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Abstract
The structure-from-motion problem has been exten-

sively studied in the �eld of computer vision. Yet, the
bulk of the existing work assumes that the scene con-
tains only a single moving object. The more realis-
tic case where an unknown number of objects move in
the scene has received little attention, especially for its
theoretical treatment. In this paper we present a new
method for separating and recovering the motion and
shape of multiple independently moving objects in a se-
quence of images. The method does not require prior
knowledge of the number of objects, nor is dependent
on any grouping of features into an object at the image
level. For this purpose, we introduce a mathematical
construct of object shapes, called the shape interaction
matrix, which is invariant to both the object motions
and the selection of coordinate systems. This invariant
structure is computable solely from the observed tra-
jectories of image features without grouping them into
individual objects. Once the structure is computed, it
allows for segmenting features into objects by the pro-
cess of transforming it into a canonical form, as well
as recovering the shape and motion of each object.

1 Introduction
Amotion image sequence allows for the recovery

of the three-dimensional structure of a scene. While a
large amount of literature exists about this structure-
from-motion problem, most previous theoretical work
is based on the assumption that only a single motion
is included in the image sequence; either the environ-
ment is static and the observer moves, or the observer
is static and only one object in the scene is moving.
More di�cult and less studied is the general case of
an unknown number of objects moving independently.
Suppose that a set of features has been extracted and
tracked in an image sequence, but it is not known
which feature belongs to which object. Given a set
of such feature trajectories, the question is whether
we can segment and recover the motion and shape of
multiple objects contained in the image sequence.

The previous approaches to the structure-from-
motion problem for multiple objects can be grouped
into two classes: image motion-based (2D) and three-
dimensional (3D) modeling. The image-motion based
approach relies mostly on spatio-temporal properties
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of an image sequence. For example, regions corre-
sponding to di�erent velocity �elds are extracted by
using Fourier domain analysis [1] or scale-space and
space-time �lters [2, 6, 7]. These image-based meth-
ods have limited applicability either because object
motions are restricted to a certain type, such as trans-
lation only, or because image-level properties, such as
locality, need to be used for segmentation without as-
suring consistent segmentation into 3D objects.

To overcome these limitations, models of motion
and scene can be introduced which provide more con-
straints. Representative constraints include rigidity
of an object [12] and smoothness (or similarity) of
motion[10, 3]. Then the problem becomes segment-
ing image events, such as feature trajectories, into ob-
jects so that the recovered motion and shape satisfy
those constraints. It is now a clustering problem with
constraints derived from a physical model. Though
sound in theory, the practical di�culty is the cyclic
dilemma: to check the constraints it is necessary to
segment features and to segment it is necessary to
compute constraints. So, developed methods tend to
be of a "generate-and-test" nature, or require prior
knowledge of the number of objects (clusters). Ullman
[12] describes a computational scheme to recursively
recover shape from the tracks of image features. A
model of the object's shape is matched to the current
position of the features, and a new model that max-
imizes rigidity is computed to update the shape. He
suggests that this scheme could be used to segment
multi-body scenes by local application of the rigidity
principle. Since a single rigid body model does not
�t the whole data, collections of points that could be
explained by a rigid transformation would be searched
and grouped into an object. Under the framework of
the factorization method [11], this view of the prob-
lem is followed by Boult and Brown [3] and Gear [5],
where the role of rigidity is replaced by linear depen-
dence between feature tracks. Since the factorization
produces a matrix that is related with shape, segmen-
tation is obtained by recursively clustering columns of
feature trajectories into linearly dependent groups.

This paper presents a new method for segment-
ing and recovering the motion and shape of multi-
ple independently moving objects from a set of fea-
ture trajectories tracked in a sequence of images. De-
veloped by using the framework of the factorization
by Tomasi and Kanade [11], the method does not re-
quire any grouping of features into an object at the



image level or prior knowledge of the number of ob-
jects. It directly computes shape information and al-
lows segmentation into objects. This has been made
possible by introducing a linear-algebraic construct of
object shapes, called the shape interaction matrix.
The entries of this matrix are invariant to individ-
ual object motions and yet is computable only from
tracked feature trajectories without knowing their ob-
ject identities (ie, segmentation). Once the matrix is
computed, transforming it into the canonical form re-
sults in segmenting features as well as recovering the
shape and motion of each object. We will present
our theory by using the orthographic camera model.
It is, however, easily seen that the theory, and thus
the method, works under a broader projection model
including weak perspective (scaled orthography) and
paraperspective [9] up to an a�ne camera [8]

2 Factorization Method: A New For-
mulation Including Translation
The factorization method was originally intro-

duced by Tomasi and Kanade[11] for the case of single
static object viewd by a moving camera. Here we will
reformulate the method in such a way that a static
camera observes a scene with a moving object. Also,
whereas the translation component of motion is �rst
eliminated in the Tomasi-Kanade formulation, we will
retain that component in our formulation.

