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Abstract. Adaptation in open, multi-agent information gathering systems is important for sev-
eral reasons. These reasons include the inability to accurately predict future problem-solving
workloads, future changes in existing information requests, future failures and additions of agents
and data supply resources, and other future task environment characteristic changes that re-
quire system reorganization. We have developed a multi-agent distributed system infrastructure,
Retsina (REusable Task Structure-based Intelligent Network Agents) that handles adaptation
in an open Internet environment. Adaptation occurs both at the individual agent level as well
as at the overall agent organization level. The Retsina system has three types of agents. In-
terface agents interact with the user receiving user speci�cations and delivering results. They
acquire, model, and utilize user preferences to guide system coordination in support of the user's
tasks. Task agents help users perform tasks by formulating problem solving plans and carrying
out these plans through querying and exchanging information with other software agents. In-
formation agents provide intelligent access to a heterogeneous collection of information sources.
In this paper, we concentrate on the adaptive architecture of the information agents. We use as
the domain of application Warren, a multi-agent �nancial portfolio management system that we
have implemented within the Retsina framework.

Keywords: Multi-Agent Systems, Intelligent Agents, Distributed AI, Agent Architectures, In-
formation Gathering

1. Introduction

Due to the current nature of the World Wide Web, information is becoming in-
creasingly di�cult for a person or machine system to collect, �lter, evaluate, and
use in problem solving. The notion of Intelligent Software Agents (e.g., [1, 55, 32,
49, 35, 36, 18]), has been proposed to address this challenge. Although a precise
de�nition of an intelligent agent is still forthcoming, the current working notion is
that Intelligent Software Agents are programs that act on behalf of their human
users in order to perform laborious information gathering tasks, such as locating
and accessing information from various on-line information sources, resolving in-
consistencies in the retrieved information, �ltering away irrelevant or unwanted
information, integrating information from heterogeneous information sources and
adapting over time to their human users' information needs and the shape of the
Infosphere.
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We have developed a multi-agent system infrastructure, called Retsina [48]
where multi-agents compartmentalize specialized task knowledge and coordinate
among themselves to gather and �lter information in response to user-initiated
problem solving. We have developed applications in di�erent domains using the
Retsina framework. Of particular interest for this paper is Warren, a multi-
agent system for �nancial portfolio management. In Retsina, there are three
types of agents: interface agents tied closely to an individual human's goals, task
agents involved in the processes associated with arbitrary problem-solving tasks,
and information agents that are closely tied to a source or sources of data. Typ-
ically, a single information agent will serve the information needs of many other
agents (humans or intelligent software agents). An information agent is also quite
di�erent from a typical World Wide Web (WWW) service that provides data to
multiple users. Besides the obvious interface di�erences, an information agent can
reason about the way it will handle external requests and the order in which it will
carry them out (WWW services are typically blindly concurrent). Moreover, infor-
mation agents not only perform information gathering in response to queries but
also can carry out long-term interactions that involve monitoring the Infosphere for
particular conditions, as well as information updating. The agents communicate
through message passing using the KQML [19] communication language. Since
Retsina is an open agent society where agents may join (e.g. new agents are put
on the Internet every day), or leave (e.g. agents fail intermittently) at any time,
the agents utilize middle agents, e.g. matchmakers and brokers to �nd each other.

The Retsina agents have been designed expressly to handle adaptation. Adap-
tation is behavior of an agent in response to unexpected (i.e., low probability)
events in a dynamic environment. Examples of unexpected events include the un-
scheduled failure of an agent, an agent's computational platform, or its underlying
information sources. Examples of dynamic environments include the occurrence of
events that are expected but it is not known when (e.g., an information agent may
reasonably expect to become at some point overloaded with information requests),
events whose importance 
uctuates widely (e.g., price information on a stock is
much more important while a transaction is in progress, and even more so if cer-
tain types of news become available), the appearance of new information sources
and agents, and �nally underlying environmental uncertainty (e.g., not knowing
beforehand precisely how long it will take to answer a particular query).

The Retsina agents handle adaptation at several di�erent levels, from the high-
level multi-agent organization down to the monitoring of execution of individual
actions. Such multi-faceted adaptation is needed especially in open information
environments, where agents and information sources may appear or disappear, and
where communication links may fail. Use of middle agents helps the Retsina

agents organize themselves in a 
exible and adaptive fashion that makes the overall
system robust to failures of information sources and other agents. In addition, the
agents are able to adapt at the individual level. This adaptation is facilitated by the
reusable underlying individual agent architecture, comprised of a number of mod-
ules that operate asynchronously to handle the various agent tasks. These modules
are: communicator, planner, scheduler, and execution monitor. Besides capabilities
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for handling its particular tasks, an agent is endowed with self monitoring behavior
that allows it to adapt to 
uctuations in performance through cloning.

