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Abstract

The Automated Site Construction, Extension, De-
tection and Re�nement system (ASCENDER) has
been developed to automatically populate a site
model with buildings extracted from multiple, over-
lapping views. Version 1.0 of the system has been
delivered for evaluation on classi�ed imagery. Eval-
uation results on an unclassi�ed Ft.Hood data set
are presented here. Extensions to the system that
allow it to detect a wide range of building classes,
including peaked roof and multi-level 
at roofed
structures are described. Recent work on symbolic
extraction of surface structures such as windows
greatly enhances the visual realism of graphical site
model displays.

1 Introduction

The Research and Development for Image Under-
standing Systems (RADIUS) project is a national
e�ort to apply image understanding (IU) technol-
ogy to support model-based aerial image analy-
sis [5]. Automated construction and management
of 3D geometric site models enables e�cient ex-
ploitation of the tremendous volume of informa-
tion collected daily by national sensors. The ex-
pected bene�ts are decreased work-load on human
analysts, together with an increase in measurement
accuracy due to the introduction of digital IU and
photogrammetric techniques. When properly an-
notated, automatically generated site models can
provide the spatial context for specialized IU analy-
sis tasks such as vehicle counting, change detection,
and damage assessment, while graphical visualiza-
tion techniques using 3D site models are valuable
for training and mission planning. Civilian bene�ts
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of this technology are also numerous, including au-
tomated cartography, land-use surveying and urban
planning.

Over the past three years, the University of Mas-
sachusetts (UMass) has developed techniques to au-
tomatically populate a site model with 3D build-
ing models extracted from multiple, overlapping
images. There are many technical challenges in-
volved in developing a building extraction system
that works reliably on the type of images being
considered under RADIUS. Multiple images of the
scene may be captured by di�erent cameras from
arbitrary viewing positions, and images may be col-
lected months or even years apart, under vastly dif-
ferent weather and lighting conditions. To over-
come these di�culties, the UMass design philoso-
phy incorporates several key ideas. First, 3D re-
construction is based on geometric features that re-
main stable under a wide range of viewing and light-
ing conditions. Second, rigorous photogrammetric
camera models are used to describe the relation-
ship between pixels in an image and 3D locations
in the scene, so that diverse sensor characteristics
and viewpoints can be e�ectively exploited. Third,
information is fused across multiple images for in-
creased accuracy and reliability. Finally, known ge-
ometric constraints are applied whenever possible
to increase the e�ciency and reliability of the re-
construction process.

This paper is organized as follows. Section 2
presents an overview of the Automated Site Con-
struction, Extension, Detection and Re�nement
(ASCENDER) system, designed to automatically
acquire models of buildings with 
at, rectilinear
rooftops. Ascender is the primary deliverable of
the 3-year UMass RADIUS e�ort, and is currently
being evaluated on classi�ed imagery at Lockheed-
Martin. Section 3 presents results of an evaluation



conducted at UMass on an unclassi�ed data set of
Ft.Hood Texas. The system is being extended via
new strategies for acquiring models of other com-
mon building classes such as peaked and multi-level
roof structures, which are described in Section 4 and
in [9] (these proceedings). Section 5 outlines recent
advances in the symbolic extraction of surface de-
tails such as windows and doors and their applica-
tions to graphical rendering for scene visualization.

2 The Ascender System

The Ascender system has been designed to auto-
matically populate a site model with buildings ex-
tracted from multiple, overlapping images exhibit-
ing a variety of viewpoints and sun angles. In mid-
April 1995, Version 1.0 of the Ascender system was
delivered to Lockheed-Martin for testing on classi-
�ed imagery and for integration into the RADIUS
Testbed System [5]. At the same time, an infor-
mal transfer was made to the National Exploita-
tion Laboratory (NEL) for familiarization and addi-
tional testing. This section presents a brief overview
of the Ascender system and its approach to extract-
ing building models. More detailed descriptions can
be found in [2, 3, 4]. Some sample building mod-
els automatically generated by the Ascender system
are shown in Figures 1 and 2.

Figure 1: Sample building model automatically gener-
ated by the Ascender system.

Figure 2: Some additional samples of building models
generated by Ascender.

