn-grams that occur frequently in the current article be-
ing evaluated. These features are similar in effect to a lan-
guage modetachg7].

In the next sections, we discuss each of these feature types in turn.

Our training data consists of 121,000 articles of Broadcast
News data containing a total of 130M words, with each article
manually labeled with a set of topiésEach article is labeled on
average with~3.6 topics out of a set of about 10,000.

2. DEPRESSING OFF-TOPIC WORD PROBABILITIES

The frequency of a topical word in off-topic articles will often be

CARRERE 178.55
RIBERA 101.49
MADYUN 71.33
HAILES 60.52
BRANDIS 49.72
GEMCO 43.89

Table 1: Estimates of how much less frequent wardare when
off-topic (.e, =)

To calculatepgfr-topic(w) for a wordw, we need to determine
which topics are off- and on-topic with respectdo One rea-
sonable heuristic for guessing that a topic is on-topic is if the fre-
quency ofw in articles labeled with that topic is much higher than
its frequency over the entire training set. However, this heuristic is
notideal as indirect dependencies may exist. For example, if many
articles with the topi®©.J. Simpsorare also labeled with the topic
DNA testingrecall that articles usually have ftiple topics), then
the topicDNA testingmay be considered on-topic for the word
Katoaccording to this heuristic.

A method for modeling these partial dependencies is to use
maximum entropyraining for exponential models[1]. Consider a
topic unigrammodel, or model with features of the forms

N 1 T etopich), w’ = w
frw(hw') = { 0 otherwise
N 1 w=w
Julhw) = { 0 otherwise ®)

for each topicl” and wordw. (For po in equation (1), we use a
uniform distribution.) After maximum entropy training, the mag-
nitude of each parametesr ., will be, roughly speaking, an in-
dication of how strongly correlated the wotd is with topic T,
taking into account indirect dependencies. Furthermpfe|h)
for a historyk wheretopic(h) = ¢ is an estimate of the frequency
Poft-topic(w) We need in equation (2).

The complete procedure we used to calculate our off-topic de-

much lower than its_frequency calculated over the entire training pression factors is as follows: we began with a 51k vocabulary of
set. For example, in 130M words of Broadcast News text, the the most common words in the Broadcast News data. To reduce
word Kato occurs 3111 times, yielding a unigram frequency of the number of features in the topic unigram model to a manageable

about2.4 x 107°. However, 2990 of these occurrences happen
within articles labeled with the topi©.J. Simpsonthese articles
comprising a total of 16M words. Thus, the wdfdto has a fre-
quency of only% ~ 1.1 x 107° when the topic is not
0.J. Simpsonwhich is more than ten times less than its general
frequency.

Modeling this phenomenon in an exponential model is fairly
straightforward: referring to equation (1), we want to find a fac-
tor A, for each wordw such that*» expresses how much less
frequently that word occurs in off-topic text than in general text,
ie,

P Pof-topic(w)
po(w)
The corresponding featurgs, are of the form

@)

1
0

w is off-topic w.r.t. h, w’' = w
otherwise

Juw(h,w') = {

2The text and topic labels were acquired from Primary Source Media.

size, we only included the featur®- ., if the word w occurred
much more frequently in articles labeled with toffichan in gen-
eral according to a2 test. This process yielded about 200,000
features. Unlike the other exponential models used in this work,
the topic unigram model was normalized. We used optimizations
as described by Lafferty and Suhm[8] in the maximum entropy
training; each iteration took less than 10 minutes on a Pentium
Il processor. The training yielded positive depression factors for
30,000 words. An excerpt of these factors is displayed in Table 1.
In evaluation, we used the procedure described in Section 1
to find twenty relevant topics for each article. We took a werd
to be off-topic if the frequency ofv in the training data in each
of the twenty topics was not significantly higher than its off-topic
unigram probabilityaccording to ac* test.