In this paper, we concentrate on information agents and describe their imple-
mented adaptation capabilities both at the individual agent level as well as at
the organizational level. We will use the functioning of information agents in the
Warren application to illustrate our points. We will present an overview of the
individual agent architecture, agent organization scheme and give speci�c exam-
ples and experimental results of adaptation. In the next section we will discuss the
individual architecture of these agents. In section 2, we will discuss the reusable
components of an individual agent. In sections 3 and 4, we will present the inter-
nal adaptation schemes for some of these agent components. Adaptation between
agents at the organizational level will be presented in section 5 and conclusions
and future work in section 6.

2. Agent Architecture

Most of our work in the information gathering domain to date has been centered
on the most basic type of intelligent agent: the information agent, which is tied
closely to a single data source. An information agent accesses information from
Web-based information sources in response to a request from another agent or a
human. The dominant domain level behaviors of an information agent are: retriev-
ing information from external information sources in response to one shot queries
(e.g. \retrieve the current price of IBM stock"); requests for periodic information
(e.g. \give me the price of IBM every 30 minutes"); monitoring external information
sources for the occurrence of given information patterns, called change-monitoring
requests, (e.g. \notify me when IBM's price increases by 10% over $80"). Infor-
mation originates from external sources. Because an information agent does not
have control over these external information sources, it must extract, possibly in-
tegrate, and store relevant pieces of information in a database local to the agent.
The agent's information processing mechanisms then process the information in
the local database to service information requests received from other agents or hu-
man users. Other simple behaviors that are used by all information agents include
advertising their capabilities to middle agents, managing and rebuilding the local
database when necessary, and polling for KQML messages from other agents.

A large amount of previous work has concentrated on how to access and integrate
information from heterogeneous databases (e.g. relational databases) containing
structured information. Many problems arise due to semantic schema con
icts
and ontological mismatches [26]. The work described here is focussing on WWW-
based information where most of the information is unstructured and where an
information agent does not have access to the contents of the whole information
source at once but only through an external query interface. Projects such as
Carnot [5] have shown that di�erent types of traditional databases (e.g. relational,
object-oriented) can be mapped via articulation axioms to a shared global context
language (in Carnot's case, based on CYC). Such an approach is compatible with
ours and can be used to add traditional structured database external sources to
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our basic information agents. The ontological mismatch problem (e.g. [24]) is still
a di�cult one and is outside the scope of this paper.

An information agent's reusable behaviors are facilitated by its reusable agent ar-
chitecture, i.e. the domain-independent abstraction of the local database schema,
and a set of generic software components for knowledge representation, agent con-
trol, and interaction with other agents. The generic software components are com-
mon to all agents, from the simple information agents to more complex multi-source
information agents, task agents, and interface agents. The design of useful basic
agent behaviors for all types of agents rests on a deeper speci�cation of agents them-
selves, and is embodied in an agent architecture. Our current agent architecture is
part of the Retsina (REusable, Task Structure-based Intelligent Network Agents)
approach [48], partly based on earlier work on the DECAF architecture [7, 40].

In the Retsina approach, an agent's control architecture consists of the following
modules: communicator, planner, scheduler and execution monitor. The architec-
ture presented here is consistent with BDI-style agent theory [3, 42]. These generic
software components are common to all classes of agents, not just information
agents. This di�erentiates our approach from approaches such as SIMS [28] that
are focused on providing only multi-source information agent behaviors. The fo-
cus of our architecture is the ability to interleave computational actions from many
concurrent behaviors, to interleave planning and execution, to schedule periodic ac-
tivities and activities that have deadlines, and to handle behaviors that are strung
out in time and where the next step may be externally, asynchronously enabled.1

In developing the discrete control architecture of our software agents, we rely on
a shared representation of the structure of the tasks an agent is carrying out. The
planner/plan retriever creates these structures for objectives determined by the
communicator; the scheduler actively manages the agenda of executable actions in
the structures; the execution monitor takes care of individual action executions.
The task structure representation we use here has features derived from earlier
hierarchical task network planning work, as well as task structure representations
such as TCA/TCX [45] and T�MS [14].

