
1

A CONSTRAINT-POSTING FRAMEWORK

FOR SCHEDULING UNDER COMPLEX

CONSTRAINTS

Cheng-Chung Cheng and Stephen F. Smith

The Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890 USA

email: sfs@cs.cmu.edu

Abstract

Scheduling in many practical industrial domains is complicated by the need to ac-
count for diverse and idiosyncratic constraints. Quite often these requirements are at
odds with the techniques and results produced by the scheduling research community,
which has focused in large part on solutions to more idealized, canonical problems.
Recent research in temporal reasoning and constraint satisfaction has produced prob-
lem solving models that operate with respect to much more general representational
assumptions. These frameworks o�er possibilities for developing scheduling technolo-
gies that naturally extend to accommodate the peculiarities of various application
domains. One critical issue, of course, is whether such generality can be obtained
without sacri�cing scheduling performance.

In this paper, we investigate this issue through application of a previously devel-
oped constraint satisfaction problem solving (CSP) model for deadline scheduling to
a complicated, multi-product hoist scheduling problem encountered in printed circuit
board (PCB) manufacturing. The goal is to maximize throughput of an automated
PCB electroplating facility while ensuring feasibility with respect to process, capacity
and material movement constraints. Building from a heuristic procedure generically
referred to as PCP (precedence constraint posting), which relies on a temporal con-
straint graph representation of the problem, we straightforwardly de�ne an extended
solution procedure for minimizing makespan. In a series of comparative experiments,
our procedure is found to signi�cantly outperform previously published procedures
for solving this hoist problem across a broad range of input assumptions.

2

1. Introduction

Constraint satisfaction problem solving (CSP) models and heuristics have increas-
ingly been investigated as a means for solving scheduling problems [6, 13, 14, 17, 19].
One claimed advantage of such approaches is
exibility; representational assumptions
are quite general and developed techniques are thus applicable across a broad range
of problems. However, much of this work has (naturally) focused on deadline schedul-
ing problems; attempts to extend these approaches to address the optimization issues
that dominate most manufacturing scheduling environments are less common. More-
over, analysis of these approaches has tended to concentrate on idealized, canonical
benchmark problems which do not stress generality in representational assumptions.
There is limited understanding of performance characteristics in domains that require
complex representations.

In this paper, we empirically investigate these issues in the context of a speci�c
application domain. We take as our starting point, a previously developed deadline
scheduling procedure called PCP (Precedence Constraint Posting)[19, 6]. Somewhat
unconventionally from the standpoint of CSP scheduling research, PCP is rooted
in a problem representation akin to a disjunctive graph formulation [3], i.e., the
problem is formulated as one of sequencing all pairs of operations that are competing
for common resources. This formulation allows direct contact to be made with the
representational assumptions of contemporary temporal reasoning frameworks, and
gives rise to a \constraint-posting" approach to solution development.

We consider the applicability of PCP to the multi-product hoist scheduling problem
previously studied in [21]. This problem is challenging in that it requires enforcement
of many non-standard constraints, including sequence-dependent setup (travel) times,
imprecise operation processing times (expressed in terms of minimum and maximum
bounds) and no-delay constraints on the execution of consecutive job steps, while
attempting to minimize overall schedule makespan (to maximize facility throughput).
We show how this problem can be straightforwardly modeled for solution by PCP,
develop an extended procedure for makespan minimization that utilizes PCP, and
experimentally demonstrate its comparative performance advantage. We begin by
summarizing the basic PCP scheduling framework.

2. The PCP Scheduling Model

2.1. Problem Representation

The PCP modeling framework can be formalized more precisely as a type of general
temporal constraint network (GTCN) [12]. In brief, a GTCN T consists of a set of
variables fX1; :::;Xng with continuous domains, and a set of unary or binary con-
straints. Each variable represents a speci�c temporal object, either a time point (e.g.,
a start time sti or an end time eti) or an interval (e.g. an operation Oi). A constraint
C may be qualitative or metric.