2.1 System Overview

Ascender was developed on a Sun Sparc 20, us-
ing the Radius CommonDevelopment Environment
(RCDE) [7]. The RCDE is a combined Lisp/C++
system that supports the development of image
understanding algorithms for constructing and us-
ing site models. The RCDE provides a conve-
nient framework for representing and manipulat-
ing images, camera models, object models and ter-
rain models, and for keeping track of their various
coordinate systems, inter-object relationships, and
transformation/projection equations. To be more
speci�c, the following items needed by Ascender are
managed by the RCDE and assumed to be present
before the building extraction process begins:

� Images. A set of images, both nadir and oblique,
that view the same area of the site. Best results are
obtained with images exhibiting a variety of viewing
and sun angles.

�Site Coordinate System. A Euclidean, local-
vertical coordinate system (Z-axis points up) for



representing building models.

�CameraModels. A speci�cation of how 3D loca-
tions in the site coordinate system are related to 2D
image pixels in each image. One common camera
representation is a 3 � 4 projective transformation
matrix encoding the lens and pose parameters of
each perspective camera. Ascender can also han-
dle the fast block interpolation projection (FBIP)
camera model used in the RCDE to represent the
geometry of non-perspective cameras.

�Digital Terrain Map. A speci�cation of the ter-
rain underlying the site. This could be as simple as
a plane equation, or could be a full array of eleva-
tion values computed via correlation-based stereo.

2.2 The Building Extraction Process

The Ascender system uses a straightforward control
strategy to extract building models. The process
is described brie
y here, with particular attention
given to the algorithmic parameters that can be set
by the user to vary the number and quality of the
resulting building hypotheses.

Building detection begins by extracting straight line
segments using the Boldt algorithm [1]. Intensity
edgels are grouped recursively into longer straight
lines with subpixel accuracy via a set of Gestalt
perceptual organization criteria. Two user thresh-
olds, minimum line length and minimum contrast
(gray-level di�erence across the line), are available
to control the set of lines returned.

Two-dimensional building roof boundaries are hy-
pothesized from extracted image line segments via
a graph-based perceptual grouping algorithm [6].
Lines segments are grouped into corners, chains,
and eventually into complete closed polygons. A
single variable sensitivity parameter ranging from
0.0 (very low sensitivity) to 1.0 (very high) controls
the settings of several less-intuitive internal param-
eters that govern the polygon grouping process.

The recovery of 3D building information begins by
estimating a height for each hypothesized 2D roof
polygon via multi-image epipolar matching. This
estimate is chosen as the peak in a height his-
togram formed by matching the polygon's edges
to line segments in multiple images and allowing
each potential match to vote for a height range.
The size of the epipolar search region in each im-
age is governed by two parameters: the minimum

and maximumZ-values that building rooftops could
be found at (the minimum value could potentially
be determined from an accurate terrain map). A
third parameter that governs the search for corre-
spondences is the expected residual error (in pix-
els) between true and observed 2D feature locations,
roughly summarizing the level of error in image fea-
tures caused by inaccuracies in the camera resection
and feature extraction routines.

After a set of matching line segments for the build-
ing roof is found, a rigorous photogrammtric trian-
gulation procedure is performed to determine the
precise 3D size, shape and position of the build-
ing rooftop. The optimization criterion simultane-
ously minimizes the sum-of-squared residual errors
between projected 3D roof polygon edges and cor-
responding line segment features in all the images.
There are no user parameters. The resulting 3D
polygon is then extruded down to the provided ter-
rain to form a complete building wireframe.

3 Evaluation on Ft. Hood Imagery

The success of the Ascender system will ultimately
be judged by its performance on classi�ed im-
agery. Such tests are currently being performed
at Lockheed-Martin. In parallel with that e�ort,
UMass is performing an in-depth system evaluation
using unclassi�ed data. The set of experiments are
designed to address questions like:

1. How is the rooftop detection rate related to
system sensitivity settings?

2. Is the detection rate a�ected by viewpoint
(nadir vs oblique)?

3. Does 2D detected polygon accuracy vary by
viewpoint?

4. Is 2D accuracy related to sensitivity settings?

5. How does 3D accuracy vary with the number
of images used?

6. How does 3D accuracy vary according to 2D
accuracy of the hypothesized polygons?

This section presents evaluation results on a large
data set from Ft.Hood Texas. The imagery was col-
lected by Photo Science Inc. (PSI) in October 1993
and scanned at the Digital Mapping Laboratory at
CMU in Jan-Feb, 1995. Camera resections were
performed by PSI for the nadir views, and by CMU
for the obliques.