2.1. Agent Control Components

The control process for information agents includes steps for communicating agent
goals or objectives, planning to achieve local or non-local objectives, scheduling the
actions within these plans, and actually carrying out these actions (see Figure 1). In
addition, the agent has a shutdown and an initialization process. The initialization
process, executed by the agent at startup bootstraps the agent by giving it initial
objectives, i.e. to poll for messages from other agents and to advertise its capabili-
ties. The shutdown process is executed when the agent either chooses to terminate
or receives an error signal that cannot be handled. The shutdown process assures
that messages are sent to (1) the agents that have outstanding information requests
with this agent, and (2) to the middle agents with whom the agent has advertised.
These messages inform of the agent's impending unavailability (see Section 3).
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2.2. Communication

An agent communicates with others through messages using KQML (Knowledge
Query and Manipulation Language) [19, 31]. KQML is an emerging agent communi-
cation language standard that focuses on an extensible set of \performatives", based
on speech acts [44], such as tell, ask, and advertise. Each communicative act
consists of an well-known outer language that includes the performative and several
message \parameters" such as :sender, :receiver, :reply-with, :in-reply-to,
:language, :ontology, and :content. The inner or content language is speci-
�ed by the :language and :ontology and can thus be domain-speci�c. KQML
currently only has informal semantics for most of its performatives and lacks com-
missives [4], however, these problems are being addressed [30, 47].
For example, a requestor agent makes information requests via ask to an infor-

mation provider agent using the :reply-with parameter as a conversation marker.
Eventually, it receives replies via reply or sorry messages with the a matching
:in-reply-to parameter. Receipt of requests from a requestor engender internal
goals to be ful�lled by the recipient information agent. There are three types of
information seeking goals that an information agent receives:

1. Answering a one-shot query about the associated database.

2. Setting up a periodic query on the database, that will be run repeatedly, and
the results sent to the requester each time (e.g., \tell me the price of IBM every
30 minutes").

3. Monitoring a database for a change in a record, or the addition of a new record
(e.g., \tell me if the price of IBM drops below $80 within 15 minutes of its
occurrence").

In addition, message communication is used by an agent to advertise its capabil-
ities to middle agents when it �rst joins the agent society, and unadvertise when
it leaves the society. (see our description of matchmaking in section 5.1 and of
advertising in section 3.1).

2.3. Planning

The focus of planning in our systems is on explicating the basic information 
ow re-
lationships between tasks, and other relationships that a�ect control-
ow decisions.
Most control relationships are derivative of these more basic relationships. Final
action selection, sequencing, and timing are left up to the agent's local scheduler
(see the next subsection). Thus the agent planning process (see Figure 1) takes as
input the agent's current set of goals G (including any new, unplanned-for goals
Gn), and the set of current task structures (plan instances) T . It produces a new
set of current task structures.

� Each individual task T represents an instantiated approach to achieving one or
more of the agent's goals G|it is a unit of goal-directed behavior. Every task
has an (optional) deadline.
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� Each task consists of a partially ordered set of subtasks and/or basic actions
A. Currently, tasks and actions are related by how information 
ows from
the outcomes of one task or action to the provisions of another task or action.
Subtasks may inherit provisions from their parents and provide outcomes to
their parents. In addition, each action has an optional deadline and an optional
period. If an action has both a period and a deadline, the deadline is interpreted
as the one for the next periodic execution of the basic action.

The most important constraint that the planning/plan retrieval algorithm needs
to meet (as part of the agent's overall properties) is to guarantee at least one task for
every goal until the goal is accomplished, removed, or believed to be unachievable
[3]. For information agents, a common reason that a goal in unachievable is that
its speci�cation is malformed, in which case a task to respond with the appropriate
KQML error message is instantiated. For more information on the structure of the
planning module, see [54]. In section 3, we present planning adaptation.

2.4. Scheduling

The agent scheduling process in general takes as input the agent's current set of
task structures T , in particular, the set of all basic actions, and decides which
basic action, if any, is to be executed next. This action is then identi�ed as a �xed
intention until it is actually carried out (by the execution component). Constraints
on the scheduler include:

� No action can be intended unless it is enabled (all of its provisions are present).

� Periodic actions must be executed at least once during their period (as measured
from the previous execution instance)2

� Actions must begin execution before their deadline.

� Actions that miss either their period or deadline are considered to have failed;
the scheduler must report all failed actions. Sophisticated schedulers will report
such failures (or probable failures) before they occur by reasoning about action
durations (and possibly commitments from other agents) [21].

� The scheduler attempts to maximize some prede�ned utility function de�ned
on the set of task structures. For the information agents, we use a very simple
notion of utility|every action needs to be executed in order to achieve a task,
and every task has an equal utility value.