A qualitative constraint C is represented by a disjunction (Xi q1Xj)_ :::_ (Xi qkXj),
alternatively expressed as a relation set Xi fq1; :::; qkgXj; where qi represents a basic

1

qualitative constraint. Three types of basic qualitative constraints are allowed:

1. interval to interval constraints - The GTCN de�nition of [12] includes Allen's 13
basic temporal relations [1]: before, after, meets, met-by, overlaps, overlapped-
by, during, contains, starts, started-by, �nishes, �nished-by, and equal. For
convenience, we also include before-or-meets and after-or-met-by, which repre-
sent the union of relation pairs (before, meets) and (after, met-by) resp. [4].

2. point to point constraints - The relations identi�ed in [20], denoted by the set
f<;=;>g, are allowable here.

3. point to interval or interval to point constraints - In this case, the 10 relations
de�ned in [10] are speci�able, including before, starts, during, �nishes, after,
and their inverses.

A metric constraint C is represented by a set of intervals fI1; :::; Ikg = f[a1; b1]; :::;
[ak; bk]g. Two types of metric constraints are speci�able. A unary constraint Ci on
point Xi restricts Xi's domain to a given set of intervals, i.e. (Xi 2 I1)_:::_(Xi 2 Ik).
A binary constraint Cij between points Xi and Xj restricts the feasible values for the
distance Xj �Xi, i.e., (Xj �Xi 2 I1) _ :::_ (Xj �Xi 2 Ik). A special time point X0

can be introduced to represent the \origin". Since all times are relative to X0, each
unary constraint Ci can be treated as a binary constraint C0i.

To support representation of sequence-dependent resource \setup" times, one further
augmentation to Mieri's GTCN model is made. Speci�cally, we extend the repre-
sentation of qualitative constraints to optionally include a metric quanti�er. For our
purposes in this paper, it is su�cient to include only the following two extended rela-
tions: before-or-meets[lag] and after-or-met-by[lag], where lag � 0 designates a mini-
mummetric separation between the related intervals. Thus, whereas the constraint Oi

before-or-meets Oj implies eti � stj, the extended constraint Oi before-or-meets[lagij]
Oj implies eti + lagij � stj.

A GTCN forms a directed constraint graph, where nodes represent variables, and a
edge i ! j indicates that a constraint Cij between variables Xi and Xj is speci�ed.
We say a tuple X = (x1; :::;xn) is a solution if X satis�es all qualitative and metric
constraints. A network is consistent if there exists at least one solution.

Figure 1 depicts the constraint graph for a simple 2 job, 2 machine deadline scheduling
problem. We are given ready times r1 and r2, due dates d1 and d2, processing times
pi (for operation Oi), and disjunctive constraints between operation pairs (O1; O3)
and (O2; O4) (dictating exclusive use of machines M1 and M2 respectively). The
objective is to determine if the network is consistent (i.e. admits a feasible solution).
Since a GTCN with no disjunctive arcs de�nes a Simple Temporal Problem[7], which
is solvable in O(n3) time by the Floyd-Warshall's all-pairs shortest-paths algorithm,
one simple procedure for determining whether a solution exists is to enumerate all
possible labelings of the network. In the problem displayed in Figure 1, there are
4 possible labelings (corresponding to the di�erent sets of sequencing decisions that
might be taken).