3.1 Methodology

An evaluation data set was cropped from the
Ft.Hood imagery, yielding seven subimages from
the views labeled 711, 713, 525, 927, 1025, 1125
and 1325 (images 711 and 713 are nadir views,
the rest are obliques). Table 1 summarizes the
ground sample distance GSD for each image. The
region of overlap covers an evaluation area of
roughly 760x740 meters, containing a good blend
of both simple and complex roof structures. Thirty
ground truth building models were created by
hand using interactive modelling tools provided by
the RCDE. Each building is composed of RCDE
\cube", \house" and/or \extrusion" objects that
were shaped and positioned to project as well as
possible (as determined by eye) simultaneously into
the set of seven images. The ground truth data set
is shown in Figure 3.

711 713 525 927 1025 1125 1325

0.31 0.31 0.61 0.52 1.10 1.01 1.01

Table 1: Ground sample distances (GSD) in meters for
the seven evaluation images. A GSD of 0.3 means that
a length of 1 pixel in the image roughly corresponds to
a distance of 0.3 meters as measured on the ground.

Since the Ascender system explicitly recovers only
rooftop polygons (the rest of the building wireframe
is formed by vertical extrusion), the evaluation is
based on comparing detected 2D and triangulated
3D roof polygons vs. their ground truth counter-
parts. There are 73 ground truth rooftop polygons
among the set of 30 buildings. Ground truth 2D
polygons for each image are determined by project-
ing the ground truth 3D polygons into that image
using the known camera projection equations.

The Center-Line Distance measures how well two
arbitrary polygons match in terms of size, shape
and location1. The procedure is to oversample the
boundary of one polygon into a set of equally spaced
points (several thousand of them). For each point,
measure the minimum distance from that point to
the other polygon boundary. Repeat the proce-
dure by oversampling the other polygon and mea-
suring the distance of each point to the �rst polygon
boundary. The center-line distance is taken as the
average of all these values. This metric provides
a measure of the average distance between the two

1Robert Haralick, private communication.

polygons boundaries, reported in pixels for 2D poly-
gons, and in meters for 3D polygons.

For polygons that have the same number of ver-
tices, and are fairly close to each other in terms of
center-line distance, an additional distance measure
is computed between corresponding pairs of vertices
between the two polygons. That is, for each poly-
gon vertex, the distance to the closest vertex on
the other polygon is measured. For 2D polygons
these Inter-Vertex Distances are reported in pixels,
for 3D polygons the units are meters, and the dis-
tances are broken into their planimetric (distance
parallel to the X-Y plane) vs. altimetric (distance
in Z) components.

3.2 Evaluation of 2D Detection

One important module of the Ascender system is
the 2D polygonal rooftop detector. The detector
was tested on images 711, 713, 525 and 927 to see
how well it performed at di�erent grouping sensitiv-
ity settings, and with di�erent length and contrast
settings of the Boldt line extraction algorithm. The
detector was tested by projecting each ground truth
roof polygon into an image, growing its 2D bound-
ing box out by 20 pixels on each side, then invoking
the building detector in that region to hypothesize
2D rooftop polygons. The evaluation goals were
to determine both true and false positive detection
rates when the building detector was invoked on an

area containing a building, and to measure the 2D
accuracy of the true positives.

3.2.1 Detection Rates

The polygon detector typically produces several
roof hypotheses within a given image area, par-
ticularly when run at the higher sensitivity set-
tings. Determining true and false positive detec-
tion rates thus involves determining whether or not
each hypothesized image polygon is a good match
with some ground truth projected roof polygon.
To automate the process of counting true posi-
tives, each hypothesized polygon was ranked by its
center-line distance from the known ground truth
2D polygon that was supposed to be detected. Of
all hypotheses with distances less than a threshold
(i.e. polygons that were reasonably good matches
to the ground truth), the one with the smallest
distance was counted as a true positive; all other
hypotheses were considered to be false positives.