2.1 World and Observations
The object moves relative to the camera which

acquires images. In the sequence we track feature
points from frame to frame. The position of an ob-
ject point pTi = [XiYiZi]

T expressed in homogeneous
coordinates in the camera frame, is given by:
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where Rf and tf are, respectively, the rotation and
translation components. Suppose that we track N fea-
ture points over F frames, and that we collect all these
measurements into a single matrix:
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W = MS: (4)

where (ufi; vfi) are the feature image position, vectors
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�
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�T
, (tf = 1 � � �F ) are

the �rst two rows of the rotation matrix at instant f ,
and (txf ; tyf ) are the X and Y coordinates of the po-
sition of the object's coordinate frame, in the camera
frame, at the same instant.

2.2 Solution for Shape and Motion by
Factorization
Recovering the shape and motion is equivalent

to start with a given matrix W and obtain a factor-
ization into motion matrix M and shape matrix S.
By simple inspection of (4) we can see that since M
and S can be at most rank 4,W will be at most rank
4. Using Singular Value Decomposition (SVD), W is
decomposed and approximated as:

W = U�VT : (5)

Matrix � = diag(�1; �2; �3; �4) is a diagonal ma-
trix made of the four biggest singular values which
reveal the most important components in the data.
Matrices U 2 R2F�4 and V 2 RN�4 are the left
and right singular matrices respectively, such that
UTU = VTV = I (the 4� 4 identity matrix).

By de�ning,

M̂ � U�
1

2 ; Ŝ � �
1

2VT (6)

we have the two matrices whose product can represent
the bilinear system W. However, this factorization is
not unique, since for any invertible 4 � 4 matrix A,
M = M̂A and S = A�1Ŝ are also a possible solution
because

MS = (M̂A)(A�1Ŝ) = M̂Ŝ =W: (7)

The exact solution can be computed, using the fact
that M must have certain properties. Let us denote
the 4�4 matrixA as the concatenation of two blocks,

A � [ARjat] ; (8)

The �rst block AR is the �rst 4� 3 submatrix related
to the rotational component and the second block at
is a 4� 1 vector related to translation. Now, since

M = M̂A =
h
M̂ARjM̂at

i
; (9)

we can impose motion constraints, one on rotation and
the other on translation, in order to solve for A.

2.2.1 Rotation Constraints

Block AR of A, which is related to rotational mo-
tion, is constrained by the orthonormality of axes vec-
tors iTf and jTf : each of the 2F rows entries of matrix

M̂AR is a unit norm vector and the �rst and second
set of F rows are pairwise orthogonal. This yields a
set of constraints:

m̂iARA
T
Rm̂

T
i = 1 m̂jARA

T
Rm̂

T
j = 1 (10)

m̂iARA
T
Rm̂

T
j = 0 (11)

where m̂i; m̂j are rows i and j of matrix M̂ for
i = 1 : : :F and j = F + 1 : : :2F . This is an overcon-
strained system which can be solved for the entries of
ARA

T
R by using least squares techniques, and subse-

quently solving for AR. See [11] for a detailed solution
procedure.



2.2.2 Translation Constraints

In orthography, the projection of the 3D centroid of
an object features into the image plane is the centroid
of the feature points. The X and Y position of the
centroid of the feature points is the average of each
row of W:
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where p � 1

N

P
pi is the centroid of the object. The

origin of the object's coordinate system is arbitrary, so
we can choose to place it at the centroid of the object,
that is p = 0. Then it follows immediately from (12)
that

w = M̂at (13)

This expression is also an overconstrained system of
equations, which can be solved for the entries of at in
the least square sense. The best estimate will be given
by

at = (M̂TM̂)�1M̂Tw (14)

= ��1=2UTw; (15)

which completes the computation of all the elements
of matrix A.