2

O1

s1
e1

{[p ,p]}
11

{[p ,p]}
2 2

{[r ,]}1

{[r ,]}2

{[0,d]}
1

{[0,d]}
2

s2 e2

O2

s4 e4
4

{[p ,p]}
4

O4

s
3 e3

{[p ,p]}
3 3

O3

0

origin

Job 1

Job 2

{starts} {finishes} {starts} {finishes}

{starts} {finishes} {starts} {finishes}

{before−or−meets}

{before−or−meets,
 after−or−met−by}

{before−or−meets,
 after−or−met−by}

{before−or−meets}

Figure 1. Constraint Graph for simple 2 job, 2 machine problem

2.2. A Heuristic Solution Procedure

In [19, 6], a heuristic procedure, referred to as Precedence Constraint Posting (PCP),
is de�ned for solving deadline scheduling problems formulated as a GTCN. Most gen-
erally, PCP is designed as a backtracking search procedure over a meta-CSP network,
whose variables correspond to disjunctive arcs in the GTCN and whose domains are
simply the set of possible disjuncts. In the case of the deadline scheduling problem
(as indicated above), this leads to the set of decision variables V = fOrderingijg,
corresponding to each operation pair (Oi; Oj) that requires the same resource, each
with two possible values Oi � Oj or Oj � Oi, corresponding to whether Oi is pro-
cessed before or after Oj. A feasible solution is incrementally constructed within
PCP by repeatedly (1) updating shortest path lengths to verify continued consis-
tency of the current partial solution, (2) applying dominance conditions to identify
unconditional decisions and enable early search space pruning , (3) selecting an as
yet unassigned variable Orderingij, and (4) posting one of the two possible ordering
constraints (values) associated with this variable into the constraint network. PCP
gains decision-making leverage from simple, pair-wise analysis of the
exibility asso-
ciated with each sequencing decision. In step 2, this analysis is used to detect and
post any \forced" sequencing decisions, and to detect inconsistent solution states. In
steps 3 and 4, it is used respectively as a basis for variable and value ordering (i.e.,
what decision to make next and what value to assign). These distinguishing aspects
of PCP are brie
y summarized below.

Speci�cation and use of dominance conditions in PCP derives directly from the con-
cept of Constraint-Based Analysis (CBA) [8, 9], developed for solution of classical
job shop problems. In [6], these dominance conditions are generalized to account for
the wider range of constraints that are speci�able in a GTCN. Suppose Orderingij
is a currently unassigned variable in the meta-CSP network, and consider the cur-

3

rent partial solution. Let si; ei; sj, and ej be the start and end points respectively of
operations Oi and Oj , and further assume spij is the shortest path length from ei to
sj and spji is the shortest path length from ej to si. Then, four mutually exclusive
cases can be identi�ed:

Case 1. If spij � 0 and spji < 0, then Oi � Oj must be selected.

Case 2. If spji � 0 and spij < 0, then Oj � Oi must be selected.

Case 3. If spji < 0 and spij < 0, then the partial solution is inconsistent.

Case 4. If spji � 0 and spij � 0, then either ordering relation is still possible.1

The second distinguishing aspect of PCP is its use of sequencing
exibility analysis
for variable and value ordering, which dictates how the search should proceed in
the undecided states (case 4 above). One very simple estimate of the sequencing

exibility associated with a given Orderingij is the minimum shortest path length,
!ij = min(spij; spji), which gives rise to a variable ordering heuristic that selects
the Orderingij with the minimum !ij . This heuristic makes reasonable sense; at
each step, the decision which is closest to becoming forced is taken. However, its
exclusive reliance on !ij values can lead to problems (see [19] for details), and PCP
consequently bases variable ordering decisions on a slightly more complex notion of
biased shortest path length. Speci�cally, bspij = spij=

p
S and bspji = spji=

p
S are

computed, where S = minfspij;spjig

maxfspij;spjig
estimates the degree of similarity between the

two values spij and spji. The sequencing
exibility associated with a given decision
Orderingij is rede�ned to be !ij = min(bspij; bspji), and the decision selected during
variable ordering is the decision with the minimum !ij . The value ordering heuristic
utilized in PCP simply selects the ordering relation implied by max(bspij; bspji), i.e.
the sequencing constraint that retains the most temporal
exibility is posted.

Finally, to avoid the exponential worst case behavior of a complete backtracking
search procedure (O(n32jV j)), we introduce a less-costly, backtrack-free version of the
basic PCP procedure for later use in this paper. In this case, total reliance is placed
on the ability of the search to move directly to a feasible solution; if Case 3 above is
ever encountered (i.e., no feasible ordering for a given ordering decision), the search
simply terminates in failure (and does not produce a solution). The e�ectiveness of
this partial solution procedure, which we will refer to as \Simple PCP" below, was
demonstrated in [19] on a set of previously published CSP scheduling benchmark
problems. Its worst case complexity can be seen to be On3jV j.
1More precisely, these dominance conditions assume selection among fbefore-or-meets, after-or-met-

byg relation sets. If a given Orderingij involves selection among qualitative relations with metric
quanti�ers (e.g., representing sequence-dependent setup times), then substitute (spij � lagi;j) for
spij in all expressions. A similar generalization applies when Orderingij involves selection among a
before; after relation set; in this case lagi;j = lagji is the smallest possible temporal increment. To
simplify the presentation of variable and value ordering heuristics below, we will continue with the
assumption of fbefore-or-meets, after-or-met-byg value sets; refer to /citeCheng95 for the general
formulation.