Figure 3: Ft.Hood evaluation area with 30 ground truth building models composed of single- and multi-level 
at
roofs, and two peaked roofs. There are 73 roof facets in all. The size of the image area shown is 2375x1805 pixels.

The threshold value used was 0.2 times the square
root of the area of the ground truth polygon, that

is: Dist(hyp,gt) � 0:2
p
Area(gt); where \hyp" and

\gt" are hypothesized and ground truth polygons,
respectively. This empirical threshold allows 2 pix-
els total error for a square with sides 10 pixels long,
and varies linearly with the scale of the polygon.

The total numbers of roof hypotheses generated for
images 711, 713, 525 and 927 are shown at the top
of Figure 4 for nine di�erent sensitivity settings of
the building detector ranging from 0.1 to 0.9 (very
low to very high). The line segments used for each
image were computed by the Boldt algorithm using
length and contrast thresholds of 10. The second
graph in Figure 4 plots the number of true posi-
tive hypotheses. For the highest sensitivity setting,
the percentage of rooftops detected in 711, 713, 525
and 927 were 51%, 59%, 45% and 47%, respectively.
The graph also shows the number of true positives
achieved by combining the hypotheses from all four
images, either by pooling hypotheses computed sep-
arately for each image, or by recursively masking
out previously detected buildings and focusing on
the unmodeled areas in each new image [2]. For
the highest sensitivity setting, this strategy detects
81% (59 out of 73) of the rooftops in the scene.
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Figure 4: Top: Building detector sensitivity vs. to-
tal number of roof hypotheses. Bottom: Sensitivity
vs. number of true positives. Horizontal lines show the
actual number of ground truth polygons. Combining re-
sults from all four views yields a \best" detection rate
of 81% with lines of length > 10, and 97% with lines of
length > 5.



The detection rates seem to be sensitive to view-
point. More total hypotheses and more true posi-
tives were detected in the nadir views than in the
obliques. This may represent a property of the
building detector, but it is also likely that most of
the discrepancy is due to the di�erence in GSD of
the images for this area (see Table 1). Each build-
ing roof simply occupies a larger set of pixels in the
nadir views than in the obliques, for this data set.

To measure the best possible performance of the
rooftop detector on this data, it was run on all four
images at sensitivity level 0.9, using Boldt line data
computed with length and contrast thresholds of
5. These were judged to be the highest sensitivity
levels for both line extractor and building detector
that were feasible, and the results represent the best
job that the building detector can possibly do with
each image. The percentages of rooftops detected
in each of the four images under these conditions
were 86%, 84%, 74%, and 67%, with a combined
image detection rate of 97% (71 out of 73).

3.2.2 Quantitative Accuracy

To assess the quantitative accuracy of the true pos-
itive 2D roof polygons, each was compared with its
corresponding 2D projected ground truth polygon
in terms of center-line distance. Figure 5 plots the
median of the center-line polygon distances between
detected and ground truth 2D polygons, for di�er-
ent sensitivity settings. Polygons detected at low
sensitivity levels seem to be slightly more accurate
than those detected at the high sensitivity settings.
This is so because the detector only �nds clearly
delineated rooftop boundaries at the lower settings,
and is more forgiving in its grouping criteria at the
higher settings.
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Figure 5: Building detector sensitivity vs. 2D polygon
accuracy in pixels (see text).

For pairs of detected and ground truth polygons

having the same number of vertices, their set of
inter-vertex distances were also computed, and the
medians of those measurements are broken down by
image in Table 2. The average distance is around
2.7 pixels. Polygons detected in image 927 appear
to be a little more accurate. This di�erence may
or may not be signi�cant; however, image 927 was
taken in the afternoon, and all the other images
were taken in the morning, so the di�erence in sun
angle may be causing it.

711 713 525 927

IV Distance 2.75 2.82 2.71 2.22

Table 2: Median inter-vertex distances (in pixels) be-
tween detected polygon vertices and projected ground
truth roof vertices, for four images.