3 The Multi-body Factorization

Method
So far we have assumed that the scene contains a

single moving object. If there is more than one mov-
ing object, the measurement matrix W will contain
features (columns) which originate from di�erent mo-
tions. One may think that solving the problem re-
quires �rst sorting the columns of the measurements
matrix W into submatrices, each of which contains
features solely from one object, so that the factoriza-
tion technique of the previous sections can be applied
individually. We will show in this section that the
multi-body problem can be solved without prior seg-
mentation. For the sake of simplicity in presentation
we will present the theory and method for the case of
two bodies, but it will be clear that the method is ap-
plicable to the general case of an arbitrary unknown
number of objects.

3.1 Multi-body Motion Recovery Prob-
lem: Its Di�culty
Suppose we have a scene in which two objects are

moving and we take an image sequence of F frames.
Suppose also that the set of features that we have
observed and tracked in the image sequence actually
consists of N1 feature points from object 1 and N2

from object 2 which are observed in an image sequence
of F frames.

Imagine for the moment that somehow we know the
classi�cation of features and thus could permute the
columns ofW in such a way that the �rst N1 columns

belong to object 1 followed by the N2 columns from
object 2. Matrix W would have the canonical form:

W� � [W1 jW2 ] : (16)

Each measurement submatrix can be factorized as

Wl = Ul�lV
T
l (17)

= MlSl = (M̂lAl)(A
�1

l Ŝl) (18)

with l = 1 and 2 for object 1 and 2 respectively. By
denoting
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we express a factorization in a similar way of the single
object, that is, equation (16) now has the canonical
factorization:

W� =M�S� (22)

S� = A��1��
1

2V�T ; M� = U���
1

2A� (23)

From equation (22), we see thatW� (and therefore
W) will have at most rank 8, since W1 and W2 are
at most rank 4. Let us consider for the remainder
of this paper the non-degenerate case where the rank
of W is in fact equal to 8; that is, the object shape
is actually three-dimensional (not planar or line) and
the motion vectors span 3D for both objects. The
degenerate cases will be brie
y touched in the last
section and are discussed in more detail in [4].

In reality, we do not know which features belong to
which object, and thus the columns of the given mea-
surement matrix W are a mixture of features from
object 1 and 2. We can still apply singular value de-
composition (SVD) to the measurement matrix, and
obtain

W = U�VT : (24)

Then it may appear that the remaining task is to �nd
the linear canonical transformation A� in (20) such
that shape and motion will have the block structure
of equations (23) and (23).

There is, however, a fundamental di�culty in do-
ing this. The metric (rotation and translation) con-
straints (eq.(10)-(10) and (13)-(15)) were obtained in
section 2.2 by considering that the motion matrix for
one object, that is, by assuming that the measure-
ment matrix consists of features from a single object.
Those constraints are therefore applicable only after
knowing the segmentation. This is exactly the mathe-
maticalmanifestation of the cyclic dilemmamentioned
earlier.

Faced with this di�culty, a usual approach would
be to group features bit by bit so that we segment W



into two rank-4 matrices and obtain the factorization
of the form (22). For example, a most simplistic pro-
cedure would be like the following. Pick the �rst four
columns ofW and form a rank-4 subspace. If the �fth
column belongs to the subspace (ie. is linear depen-
dent on the �rst four, or "almost" linear dependent
in the case of noisy measurement), then classify it to
the same object as the �rst four columns and update
the subspace representation. Otherwise, it belongs to
a new object. Apply this procedure recursively to all
the remaining columns. This approach is in fact essen-
tially the one used by [3] and [5] to split matrix W,
and similar to what was suggested by Ullman [12],
whose criteria for merging was local rigidity.

There are a few disadvantages in this cluster-and-
test approach. First, there is no guarantee that the
�rst four columns, which always form a rank-4 sub-
space, are from the same object. Second, if we use
a sequential procedure like the one above or its varia-
tion, the �nal result is dependent on where we start the
procedure, and alternatively, the search for the glob-
ally optimal segmentation most likely will be compu-
tational very expensive. Finally, the prior knowledge
of the number of objects becomes very critical, since
depending on the decision criterium of subspace inclu-
sion the �nal number of objects may vary arbitrarily.1

3.2 Mathematical Construct of Shapes
Invariant to Motions
The main di�culty in the multi-body structure-

from-motion problem revealed above is that shape and
motion interact. Mathematically, the equation (22)
indicates that the rank-8 measurement space is origi-
nally generated by the two subspaces of rank 4 each,
represented by the block-diagonal shape matrix S�.
However, the recovered shape space VT , obtained by
the singular value decomposition of the non-canonical
W, is in general a linear combination of the two sub-
spaces and has lost the block-diagonal structure.