In our initial implementation, we use a simple earliest-deadline-�rst scheduling
heuristic. A list of all actions is constructed (the schedule), and the earliest deadline
action that is enabled is chosen. Enabled actions that have missed their deadlines
are still executed but the missed deadline is recorded and the start of the next
period for the task is adjusted to help it meet the next period deadline. When
a periodic task is chosen for execution, it is reinserted into the schedule with a
deadline equal to the current time plus the action's period. The architecture can
support more complex scheduling [20, 50].
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2.5. Execution Monitoring

Since the Retsina agents operate in a dynamic environment, the results of their
actions cannot be predicted with certainty. Therefore, the agent architecture in-
cludes an execution monitoring module. The execution monitoring process takes
the agent's next intended action and prepares, monitors, and completes its exe-
cution. The execution monitor prepares an action for execution by setting up a
context (including the results of previous actions, etc.) for the action. It monitors
the action by optionally providing the associated computation-limited resources|
for example, the action may be allowed only a certain amount of time and if the
action does not complete before that time is up, the computation is interrupted
and the action is marked as having failed. Upon completion of an action, results,
whether or not the action has executed successfuly or has failed, are recorded and
runtime statistics are collected.

Besides monitoring execution of actions in the environment that is external to
the agent, execution monitoring includes a self-re
ective phase where execution of
actions internal to the agent are monitored. Self re
ection allows the agent to adapt
to 
uctuating performance requirements. For example, an agent could have been
tasked with so many information requests that its e�ciency decreases resulting in
missed deadlines. To monitor performance 
uctuations, the start and �nish time of
each action is recorded as well as a running average duration for that action class.
A periodic task is created to carry out the calculations. Adaptation to performance

uctuations is handled through cloning, i.e. the agent makes a copy of itself and
allocates to it part of its tasks. Cloning as an adaptive response will be discussed
in section 4. In the next two sections we will consider the adaptation of various
internal agent components. In particular, we will discuss adaptation of planning
and execution monitoring.

3. Planning Adaptation

The adaptive capabilities we have developed in Retsina for our task-reduction
planner are based on recent work in planning which has tried to go beyond the lim-
ited de�nition of a plan as a (partially ordered) sequence of actions. Recently there
has been a strong interest in new plan representations that support sophisticated
control 
ow, such as parallel execution [27], conditional branching [41, 15] and loops
[46, 34, 39, 23]. These developments have gone hand-in-hand with the creation of
models for informative (a.k.a. \sensing", \information-gathering") actions [37, 16].
The two developments are closely interrelated, since adaptive contingencies in a
plan are only meaningful if new information from the changing outside world is
made available to the planner. Conversely, sensing the world is most useful when
doing so does in fact cause the agent to adapt its course of action.
Our initial focus for handling planner adaptation has been on two additional kinds

of control 
ow in plans: 1) periodic actions, which are performed repeatedly at spe-
ci�c intervals, and 2) triggered actions, which are performed (perhaps repeatedly)
in response to external events. Existing planning formalisms explicitly describe
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control 
ow in terms of ordering relationships between actions, (i.e. A � B denot-
ing that action A must be performed before action B). But these relationships are
insu�cient to distinguish between a number of distinct control relationships that
might arise in plans with repetitive actions. We hold the position that most control

ow relationships are derivative of other, more basic relationships such as required
information 
ows, e�ects of one task on the duration or result quality of another,
etc. We have been working towards an integrated representation for information
and control 
ow in hierarchical task structures [13, 54, 53].
Some types of adaptation expressed by an agent at this level include:

Adapting to failures: At any time, any agent in the system might be unavailable
or might go o�-line (even if you are in the middle of a long term monitoring
situation with that agent). Our planner's task reductions handle these situations
so that such failures are dealt with smoothly. If alternate agents are available,
they will be contacted and the subproblem restarted (note that unless there
are some sort of partial solutions, this could still be expensive). If no alternate
agent is available, the task will have to wait. In the future, such failures will
signal the planner for an opportunity to replan.

Multiple reductions: Each task can potentially be reduced in several di�erent
ways, depending on the current situation. Thus even simple tasks such as
answering a query may result in very di�erent sequences of actions (looking
up an agent at the matchmaker; using a already known agent, using a cached
previous answer).

Interleaved planning and execution: The reduction of some tasks can be de-
layed until other, \information gathering" tasks, are completed.

The planner architecture is designed so that it can handle these types of adapta-
tion in a natural way.