3.3 Evaluation of 3D Reconstruction
The second major subsystem in Ascender takes 2D
roof hypotheses detected in one image and recon-
structs 3D rooftop polygons via multi-image line
segment matching and triangulation. Two di�er-
ent quantitative evaluations were performed on this
subsystem. The 3D reconstruction process was �rst
tested in isolation from the 2D detection process
by using 2D projected ground truth polygons as in-
put. This initial evaluation was done to establish
a baseline measure of reconstruction accuracy, that
is, to see how accurate the �nal 3D building models
would be given perfect 2D rooftop extraction. A
second evaluation tested end-to-end system perfor-
mance by performing 3D reconstruction using the
set of automatically detected 2D image polygons
from the previous section.

3.3.1 Baseline Reconstruction Accuracy
The baseline measure of reconstruction accuracy
was performed using 2D projected ground truth
roof polygons. For each of the 7 images in the eval-
uation test set, all the ground truth 2D polygons
from that image were matched and triangulated us-
ing the other 6 images as corroborating views. The
accuracy of each reconstructed roof polygon was
then determined by comparing it with its 3D ground
truth counterpart in terms of center-line distance
and inter-vertex distances. Table 3 reports, for
each image, the median of the center-line polygon
distances between reconstructed and ground truth
polygons for that image. Also reported are the me-
dians of the planimetric (horizontal) and altimetric
(vertical) components of the inter-vertex distances



between reconstructed and ground truth polygon
vertices. Horizontal placement accuracy was about
0.3 meters, which is in accordance with the resolu-
tion of the images.

711 713 525 927

CL distance 0.57 0.46 0.45 0.53

IV planimetric 0.29 0.25 0.33 0.35

IV altimetric 0.49 0.42 0.37 0.43

Table 3: Baseline accuracy of the 3D reconstruction pro-
cess. Median center-line distances as well as inter-vertex
planimetric and altimetric errors are shown (in meters)
for four images. See text.

Another suite of tests was performed to determine
how the number of views a�ects the accuracy of
the resulting 3D polygons. These tests were per-
formed using image 711 as the primary image, and
all 63 non-empty subsets of the other 6 views as ad-
ditional views. For each subset of additional views,
all 2D projected ground truth polygons in image
711 were matched and triangulated, and the me-
dian center-line and inter-vertex distances between
reconstructed and ground truth 3D polygons were
recorded. Figure 6 graphs the results, organized
by number of images used (including 711), ranging
from only two views up to six views. The distances
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Figure 6: Number of views used vs. 3D reconstruction
accuracy in meters. See text.

reported under label \2" are averaged over the 6
possible image sets containing 711 and one other
image, distances reported under \3" are averaged
over all 15 possible image sets containing 711 and
two other images, and so on. There is a noticeable
improvement in accuracy when using three views in-
stead of two, but the curves 
atten out after that,
and there is little improvement in accuracy gained
by taking image sets larger than four.

3.3.2 Actual Reconstruction Accuracy

In actual practice, Ascender reconstruction tech-
niques are applied to the 2D image polygons hy-
pothesized by its automated building detector.
Thus, the �nal reconstruction accuracy depends not
only on the number and geometry of the additional
views used, but also on the 2D image accuracy of
the hypothesized roof polygons. The typical end-
to-end performance of the system was evaluated by
taking the 2D polygons detected in Section 3.2.1
and performing matching and triangulation using
the other six views. The median center-line dis-
tances between reconstructed and ground truth 3D
polygons are plotted in Figure 7 for di�erent sen-
sitivity settings of the polygon detector. The ac-
curacy is slightly better when using polygons de-
tected at the lower sensitivity settings, mirroring
the better accuracy of the 2D polygons at those
levels (compare with Figure 5).
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Figure 7: Building detector sensitivity vs. 3D polygon
accuracy, computed as the median of center-line dis-
tances between reconstructed 3D polygons and ground
truth roof polygons.

For pairs of detected and ground truth polygons
having the same number of vertices, the set of inter-
vertex planimetric and altimetric errors were com-
puted, and the medians of those measurements are
shown in Table 4, broken down by the image in
which the 2D polygons feeding the reconstruction
process were hypothesized. Unlike the baseline er-
ror data from Table 3, where the horizontal accu-
racy of reconstructed polygon vertices was better
than their vertical accuracy, here the situation is
reversed, strongly suggesting that the planimetric
component of reconstructed vertices is more sen-
sitive to inaccuracies in the 2D polygon detection
process than the altimetric component. This result
is consistent with previous observations that the
corners of Ascender's reconstructed building mod-



els are more accurate in height than in horizontal
position [4].