4

3. The Hoist Scheduling Problem

To demonstrate the viability of our CSP scheduling model, we consider its application
to a complex, previously studied scheduling problem: the multi-product version of the
hoist scheduling problem [21]. The hoist scheduling problem �nds its origin in printed
circuit board (PCB) electroplating facilities. In brief, a set J of jobs, J = fJ1; :::; Jng
each require a sequence of chemical baths, which take place within a set M of m
chemical tanks, M = f1; :::;mg. Execution of a particular chemical bath operation
Oi requires exclusive use of tank mi. The processing time of any Oi required for a job
j is not rigidly �xed; instead there is a designated minimum time, pmini , that j must
stay in the tank for the bath to accomplish its intended e�ect and a maximum time,
pmaxi , over which product spoilage occurs. All jobs move through the chemical tanks
in the same order, though a given job may require only a subset of the baths and thus
\skip" processing in one or more tanks along the way. All job movement through the
facility is accomplished via a single material handling hoist, H, which is capable of
transporting a job initially into the system from the input bu�er, from tank to tank,
and �nally out of the system into the output bu�er. H can grip only a single job
at a time, moves between any two adjacent stations (input bu�er, tanks, or output
bu�er) at constant speed s, and has constant loading and unloading speeds, L and
U , at any tank or bu�er. The facility itself has no internal bu�ering capability; thus
jobs must be moved directly from one tank to the next once they have entered the
system. The objective is to maximize facility throughput (or equivalently minimize
makespan) subject to these process and resource constraints.

Most previous work in hoist scheduling has considered simpli�ed versions of this prob-
lem. The single-product, hoist scheduling problem has received the most attention. In
this special case, the problem can be reduced to one of �nding a minimum length cycle
of hoist operations, which can then be repeated over time; several algorithms for gen-
erating optimal (or near-optimal) cyclic schedules have been reported [16, 18, 11, 2].
In [23, 22], a hoist scheduling problem involving a multi-product facility is considered,
but without permitting variance in job routings (i.e. no tank skipping). To our best
knowledge, only [21] has reported procedures for solving the general hoist scheduling
problem de�ned above.

4. Representation as a Constraint Graph

The hoist scheduling problem is straightforwardly modeled in the extended GTCN
formalism of Section 2.1. Let's �rst consider representation of the process constraints
of any given job j. For each individual operation Oi in j's process sequence, we
de�ne three constraint graph nodes: two time points, representing Oi's start and end
points, and an interval, representing Oi itself. A given pair of start and end points are
related to its corresponding interval through use of the qualitative constraints starts
and �nishes respectively. The values ultimately assigned to the time points of any Oi

in the constraint graph will represent Oi's scheduled start and �nish times.

The duration of a given operation Oi is modeled by specifying a metric constraint
between its start and end points. There are two cases, corresponding to the two
types of operations that must be interleaved to process any given job. If Oi is a

5

[2, 3] [4, 8] [3, 5]

[11, 14] [4, 5]

J1

2J

loading/unloading time: 0.5
traveling speed: 1

1 2 3

4 5

buffer
input output

buffer

track

tank 1 tank 2 tank 3

Figure 2. Simple hoist scheduling problem

required tank operation, the constraint f[pmini ; pmaxi]g is speci�ed to enforce minimum
and maximum allowable times in tank mi. If Oi is a hoist (transport) operation,
then the constraint is instead a function of the distance to be traversed and hoist
loading, traveling and unloading speeds. The constraint f[mt;mt]g is speci�ed in this
case, where mt = L + s � (destinationi � origini) + U . For convenience, we assume
a correspondence between a given tank's index and its location, and assign indices
0 and m + 1 to the system's input and output bu�ers respectively to complete this
mapping.