3.1. Example: Advertising

We illustrate the planner's adaptive capabilities using as an example the functinality
of advertising an agents' capabilities to middle agents. The advertisement behavior
is shared by all Retsina agents. Figure 2 shows the task structure which results
from the basic planner reduction of the \advertise" task.
The reduction is best understood in two parts: the �rst is the initial communica-

tion to the matchmaker, the second are the actions associated with the \shutdown"
of the advertise task (Make Un-Advertisement and the SendKQML on the lower
right). Note that the task structure emphasizes the representation of information

ows in a plan. The planner 
eshes out these more basic relationships; the agent's
scheduler then uses this information to produce a schedule (or schedules in a dy-
namic multi-criteria decision-making situation [20]) that selects, orders, and locates
in time speci�c instantiated actions in a speci�c context.
The three actions \Make Advertisement", \Get Matchmaker Name", and the

topmost instance of \SendKQML" are involved in sending the advertising message.
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Figure 2. One planner task structure reduction for the \advertise" task.

Both \Get Matchmaker Name" and this instance of \SendKQML" are periodic.
All three tasks have an initial deadline of \as soon as possible". \Make Adver-
tisement" constructs the KQML advertisement message content (using the agent's
local database schema plus execution information gathered and persistently stored
from previous invocations) and provides it to SendKQML. The typical �rst reduc-
tion for \Get Matchmaker Name" is to use a prede�ned name; alternate reductions
involving persistent memory or more complex network level protocols are possible
adaptations to failures. If no matchmaker currently exists or some other network
error occurs, the SendKQML signals a \DOWN" outcome, which provides a new
signal to Get Matchmaker name, and the two tasks are rescheduled (they are pe-
riodic) and rerun. In general, the planner strives to produce structures such that
agents can appear on the scene at any time and in any order (as well as disappear,
which see next).
The two action instances \Make Un-Advertisement" and the second, lower right

SendKQML instance comprise the shutdown actions for this task. A task is shut-
down whenever:

1. The planner removes the current reduction (because, for instance, it has failed).
This would not typically happen for advertisement, but does for other tasks.

2. The agent itself intentionally (via a \Termination" action) or unintentionally
(unrecoverable error/signal) goes o�-line.

Shutdown actions are placed on both the regular and a special shutdown scheduling
queue. Both actions are non-periodic and have a deadline of \only execute if there's
nothing better to do". Actions on the shutdown queue are architecturally guaran-
teed to execute at least once, so in particular, the \Make Un-Advertisement" action
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will either execute during normal processing when the agent would otherwise be
idle, or during shutdown if the agent never managed to have a second to spare. The
SendKQML that actually passes the advertisement retraction on to the matchmaker
has two extra enablement conditions: �rst, that the initial advertisement actually
completed without error, and secondly that the task is being shutdown.

4. Execution Adaptation

Within similar architectures, previous execution-time adaptation has focussed on
monitoring actions, or trying to determine if things are going badly before it is too
late to correct the problem [21, 2]. In Retsina, we have begun looking at adaptive
load-balancing/rebalancing behaviors such as agent cloning.

Cloning is one of an information agent's possible responses to overloaded condi-
tions. When an information agent recognizes via self-re
ection that it is becoming
overloaded, it can remove itself from actively pursuing new queries (\unadvertising"
its services in KQML) and create a new information agent that is a clone of itself.
To do this, it uses a simple model of how it's ability to meet new deadlines is re-
lated to the characteristics of it's current queries and other tasks. It compares this
model to a hypothetical situation that describes the e�ect of adding a new agent.
In this way, the information agent can make a rational meta-control decision about
whether or not it should undertake a cloning behavior.

The key to modeling the agent's load behavior is its current task structures. Since
one-shot queries are transient, and simple repeated queries are just a subcase of
database monitoring queries, we focus on database monitoring queries only. Each
monitoring goal is met by a task that consists of three activities; run-query, check-
triggers, and send-results. Run-query's duration is mostly that of the external
query interface function. Check-triggers, which is executed whenever the local DB is
updated and which thus is an activity shared by all database monitoring tasks, takes
time proportional to the number of queries. Send-results takes time proportional
to the number of returned results. Predicting performance of an information agent
with n database monitoring queries would thus involve a quadratic function, but we
can make a simpli�cation by observing that the external query interface functions
in all of the information agents we have implemented so far using the Internet (e.g.,
stock tickers, news, airfares) take an order of magnitude more time than any other
part of the system (including measured planning and scheduling overhead). If we
let E be the average time to process an external query, then with n queries of
average period p, we can predict an idle percentage of:

I% =
p�En

p
(1)

We validate this model in Section 4.1.