711 713 525 927

IV planimetric 0.68 0.73 1.09 0.89

IV altimetric 0.51 0.55 0.90 0.61

Table 4: Median planimetric and altimetric errors (in
meters) between reconstructed 3D polygon vertices and
ground truth roof vertices.

3.4 Summary
This section has presented preliminary results of an
on-going evaluation of the Ascender system using
an unclassi�ed Ft.Hood data set. While the results
of the analysis are inevitably tied to this speci�c
data set, they give us some indication of how the
system should be expected to perform under di�er-
ent scenarios.

Single-Image Performance: The building detection

rate varies roughly linearly with the sensitivity set-
ting of the polygon detector. At the high sensitivity
level, roughly 50% of the buildings are detected in
each image using Boldt lines extracted at a medium
level of sensitivity (length and contrast > 10), and
about 75{80% when using Boldt lines extracted at
a high level of sensitivity (length and contrast > 5).
Although line segments and corner hypotheses are
localized to subpixel accuracy, the median localiza-
tion error of 2D rooftop polygon vertices is around
2-3 pixels, due in part to grouping errors, but also in
part to errors in resected camera pose (even a per-
fectly segmented polygon boundary will not align
with the projected ground truth roof if the camera
projection parameters are incorrect).

Multiple-Image Performance: One of our underly-

ing research hypotheses is that the use of multi-
ple images increases the accuracy and reliability
of the building extraction process. Rooftops that
are missed in one image are often found in an-
other, so combining results from multiple images
typically increases the building detection rate. By
combining detected polygons from four images, the
total building detection rate increased to 81% us-
ing medium-sensitivity Boldt lines, and to 97% us-
ing high-sensitivity ones. Matching and triangu-
lation to produce 3D roof polygons, and thus the
full building wireframe by extrusion, can perform
at satisfactory levels of accuracy given only a pair
of images, but using three views gives noticeably

better results. After four images, only a modest
increase in 3D accuracy is gained.

Of course, any of these general statements depends
critically on the particular con�guration of views
used. Futher testing is needed to elucidate how dif-
ferent camera positions and orientations a�ect 3D
accuracy. Nadir views appear to produce better
detection rates than obliques, but this can be ex-
plained by large di�erences in GSD for this image
set and may not be characteristic of system per-
formance in general { again, more experimentation
is needed. For this data set, 3D building corner
positions were recovered to well within a meter of
accuracy, with height being estimated more accu-
rately than horizontal position. The accuracy of
the �nal reconstruction depends on the accuracy
of the detected 2D polygons, as one might expect;
however horizontal accuracy is more sensitive to 2D
polygon errors than vertical accuracy. How 3D ac-
curacy is related to errors in resected camera pose is
an issue that is currently under analysis. Also, the
version of Ascender tested here using only a simple
control strategy for detecting 
at-roofed buildings,
more complex control strategies under development
may yield more robust results.

4 3D Grouping and Data Fusion

The building reconstruction strategies used in the
Ascender system provide an elegant solution to ex-
tracting 
at-roofed rectilinear buildings, but exten-
sions are necessary in order to handle other com-
mon building types. Examples are multi-level 
at
roofs (or single-level 
at roofs containing signi�cant
substructures such as large air conditioner units),
peaked-roof buildings, juxtapositions of 
at and
peaked roofs, curved-roof buildings such as Quon-
set huts or hangars, as well as buildings with more
complex roof structures containing gables, slanted
dormers or spires.

To develop more general and 
exible building ex-
traction systems, a signi�cant research e�ort is un-
derway at UMass to explore alternative detection
and reconstruction strategies that combine a wider
range of 2D and 3D information. The types of
strategies being considered involve generation and
grouping of 3D geometric tokens such as lines, cor-
ners and surfaces, as well as techniques for fusing
geometric token data with high-resolution digital
elevation map (DEM) data. By verifying geomet-



ric consistencies between 2D and 3D tokens asso-
ciated with building components, larger and more
complex 3D structures are being organized using
context-sensitive, knowledge-based strategies.