The process sequence for any given job j is speci�ed by temporally relating the in-
tervals de�ned for j's constituent tank and transport operations. Since the end of
any given operation Oi must, by de�nition, coincide with the start of Oi+1, the meets
constraint is used to establish this linkage. Oi meets Oi+1 implies that eti = sti+1.
Disjunctive constraints on resource usage are speci�ed as relation sets between opera-
tions that require the same resource. Again there are two cases. For tank operations
Oi and Oj where mi = mj, the constraint fbefore, afterg is introduced. Note that the
relation set used for this purpose in the canonical job shop problem, fbefore-or-meets,
after-or-met-byg, is not correct here, since it is physically impossible to switch be-
tween tank operations without intermediate loading and unloading. Synchronization
of competing hoist operations is the only remaining issue. In this case, however, basic
qualitative relations are insu�cient, as they do not allow us to account for the \setup"
time that may be required to position the hoist at the loading location. For each pair
of hoist operations Oi and Oj belonging to di�erent jobs, we specify the constraint Oi

fbefore-or-meets[hij], after-or-met-by[hj i]g Oj, where hij = s�jdestinationi�originjj
and hji = s � jdestinationj � originij.
To illustrate, Figure 2 shows a simple example problem (taken from [21]) involving
2 jobs to be processed in a 3 tank system. Each operation is displayed below the
tank that is required, and gives its minimum and maximum processing times. The
corresponding constraint graph model is given in Figure 3 (with qualitative relations
abbreviated as follows: starts (s), �nishes(f), meets (m), before (b), after (bi), before-
or-meets(bm), after-or-met-by (bmi)).

6

{bm[1],bmi[1]}

{f}{s}

{s} {f} {s} {f} {s} {f} {s} {f} {s} {f} {s} {f} {f}{s}

{f}{s} {s} {f} {s} {f} {s} {f}

{[2,2]} {[2,3]} {[2,2]} {[4,8]} {[2,2]} {[3,5]} {[2,2]}

{[2,2]} {[11,14]} {[2,2]} {[2,2]}{[4,5]}

{m} {m} {m} {m} {m} {m}

{m} {m} {m} {m}

{b,bi}

{b,bi}

O
1

O2 O3
O4 O5

O6 O7

O8
O9 O

11
O
12O

10

{bm[0],bmi[3]}

{bm[2],bmi[0]}

{bm[2],bmi[4]}

{bm[1],bmi[2]}

{bm[1],bmi[3]}

{bm[3],bmi[1]}

{bm[2],bmi[1]}

{bm[0],bmi[2]}

{bm[1],bmi[1]}

{bm[3],bmi[0]}

{bm[4],bmi[2]}

Figure 3. The constraint graph for simple hoist scheduling problem

5. An Extended Procedure for Makespan Minimization

As a deadline scheduling procedure, PCP does not provide a direct basis for minimiz-
ing makespan, and at �rst glance may seem inappropriate for application to the hoist
scheduling problem. However, by exploiting the concept of problem duality, we can
transform a makespan minimization problem into a series of related deadline schedul-
ing problems and exploit PCP as a subproblem solver. Suppose that we are given an
instance of a makespan problem, denoted by �M(I) where I represents the problem
data associated with this problem instance. If we know the minimum makespan for
�M(I) to be C�

max, then we can reduce �M(I) to a special deadline problem �D(I; d),
where each job is assigned a 0 ready time and a common deadline d, with d = C�

max.
For any d � C�

max, we are assured that a feasible solution to �D(I; d) exists. More
important, C�

max de�nes a unique common deadline such that for d < C�
max, �D(I; d)

has no feasible solution. This dual relationship between problems �M(I) and �D(I; d)
implies that the makespan problem�M(I) can be reformulated as a problem of �nding
the smallest common deadline, dmin, for which �D(I; d) has a feasible solution.

Given an optimal algorithm for solving the deadline problem �D(I; d), it is straight-
forward to construct an search procedure for determining dmin (and its associated
schedule). We start with known upper and lower bounds dU and dL on the com-
mon deadline dmin; at each step, we attempt to solve �D(I; d) for d = (dU + dL)=2.
If a feasible schedule is found, dU becomes d; otherwise, dL becomes d. We con-
tinue the search until dU = dL, retaining the schedule with the best makespan as

7

we go. Unfortunately, dmin is not guaranteed if a heuristic deadline procedure (such
as the backtrack-free version of PCP discussed in Section 2.2. For this reason, we
instead de�ne our extended makespan minimization procedure in terms of a more
conventional k-iteration search; the \Simple PCP" procedure is applied k times with
di�erent common deadlines evenly distributed between dL and dU . We refer to this
extended procedure below as Multi-PCP.