3. BOOSTING ON-TOPIC N-GRAM PROBABILITIES

In boosting the probalities of words and:-grams that are topical
and on-topic, first consider the case where we would like to adapt



a language model towardsngletopic 7. A reasonable proce-

dure would be to set each adapted prolitgtbpadapfw|h) to the kept filtered out _ _
baseline:-gram probabilityp, (w|h) unless the topic probability Racism Murder Politicalactivity
pr(w|h) is significantly differenté.g, according to a¢” test), in Blacks Presidents  CriminaJustice
which case the adapted probabilityasild be set to the topic prob- Racediscrimination | Clinton, Bill ~ Administration
ability. We can take the topic modgl(w|h) to be ann-gram Minorities United States  Raceelations
model built on the training data labeled with tofiic Prejudice Socialconditions

To perform this adaptation for exponential models, we canfirst | Employment Economicconditions
loop through all unigrame. Whenevepr (w) is significantly dif- Discrim.,employment Crimeand.criminals
ferent frompo (w) we add a featurgf.,(h, w’) as in equation (3) Affirmativeaction Politics and government

with A, set such that* = % Then, we loop through all
bigramsw;_, w;, comparingpr (w;|w;—1) againstpg (w;|w;_1)
combined with all unigram features created. (In exponential mod-
els, ann-gram feature affects att’-gram probabilities forn' >
n.) We can repeat this process for all levels of thgram modef
However, articles are generally a combination of multiple top- ) ) ]
ics, and it is not clear how to reconcile probabilities in this more language model to this text in the same way that we adapt it to
complex situation, especially in light of the indirect dependencies €ach relevant topic. Words argrams that occur surprisingly fre-
mentioned in Section 2. A theoretically motivated method would guently in the hypothesis will have their probiikes boosted in
be to build a maximum entropy topicgram model (analogousto  the adapted language model.
the topic unigram model described earlier) and to train this model ~ In conventional caching, hypotheses are processed beginning-
on the entire training set; however, this would require a stupendousto-end and all previous words in a hypothesis are assumed to be
amount of computation. correct and placed in the cache. In our scheme, the whole article
We instead choose a simple heuristic that can be considered inis processed before features are created, and features are only cre-
spirit to be a very poor approximation to maximum entropy train- ated if they pass a significance test. Thus, it seems likely that our
ing. In particular, for each level of owrgram model we apply the ~ scheme is less susceptible to speech reitiogrerrors.
procedure described previously for adapting to a single topic to
each of the topics in turn, except that we only consider pritibab
increases That is, for each probdlly paqapf{w|h) we take the
maximalpr(w|h) over all of the relevant topics T, as long as this
probability is significantly higher than the baselimgram proba-
bility according to a¢? test. Intuitively, we are assuming that the
probability of a word om-gram in the adapted model should be
large if it is large inanyof the relevant topics.

Table 2: Results of topic filtering by likelihood for an article con-
cerning racial issues between blacks and whites

4. EXPERIMENTS

In our experiments, we used speech redtigmlattices generated

by the Sphinx-Ill system[10] on 20 articles of Broadcast News data
(16,700 words). For each article, we first generated a hypothesis
using a trigram model generated by the CMU language modeling
toolkit[11] from our 130M words of training text. The word-error
o ) ) rate of these hypotheses were 30.8%. We found twenty relevant
3.1. Filtering Adaptation Topics topics for each article using a Bayes classifier on these first-pass
hypotheses. In each experiment, word-error rates were calculated
through latice rescoring with the adapted model. The baseline
model for adaptation is the trigram model described above.

We have found that usually not all of the twenty topics for an ar-
ticle returned by our Bayes classifier are relevant. To select the
most relevant topics of the twenty, we build a model for each topic
adapting the general model to just that topic. We calculate the like-
lihood of the first-pass hypothesis transcription using these mod-
els, and use a topic only if its corresponding likelihood is sub-
stantially lower (0.3 bits/word) than the likelihood assigned by the We investigated whether the depression of off-topic word probabil-
general model. In Table 2, we display the results of this process ities alone would improve word-error rate. Using the 30,000 de-
for an article concerning racial issues between blacks and whites. pression features described in Section 2, we found that the WER
improved by 0.1% absolute to 30.7%. To get a detailed view of
3.2. Boosting Article-Specifior-Gram Probabilities the variation between the hypo_thesis generated by the baseline tri-
gram model and the hypothesis generated by the adapted model,
Cachemodels attempt to characterize the phenomenon that wordswe aligned these two hypotheses to find their word differences.
andn-grams tend to repeat themselves within articles, by increas-We then aligned these differences against the reference transcript,
ing the probabilities of:-grams that have occurred previously in  to determine how many errors were fixed and created with the
an article[7]. We can place this type of modeling within our adap- adapted model. Over the 16,700 words in the test set, there were
tation framework by viewing the first-pass hypothesis transcription 43 word differences between the baseline and adapted hypothe-
of an article to be another topic adaptation text. We can adapt ourses. Of these 43 differences, 17 were errors fixed in the adapted

o ) hypothesis, 5 were errors created, and 21 were errors in both hy-
3This procedure is a crude but quick approximation to maximum en- potheses.