There is however a mathematical construct that
preserves the original subspace structure. Let us de-
�ne Q as (N1 + N2)� (N1 + N2) square matrix

Q � VVT : (25)

We will call this matrix the shape interaction matrix.
Mathematically, it is the orthogonal operator that
projects N = (N1 + N2) dimensional vectors to the
subspace spanned by the columns of V. This matrix
Q has several interesting and useful properties. First,
by de�nition it is uniquely computable only from the
measurements W without knowing the segmentation,
since V is uniquely obtained by the singular value de-
composition of W.

Secondly, permuting columns ofW does not change
the set of values fQijg that appear in Q though their

1While this is beyond the scope of the assumption in this
section, this cluster-and-test approach also requires the prior
knowledge of the ranks of objects as well. Since for example a
rank-8 measurement matrix might have been generated by two
line (rank-2) objects and one full 3D (rank 4) object instead of
two full 3D objects, and therefore committing to �nd two rank-4
subspaces might be wrong.

arrangement in Q does; swapping columns l and m of
W results in swapping columns l andm ofVT . There-
fore it results in simultaneously swapping columns l
and m and rows l and m in Q, but not their entry
values.

Thirdly, each element of Q provides important in-
formation about whether a pair of features belong to
the same object. Since the set of values do not change,
let us compute Q�, the shape interaction matrix for
the canonical measurement matrixW�. By substitut-
ing (23) into (25), we obtain

Q�= V�V�T (26)
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where �1 and �2 are the 4 � 4 matrices of the mo-
ments of inertia of each object. This means that the
canonical Q� matrix for the sorted W� has a very de-
�ned block-diagonal structure. Moreover, each entry
has the value

Q�

ij =

8>>><
>>>:

sT
1i
��1

1
s1j feat. i and j belong to obj. 1

sT
2i
��1

2
s2j feat. i and j belong to obj. 2

0 feat i and j belong to di�. obj:

(32)

Finally and most importantly, the set of values
fQ�

ijg, which is the same as fQijg are invariant to
motion. This is true since equations (32) include only
S's, and not M. In other words, in whatever way the
objects move they will produce the same set of entries
in matrix Q.

In summary, we have shown that without knowing
the segmentation of features we can compute matrix
Q whose element Qij can be interpreted as a mea-
sure of the interaction between feature i and j: if the
value is non zero, they belong to the same object, and
if they don't belong to the same object, the value is
zero. Also, if the features are sorted correctly into the
canonical form of the measurement matrix W�, then
the corresponding canonical shape interaction matrix
Q� must be block diagonal.

3.3 Sorting Matrix Q into Canonical
Form
The problem of segmenting and recovering mo-

tion of multiple objects now has reduced to sorting
the entries of matrix Q by swapping pairs of rows
and columns until it becomes block diagonal. Once
achieved, the corresponding permutations of columns



of W will transform it its canonical form where fea-
tures from one object are grouped into contiguous
columns. This relationship between sorting Q and
permuting W is illustrated in �gure 1.

− Q    = 0
ij

feature i

fe
at

ur
e 

j

Object 1

Object 2

Sorting

x1
11

x1
12

x2
12

x2
11

...21x1 x1
22

x2
2221

x2

F1
y1

F2
y1

F2
y2

F1
y2

.

.

.

x1
11

x1
12

x2
12

x2
11

... 21x1 x1
22

x2
2221

x2

F1
y1

F2
y1

F2
y2

F1
y2

Object 1 Object 2

.

.
.
. .

.

Column PermutationsW W
N1+N2 N1 N2

N1+N2

N1+N2
N2

N2

N1

N1

2F

Q*

*

Q=VV
T

Figure 1: Segmentation process

With noisy measurements, a pair of features from
di�erent objects may exhibit a small non-zero entry
in Q. We can regard Q2

ij as representing the energy
of the shape interaction, and the block diagonaliza-
tion of Q can be achieved by minimizing the total
energy of all possible o�-diagonal blocks over all set
of permutations of rows and columns of Q. We found
that a simple iterative minimization procedure su�ces
for our purpose. Alternatively, we can regard matrix
fQ2

ijg as de�ning a graph of N1 + N2 nodes, where

the Q2

ij indicates the weight of the link (i; j). We also
found that graph-theoretical algorithms, such as the
minimum spanning tree, can be used to achieve the
block diagonalization more e�ciently than the energy
minimization. The detailed procedures are presented
in [4].