6. Performance Summary

To assess performance, we carried out computational study following the same ex-
perimental design of [21]. A PCB electroplating facility with 5 chemical tanks was
assumed. All problems generated consisted of 100 jobs, each with randomly generated
routings and tank processing time constraints, and all assumed to be simultaneously
available. Since material
ow is uni-directional, di�erences in job routings correspond
to which and how many tanks are skipped. Experiments were conducted to evaluate
performance along two dimensions relating to facility constraints and operation: �rst
as function of the relative speed of the hoist to mean tank processing time, and second
as a function of the degree of
exibility provided by tank processing time constraints.
To calibrate results, problems were also solved using the hoist scheduling procedure
previously developed by Yih [21], designated below as the \Yih94 algorithm". Both
procedures were implemented in C and run on a Sun SPARC 10 workstation.

In con�guring Multi-PCP for these experiments, a simpler, \basic algorithm", also de-
�ned in [21] and used there as a baseline for comparison, was incorporated to provide
the upper bound dU on the common deadline interval; dL was obtained by computing
the minimum total required processing time (including hoist operations) for each job
and taking the maximum. To provide a more computationally competitive alterna-
tive to Yih's \real-time" procedure, a simple problem decomposition method[15] was
also employed; the input problem was partitioned into subproblems with equal num-
bers of jobs (10 for these experiments) and solved independently by Multi-PCP, with
the results then randomly combined to produce the overall solution - yielding overall
solution times of about 100 seconds.

We present only the results obtained from one of the experiments performed, on
problem sets designed to vary the ratio
 = p̂min=s, where p̂min is the mean minimum
processing time of tank operations and s is the speed of the hoist in moving between
adjacent system locations. Figure 4 summarizes the the performance of Multi-PCP
and Yih94 in this experiment. Values plotted for each
 ratio represent the average
% improvement over the basic algorithm on 10 randomly generated problems. 2

Both procedures are seen to generate the largest improvement for values of
 in the
range of [10,25], with improvement rates degrading as
 becomes larger or smaller. In
the case of Yih94, no improvement is obtained at either of the extreme points tested.
Multi-PCP, alternatively, yields an improvement rate of 8% at the smallest
 value,
and as
 becomes increasingly larger, its improvement rate stabilizes at about 15%.
Across all experiments, Multi-PCP is seen to produce solutions that, on average, are

2Details of the full experimental design and all results obtained are reported in [5], and only
strengthen the performance comparison.

8

Im
pr

ov
em

en
t r

at
e

(%
)

0

10

20

30

5 10 15 20 25 30 35 40 45 50

Mean processing times / hoist speed

YIH

Multi−PCP

Figure 4. Solution improvement rates for increasing
 ratio

15% better (in relation to the baseline solution) than those obtained with Yih94.

7. Concluding Remarks

The comparative results presented above provide evidence of the viability of CSP
scheduling techniques in complex industrial domains. They also illustrate the utility
of a disjunctive graph problem formulation, and, conversely, the di�culty of accom-
modating complex, interacting constraints within scheduling procedures that proceed
via explicit commitment to speci�c start times. In the case of the Yih94 algorithm,
scheduling proceeds by incrementally assigning operations to precise execution inter-
vals, and a priori algorithm design decisions dictate when it is productive to extend
processing times versus delay job starts and what speci�c extend or delay decisions
should be taken. Most frequently, however, the best decision actually involves some
combination of these two alternatives. This tradeo� is not considered by Yih94, and it
is not clear how one could extend the approach to generally address this tradeo� in a
cost/e�ective manner. Multi-PCP, alternatively, does not su�er from this limitation.
By operating instead in the space of sequencing decisions, this tradeo� is naturally
and directly considered. There is no need to design the algorithm to reason explicitly
about the types of constraints involved; decision-making can instead be based strictly
on their emergent in
uence on the evolving partial solution.