A more comprehensive description of the new types
of extracted geometric features, and methods for
grouping/fusing them is given in [9] (these proceed-
ings). Here, we brie
y outline two of the new re-
construction strategies that have been developed
as direct, incremental extensions to current Ascen-
der technology: computation and grouping of 2.5D
line segments, and parameteric DEM surface �tting
bounded by 2D polygonal roof hypotheses.

4.1 Extracting/Grouping 2.5D Lines

A 3D scene line that is perpendicular to gravity
can be represented as a 2D image line segment plus
its associated scene elevation. We call this repre-
sentation \2.5D" line segments. Sets of 2.5D lines
are computed by taking 2D Boldt line segments for
an image and augmenting each with an elevation
value computed via multi-image matching. The el-
evation estimate for each line segment is formed
by histogramming the set of elevations implied by
potential corresponding segments within epipolar-
constrained search regions across multiple images.
This is essentially the same algorithm that is used
in Ascender to estimate the height of 
at roof poly-
gons in the scene, except it is applied to an indi-
vidual line segment rather than to the set of edges
bounding a polygonal roof hypothesis.

The graph-based perceptual organization algorithm
used in Ascender for organizing lines and corners
into closed 2D polygons [6] has been modi�ed to
handle 2.5D lines. An additional set of 3D consis-
tency checks have been introduced to ensure that
compatible lines and corners are roughly at the
same elevation in the scene. Individual line heights
are combined and propagated into grouped corner,
chain, and polygon hypotheses. The results are
closed 2D polygons with associated elevation values,
which are easily converted into 
at 3D roof polygons
using the known camera projection equations. The
bene�t of the 2.5D approach to roof polygon de-
tection is that image line segments caused by shad-
ows and ground-level features are automatically ig-
nored, and there is less chance of overgrouping mul-
tiple roof levels into a single polygon hypothesis
containing edges that actually occur at di�erent el-

Using 2D lines only

Using 2.5D lines

Figure 8: Using 2.5D lines in the grouping process helps
disambiguate multi-level building roofs (note the build-
ing shadow, which shows two distinct roof levels). The
Z-coordinates of vertices on the left and right 2.5D poly-
gon hypotheses are 260.32 and 261.66 meters, respec-
tively, as compared with ground truth Z-values of 260.65
and 262.31.

evations in the scene (Figure 8).

4.2 Surface-Fitting to DEM Data

A second building detection extension that has
proven very e�ective is to directly fuse 2D rooftop
polygon hypotheses with high-resolution DEM data
in order to estimate various classes of parametri-
cally modeled 3D rooftop surfaces. The DEM data
is produced from a pair of overlapping images by
hierarchical, area-based correlation matching along
epipolar lines [8]. In order to extract paramteric
surfaces, pixels within each detected roof polygon
are backprojected onto the DEM data to determine
a set of sampled 3D points. Since the DEM data is
potentially noisy, due to rooftop clutter and mis-
matches, robust statistical estimation techniques
are used to do the �tting.

Three types of surface �ts have been used to date:
planar, peaked, and curved. An important issue
is how to decide which parametric model to use



for �tting the DEM data associated with a given
rooftop hypothesis. In some cases building shad-
ows can provide information about the pro�le of the
rooftop. An alternative approach is to �t a number
of di�erent parametric classes simultaneously, and
simply choose the one that best �ts the data.

Figure 9 shows an example of three parametric
peaked-roof surfaces that have been �t to the DEM
data within local areas de�ned by building hypothe-
ses generated by Ascender. It is important to run
Ascender on nadir views in this case, since the goal
is to make the system hypothesize a 2D 
at-roofed
polygon that completely surrounds the peaked roof.
Encoding this type of knowledge about how and
when to apply such context-speci�c building ex-
traction strategies is an important issue to consider
when designing an operational vision system [10].

Figure 9: Three parametric peaked-roof surfaces that
have been �t to DEM data within building boundaries
hypothesized by Ascender. Compare with the raw DEM
building data at the top of the image.