tropy training with this feature set. It would be more sound (but vastly . .
more expensive) to set the parametenssing a true maximum entropy As an upper bound on the WER reduction of these techniques,

training algorithm. Rosenfeletal[12, 15] estimate that if no out-of-vocabulary errors
“Because calculating an exact likelihood would be expensive due to are introduced, then removing 10,000 words from a large vocabu-
normalization costs, we use approximations to calculate the likelihood.  lary improves WER by about 0.2% absolute, so depressing 30,000

4.1. Depressing Off-Topic Word Probabilities




no. base | topic art. both unig.
art. | words | WER | adapt | adapt | adapt | adapt
A 1724 | 37.1% | 36.0% | 36.3% | 35.3% || 35.8%
B 2761 | 34.0% | 34.0% | 34.1% | 34.1% || 34.2%
C | 3499 | 30.3% | 30.3% | 30.2% | 30.1% || 30.4%
D 2529 | 37.7% | 38.2% | 37.5% | 38.2% || 38.1%
E 3928 | 26.5% | 26.1% | 26.3% | 25.7% || 26.1%
F 2259 | 22.3% | 22.0% | 21.6% | 21.4% || 21.3%
tot. | 16700 | 30.8% | 30.6% | 30.5% | 30.3% || 30.5%

Table 3: Speech recoigion performance for models with on-topic

and article-specifiz-gram features

words completely and perfectly would lead to a WER improve-

ment of about 0.6%.

4.2. Boosting On-Topic and Article-Specificn-Gram Proba-
bilities

In experiments with on-topic and article-specific features, we did

boosting on-topic and article-specificgram probabilities. Our
WER reduction is comparable to the best existing results for this

task.

(1]

(2]

(3]

[4]

[5]

not use depression features as they seemed to have little effect. [6]

We performed adaptation with unigram and bigram features. We
display the article-by-article error rates of on-topic and article-
specific adaptation in Table 3. We achieved our best WER im-
provement of 0.5% absolute using both adaptations together. Im-
provements varied widely between articles, with our best article
WER improvement being 1.8% absolute in article A. In the final
column of the table, we display the results of adding only uni-

[7]

(8]

gram adaptation features; bigram features seem to effect a small

improvement.

Comparing the baseline and best adaptation hypotheses using [9]

the methodology described in Section 4.1, we found that the two

hypotheses differed by 854 words. Of these 854 words, 261 were

errors fixed by adaptation, 162 were errors created by adaptation

and 431 were errors in both hypotheses.

5. DISCUSSION

: . . . [
To summarize, we introduced several novel topic adaptation tech-
niques for unnormalized exponential models. The use of unnor-

[10]

malized exponential models has the advantage of efficient compu-

tation while hopefully retaining some of the properties of conven-

tional exponential models. We were able to ruttide rescoring

[12]

experiments at about 3 times real-time on a Pentium Il processor.

Because we use unnormalized models, it is not meaningful to cal-
culate perplexity; however, perplexity has been shown to correlate[1

poorly with speech recogtion performance.

This work is the first to explicitly model the depression of off-

topic word probabilities. We describe how to use maximum en- [14]
tropy training to determine these depression factors. We present

a novel implementation for robust caching, which fits in a uni-

fied manner within our topic adaptation framework. We describe [15]

an effective method for filtering out irrelevant topics by using the
likelihood of the first-pass transcription. Throughout our work, we

use statistical testing to select only those adaptation features which

are significant.

We achieved a minimal reduction in WER by depressing off-

topic word probabilities, but achieved a modest reductiooutbh

[16]

11] R. Rosenfeld.
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