8. Acknowledgements

This work has been sponsored in part by by the National Aeronautics and Space Ad-
ministration, under contract NCC 2-531, by the Advanced Research Projects Agency
under contract F30602-90-C-0119 and the CMU Robotics Institute.

9

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 11(26):832{843, 1983.

2. R. Armstrong, L. Lei, and S. Gu. A bounding scheme for deriving the minimal
cycle time of a single-transporter n-stage processs with time window constraints.
European Journal of Operational Research, 78:130{140, 1994.

3. E. Balas. Machine sequencing via disjunctive graphs: An implicit enumerated
algorithm. Operations Research, 17:941{957, 1969.

4. C. Bell. Maintaining project networks in automated arti�cial intelligence plan-
ning. Management Science, 35(10):1192{1214, 1989.

5. C. Cheng and S. Smith. Applying constraint satisfaction techniques to job shop
scheduling. Tech. Rep. CMU-RI-TR-95-03, The Robotics Institute, Carnegie Mel-
lon, Jan 1995.

6. C. Cheng and S. F. Smith. Generating feasible schedules under complex metric
constraints. In Proc. 12th National Conf. on Arti�cial Intelligence, Seattle, WA.,
1994.

7. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial
Intelligence, 49:61{95, 1991.

8. J. Erschler, F. Roubellat, and J. P. Vernhes. Finding some essential characteristics
of the feasible solutions for a scheduling problem. Operations Research, 24:772{
782, 1976.

9. J. Erschler, F. Roubellat, and J. P. Vernhes. Characterizing the set of feasible
sequences for n jobs to be carried out on a single machine. European Journal of
Operational Research, 4:189{194, 1980.

10. P. B. Ladkin and R. D. Maddux. On binary constraint networks. Technical
report, Kestrel Institute, Palo Alto, CA., 1989.

11. L. Lei and T. Wang. The minimum common-cycle algorithm for cyclic scheduling
of two hoists with time window constraints. Management Science, 37(12):1629{
1639, 1991.

12. I. Meiri. Combining qualitative and quantitative constraints in temporal rea-
soning. In Proc. 9th National Conf. on Arti�cial Intelligence, pages 260{267,
Anaheim, CA., 1991.

13. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing con
icts:
A heuristic repair method for constraint satisfaction and scheduling problems.
Arti�cial Intelligence, 58:161{205, 1992.

14. N. Muscettola. Scheduling by iterative partition of bottleneck con
icts. In Proc.
9th IEEE Conf. on Arti�cial Intelligence Applications, Orlando, FL., 1993.

15. H. N. N. Hirabayashi and N. Nishiyama. A decomposition scheduling method for
operating
exible manufacturing systems. Int. Journal of Prod. Res., 32(1):161{
178, 1994.

16. L. Phillips and P. Unger. Mathematical programming solution of a hoist schedul-
ing problem. AIIE Transactions, 8(2):219{225, 1976.

17. N. Sadeh. Look-ahead techniques for micro-opportunistic job shop scheduling.
Tech. Rep. CMU-CS-91-102, School of Computer Science, Carnegie Mellon Univ.,
1991.

18. G. Shapiro and H. Nuttle. Hoist scheduling for a pcb electroplating facility. IIE
Transactions, 20(2):157{167, 1988.

19. S. Smith and C. Cheng. Slack-based heuristics for constraint satisfaction schedul-

10

ing. In Proc. 11th National Conf. on Arti�cial Intelligence, Wash DC., pages 139
{ 144, 1993.

20. M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reason-
ing. In Proc. 4th Nat. Conf. on Arti�cial Intelligence, Philadelphia, PA., pages
377{382, 1986.

21. Y. Yih. An algorithm for hoist scheduling problems. International Journal of
Production Research, 32(3):501{516, 1994.

22. Y. Yih, T. Liang, and H.Moskowitz. Robot scheduling in a circuit board produc-
tion line. IIE Transactions, 25(2):26{33, 1993.

23. Y. Yih and A. Thesen. Semi-markov decision models for real-time scheduling.
International Journal of Production Research, 29(11):2331{2346, 1991.

11