3.4 Summary of Algorithm

While we have presented the theory for the case of
two full-3D objects, it is easy to see tht its essential
part holds for more general cases. First the matrix
Q� has the block diagonal structure for an arbitrary
number of moving objects, that is, an entry Qij of
the Q matrix equals to zero if features i and j belong
to di�erent objects. Furthermore, this property holds
even when the shape matrix of the objects has rank
less than 4 (planes and lines). The computation of Q
by (25) requires only the knowledge of the total rank
of W, which we can determine by SVD. Finally once
Q� is obtained, instead of permuting columns of W
we can use the equivalent permutation of VT , since it
is more computationally e�cient.

The whole algorithm of the multi-body factoriza-
tion method is now summarized as:

1. Extract and track features in the input
image sequence and create matrixW

2. Compute r = rank(W)

3. Decompose matrixW using SVD

4. Compute shape interaction matrix Q
using the �rst r rows of VT

5. Block-diagonalize Q

6. Permute matrix VT into submatrices,
each corresponding to a single object

7. Compute Ai for each object, and thus
its shape and motion.

4 Experiments
The scene consists of two roughly cylindrical shapes

covered by rolling a cardboard sheet and drawing dots
on the surface. The cylinder on the right tilts and ro-
tates in the plane parallel to the image plane while
the cylinder on the left hand side rotates around its
axis. In the sequence with 85 images, a total of 55 fea-
tures are detected and tracked: 27 belonging to the left
cylinder and 28 the other, while, of course, the algo-
rithm was not given that information. Figure 2 shows
the 85-th frame in the sequence with the tracks of
the selected features superimposed. Figure 3(a) show
the shape interaction matrix Q for the unsorted in-
put features. The sorted block diagonal matrix Q�

is shown in �gure 3(b), and the features are grouped
accordingly for individual shape recovery. The resul-
tant three-dimensional points are displayed in �gure 4
with linearly interpolated surface in order to convey a
better perception of the their shape.

5 Discussion and Conclusion
In this paper we have shown that the problem

of multi-body structure-from-motion problem can be
solved systematically by using the shape interaction
matrix. The striking fact is that the method allows
for segmenting or grouping image features into sep-
arate objects based on their shape properties without
explicitly computing the individual shapes themselves.
Also, no prior knowledge of the number of moving ob-
jects in the scene is assumed in the algorithm.

This is due to the interesting and useful invariant
properties of the shape-interaction matrixQ. We have
shown that Q is motion invariant. Even when the
matrix is computed from a di�erent set of image-level
measurements W generated by a di�erent set of mo-
tions of objects, its entries will remain invariant. The
motion invariance property of Q means also that the
degree of complexity of the solution is dependent on
the scene complexity, but not on the motion complex-
ity.

The shape interaction matrix Q is also invariant to
the selection of individual object coordinate frames.
We can easily see that by considering transforming
the shape of object k, Sk, by a 4� 4 matrix T,

S0k = TSk: (33)



Figure 2: Image of the objects and feature tracks

The corresponding block-diagonal element matrix of
Q� will be

S0
T
k (S

0

kS
0T
k )

�1S0k = (TSk)
T
�
TSkS

T
kT

T
��1

(TSk)

= STk (SkS
T
k )

�1Sk (34)

and therefore the entries of matrix Q� remain the
same. Another interesting fact is that the shape in-
teraction matrix can handle many degenerate cases as
well, where objects may be full 3-D object but also
linear or planar. More research is required for the de-
generate cases including the cases where the motions
are degenerate. Also, in order to achieve robustness
under the presence of noise we need to relate its level
with the thresholds necessary in some of the decision
making processes. They include the identi�cation of
the rank of the measurement matrix in the singular
value decomposition, and the determination of block-
diagonality in sorting the shape interaction matrix.
The report [4] explores some of those issues.
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Figure 3: The shape interaction matrix for the lab
scene: (a) Unsorted Q; (b) block-diagonalized Q�
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Figure 4: The recovered shape of the two cylinders
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