5 Extracting Surface Structures for
Visualization

One of the bene�ts that a softcopy, 3D model-based
approach to site analysis has over the traditional 2D
image-based approach is that the image analyst can
generate interactive, visual displays of the site from
any viewpoint. Rapid improvements in the capa-
bility of low-end to medium-end graphics hardware
makes the use of intensity mapping an attractive op-
tion for visualizing geometric site models, with near
real-time virtual reality displays achievable on high-
end workstations. These graphics capabilities have
resulted in a demand for algorithms that can au-

tomatically acquire the necessary surface intensity
maps from available digital photographs. Under the
RADIUS project, UMass has previously developed
routines for acquiring image intensity maps for the
planar facets (walls and roof surfaces) of each recov-
ered building model [3, 4]. Each surface intensity
map is a composite formed from the best available
views of that building face, processed to remove per-
spective distortion caused by obliquity and visual
artifacts caused by shadows and occlusions. An ex-
ample of a building from RADIUS Model Board
1 rendered using automatically acquired intensity
maps is shown at the top of Figure 10.

Although intensity mapping enhances the virtual
realism of graphic displays, this illusion of realism
is greatly reduced as the observer's viewpoint comes
closer to the rendered object surface. For example,
straightforward mapping of an image intensity map
onto a 
at wall surface looks (and is) two dimen-
sional, unlike the surface of an actual wall. A
further problem is that the resolution of the sur-
face texture map is limited by the resolution of the
original image. As you move closer to the surface,
more detail should become apparent, but instead,
the graphics surface begins to look \pixelated" and
features become blurry. In particular, some of the
window features on the building models we have
produced are near the limits of the available image
resolution.

Before

After

Figure 10: Rendered building model before and after
symbolic window extraction.

What is needed to go beyond simple intensity map-
ping is explicit extraction and rendering of detailed
surface structures such as windows, doors and roof



vents. UMass' current intensity map extraction
technology provides a convenient starting point,
since rectangular lattices of windows or roof vents
can be searched for without complication from the
e�ects of perspective distortion, and speci�c surface
structure extraction techniques can be applied only
where relevant, i.e. window and door extraction can
be focused on wall intensity maps, while roof vent
computations are performed only on roofs. As one
example, a generic algorithm has been developed
for extracting windows and doors on wall surfaces,
based on a rectangular region growing method ap-
plied at local intensity minima in the unwarped in-
tensity map. Extracted window and door hypothe-
ses are used to compose a re�ned building model
that explicitly represents those architectural details.
An example is shown in Figure 10. The windows
and doors have been rendered as dark and opaque,
but since they are now symbolicly represented, it
would be possible to render the windows with glass-
like properties such as transparency and re
ectivity.

Future work on extraction of surface structures will
concentrate on roof features such as pipes and vents
that appear as \bumps" on an otherwise planar
surface area. Visual cues for this reconstruction
include shadows from monocular imagery, as well
as disparity information between multiple images.
This is a challenging problem given the resolution
of available aerial imagery.

6 Summary and On-Going Work

A large research e�ort is underway at UMass to de-
velop capabilities for automated site modeling from
aerial images. The Ascender system has been de-
veloped to extract and model 
at-roofed, rectilinear
buildings frommultiple views. Version 1.0 of Ascen-
der has been delivered to Lockheed-Martin for test-
ing on classi�ed imagery and for integration into the
RADIUS Testbed. An evaluation of Ascender on an
unclassi�ed data set of Ft.Hood has been performed
at UMass. The results suggest that the system per-
forms reasonably well in terms of detection rate and
accuracy, and that performance degrades gracefully
when the number of images used is small. Much
more testing will be needed to determine how the
system performs under various weather and viewing
conditions, in order to formulate a set of recommen-
dations as to how and when to use the system.

Algorithms and strategies for extracting other com-
mon building classes with peaked, curved and multi-

level 
at roofs are being developed and tested in the
lab for eventual inclusion into Ascender. Moving
beyond a single control strategy for detecting a sin-
gle class of buildings brings to the forefront issues of
context-sensitive model class selection, data fusion,
and hypothesis arbitration, and these topics are the
focus of our current research e�orts. Research on
symbolic extraction of small surface features such
as windows and doors is also being performed. Ini-
tial results show that the idea is feasible, although
challenging, and that the payo� is large in terms of
realistic scene rendering.
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