When an information agent gets cloned, the clone could be set up to use the
resources of another processor (via an `agent server', or a migratable Java or Tele-
script program). However, in the case of information agents that already spend the
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majority of their processing time in network I/O wait states, an overhead propor-
tion O < 1 of the En time units each period are available for processing.3 Thus, as
a single agent becomes overloaded as it reaches p=E queries, a new agent can be
cloned on the same system to handle another m = On queries. When the second
agent runs on a separate processor, O = 1. This can continue, with the ith agent on
the same processor handling mi = Oimi�1 queries (note the diminishing returns).
We also demonstrate this experimentally in Section 4.1. For two agents, the idle
percentage should then follow the model

I1+2% =
(p�En) + (OEn�Em)

p+OEn
(2)

It is important to note how our architecture supports this type of introspection
and on-the-
y agent creation. The execution monitoring component of the archi-
tecture computes and stores timing information about each agent action, so that
the agent learns a good estimate for the value of E. The scheduler, even the sim-
ple earliest-deadline-�rst scheduler, knows the actions and their periods, and so can
compute the idle percentage I%. In the systems we have been building, new queries
arrive slowly and periods are fairly long, in comparison to E, so the cloning rule
waits until there are (p=E�1) queries before cloning. In a faster environment, with
new queries arriving at a rate r and with cloning taking duration C, the cloning
behavior should be begun when the number of queries reaches

p

E
� drce

4.1. Experimental Results: Execution Adaptation

We undertook an empirical study to measure the baseline performance of our infor-
mation agents, and to empirically verify the load models presented in the previous
section for both a single information agent without the cloning behavior, and an
information agent that can clone onto the same processor. We also wanted to verify
our work in the context of a real application (monitoring stock prices).

Our �rst set of experiments were oriented toward the measurement of the baseline
performance of an information agent. Figure 3 shows the average idle percentage,
and the average percentage of actions that had deadlines and that missed them,
for various task loads. The query period was �xed at 60 seconds, and the external
query time �xed at 10 seconds (but nothing else within the agent was �xed). Each
experiment was run for 10 minutes and repeated 5 times. As expected, the idle
time decreases and the number of missed deadlines increases, especially after the
predicted saturation point (n = 6). The graph also shows the average amount of
time by which an action misses its deadline.

The next step was to verify our model of single information agent loading behavior
(Equation 1). We �rst used a partially simulated information agent to minimize
variation factors external to the information agent architecture. Later, we used a
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Figure 3. A graph of the average percentage idle time and average percentage of actions with
deadlines that missed them for various loads (left Y axis). Superimposed on the graph, and keyed
to the right axis, are the average number of seconds by which a missed deadline is missed.

completely real agent with a real external query interface (the Security APL stock
ticker agent).

The graph on the left of Figure 4 depicts the actual and predicted idle times for an
information agent that monitors a simulated external information source that takes
a constant 10 seconds.4 The information agent being examined was given tasks by
a second experiment-driver agent. Each experiment consisted of a sequence of 0
through 10 tasks (n) given to the information agent at the start. Each task had a
period of 60 seconds, and each complete experiment was repeated 5 times. Each
experiment lasted 10 minutes. The �gure clearly shows how the agent reaches
saturation after the 6th task as predicted by the model (p=E = 6). The idle time
never quite drops below 10% because the �rst minute is spent idling between startup
activities (e.g., making the initial connection and sending the batch of tasks). After
adding in this extra base idle time, our model predicts the actual utilization quite
well (R2 = 0:97; R2 is a measure of the total variance explained by the model).

We also ran this set of experiments using a real external interface, that of the
Security APL stock ticker. The results are shown graphically on the graph in
the right in Figure 4. Five experiments were again run with a period of 60 seconds
(much faster than normal operation) and 1 through 10 tasks. Our utilization model
also correctly predicted the performance of this real system, with R2 = 0:96 and the
di�erences between the model and the experimental results were not signi�cant by
either t-tests or non-parametric signed-rank tests. The odd utilization results that
occurred while testing n = 7; 8; 9 were caused by network delays that signi�cantly
changed the average value of E (the duration of the external query). However,
since the agent's execution monitor measures this value during problem solving,
the agent can still react appropriately (the model still �ts �ne).
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Figure 4. On the left, graph of predicted and actual utilization for a real information agent with
a simulated external query interface. On the right, the same graph for the Security APL stock
ticker agent.

Finally, we extended our model to predict the utilization for a system of two
agents with the cloning behavior. Figure 5 shows the predicted and actual results
over loads of 1 to 10 tasks with periods of 60 seconds, E = 10, and 5 repetitions.
Agent 1 clones itself onto the same processor when n > 5. In this case, model
R2 = 0:89, and the di�erences between the model and the measured values are not
signi�cant by t-test or signed-ranks. The same graph shows the predicted curve for
one agent (from the left side of Figure 4) as a comparison.5

5. Organizational Adaptation

The previous two sections have discussed adaptation within an agent, this section
deals with adaptation at the multi-agent, organizational level. It has been clear
to organizational theorists since at least the 60's that there is no one good orga-
nizational structure for human organizations [33]. Organizations must instead be
chosen and adapted to the task environment at hand. Most important are the
di�erent types and qualities of uncertainty present in the environment (e.g., un-
certainty associated with inputs and output measurements, uncertainty associated
with causal relationships in the environment, the time span of de�nitive feedback
after making a decision [43]).

In multi-agent information systems, one of the most important sources of un-
certainty revolves around what information is available from whom (and at what
cost). Our organizational model relies on three basic roles: that of the requester,
the middle-agent, and the provider. Any one agent in a domain system might
take on multiple roles, for example an agent that requests basic info from several
providers, does some complex integration, and then serves the integrated info to
other requesters. In this model, communicative acts are limited to requests, replies,



15

Number of Periodic Queries

P
er

ce
nt

ag
e 

Id
le

Predicted, 1 agent

Predicted, with cloning (2 agents)

Actual, with cloning

0.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

0.1

Figure 5. Predicted idle percentages for a single non cloning agent, and an agent with the cloning
behavior across various task loads. Plotted points are the measured idle percentages from exper-
imental data including cloning agents.



16

and commitments. This has two bene�ts: �rst, the semantics of requests and com-
mitments are well-understood [19, 4], and second, such a model allows us to build
simpler agents that can work in a open environment.

We say that a requester agent has preferences, and that a provider agent has
capabilities. A speci�c request is an instance of an agent's preferences, and a spe-
ci�c reply or action in service of a request is an instance of an agent's capabilities.
Furthermore, an agent can have a mental state with respect to a particular speci�-
cation of a preference or capability. An advertisement is a capability speci�cation
such that the agent creating the advertisement is committed [3, 25] to servicing any
request that satis�es the advertisement's constraints.

We have developed a standard basic advertising behavior that allows agents to
encapsulate a model of their capabilities and send it to a \matchmaker" or \yellow-
pages" middle agent [29]. Such a matchmaker agent can then be used by a multi-
agent system to form several di�erent organizational structures[9]:

Uncoordinated Team: agents use a basic shared behavior for asking questions
that �rst queries the matchmaker as to who might answer the query, and then
chooses an agent randomly for the target query. Very low overhead, but po-
tentially unbalanced loads, reliability limited by individual data sources, and
problems linking queries across multiple ontologies.

Economic Markets: (e.g., [51]) Agents use price, reliability, and other utility
characteristics with which to choose another agent. The matchmaker can supply
to each agent the appropriate updated pricing information as new agents enter
and exit the system, or alter their advertisements. Agents can dynamically
adjust their organization as often as necessary, limited by transaction costs.
Potentially such organizations provide e�cient load balancing and the ability to
provide truly expensive services (expensive in terms of the resources required).

Federations: (e.g., [52, 22, 19]) Agents give up individual autonomy over choosing
who they will do business with to a locally centralized \facilitator" (an extension
of the matchmaker concept) that brokers requests. Centralization of message
tra�c potentially allows greater load balancing and the provision of automatic
translation and mediation services.

Bureaucratic Functional Units: Traditional manager/employee groups of a sin-
gle multi-source information agent (manager) and several simple information
agent (employees). By organizing into functional units, i.e., related information
sources, such organizations concentrate on providing higher reliability (by us-
ing multiple underlying sources), simple information integration (from partially
overlapping information), and load balancing.

This is not an exhaustive list. Our general architecture has supported other explo-
rations into understanding the e�ects of organizational structures [11, 12, 10].
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5.1. Example: Matchmaking and Brokering

As an example of organizational adaptation, let us compare the failure recovery
characteristics of matchmade and bureaucratic manager (\brokered") information
organizations. Both organizations are possible solutions to the connection problem
[6]|�nding the other agents that might have the information and capabilities you
need.

In a matchmade organization (see Figure 6), providers advertise6 their capabilities
with a matchmaker. If those capabilities change, or the agent exits the open system,
the provider unadvertises. A matchmaker stores these advertisements in a local
database. A requester wishing to ask a query �rst formulates a meta-query asking
for advertisements from agents that could respond to the query. This meta-query is
asked of a matchmaker, which responds with a set of matching advertisements. The
requester can then use its full preferences to choose a provider, and make its request
directly to the chosen provider. Furthermore, if this type of query is asked often,
then the requester can subscribe to updated advertisements from a matchmaker,
and keep a local cache of the current advertisements.

agent name        service class      price      reliability     duration      characteristics
Matchmaker

Requester

(ASK-ALL "who can servicemy request")

(REPLY "name1 + info, name2 + info,...")

(STREAM-ALL "request" ...)

(REPLY ...)
(ADVERTISE ...)

(UNADVERTISE ...)

Server

Figure 6. Communications between three agents taking on the roles of matchmaker, requester,
and server.

In brokered organizations (Figure 7), requester behaviors remain the same. In
a pure brokered organization the brokers are generally known by all the agents,
just like a matchmaker is. However, for practicality in an open system hybrid

brokered organizations use a matchmaker so that providers and requesters can
�nd the appropriate broker. Providers query a matchmaker to �nd an appropriate
broker, and then advertise with one broker. Brokers advertise summary capabilities
built from all the providers that have advertised with them; these capabilities are
advertised in turn to the matchmaker. When a request comes in, the broker matches
it with a provider and sends it on; the reply is then sent back through the broker
to the original requester.
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The main di�erences between matchmakers and brokers are these: Matchmakers
reveal to requesters the capabilities of agents that have advertised with them. They
maintain the privacy of requesters. Requesters select the provider that vest �ts
their constraints and communicate with that provider directly. In contrast, brokers
protect the privacy of both requesters and providers. The broker knows both the
preferences and capabilities and routes both requests and replies appropriately. In
a brokered system requesters and providers do not communicate directly with each
other but only through brokers.

agent name                     load balancing info                other service characteristics

Broker

Server

Requester(STREAM-ALL "request" ...)

(REPLY ...)

(A
D

V
E

R
T

IS
E

...
)

(U
N

A
D

V
E

R
T

IS
E

...
)

(STREAM-ALL "re
quest" ...)

(REPLY ...)

Figure 7. Communications between three agents taking on the roles of broker, requester, and
brokered server.

The ability of an organization to quickly adapt to changing capabilities (i.e., the
entry or exit of providers) is a function of the distance that the information has
to travel, and the costs of keeping that information up-to-date. Elsewhere, the
authors have analyzed and developed an analytical model of what happens in an
open system to the maximum service time when providers come and go [8]. We
have also veri�ed these results empirically using the Warren system, where the
agents experience real communication and processor latencies, etc. while running
on multiple serial processors.

5.2. Experimental Results: Organizational Adaptation

In this section we report on some experimental results that provide insights into
the adaptive capabilities and particular performance tradeo�s between matchmade
and brokered systems. In the experiments we used one broker and one matchmaker.
The broker and matchmaker are the same agents used in the actual portfolio man-
agement system. Providers and requesters are instances of Warren providers and
requesters. The actual service time for each request and the period between requests
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were generated randomly; the service times were distributed normally around the
mean T , and the request generation period was distributed exponentially around
the mean P . But because we used real rather than simulated agents, some pa-
rameters were beyond our control, such as the inter-agent communication latency,
the computational needs of the broker or matchmaker, and the amount of time
spent by the providers and requesters on planning, scheduling, and other internal
operations.

We recreate one of these experiments here, where we investigate the e�ect of
provider failure and recovery on our two systems|demonstrating simple adaptive
organizational behavior. We began with three providers, and �xed the service time
and request generation period at 15 and 10 seconds, respectively. After �ve minutes,
we killed one of the providers, and after �ve more minutes, we killed a second one.
Five minutes after that, we brought one of the severs back on line, and then ten
minutes later the third one returned. When a provider dies, it sends a sorry

message for each outstanding request. Each of these requests must be reallocated
(by either the broker or the original requester) to another provider.

Figures 8a and 8b show the results of this experiment in each of the two basic
organizational regimes. Each point represents the completion of a service request.
The response-time superiority of the brokered system stems from the di�erence in
behavior of the two systems when the failed providers come back online. When there
is only one provider left operating, the system is saturated, so that provider begins
to build up a large backlog of requests. When the second and third providers become
available again, the requesters in the matchmade system continue to allocate one-
half or one-third of their requests to the overloaded provider, so the backlog persists
for a long time.7 In the brokered system, on the other hand, all new requests are
allocated to the new provider, allowing the backlog at the congested provider to
quickly dissipate.

6. Conclusions

This paper has discussed adaptation in the Retsina system of intelligent agents.
We have implemented adaptation schemes at the individual agent level as well as
at the organizational level. Organizational adaptation includes behaviors by which
agents deal with an open, dynamically changing society. Some of our work has
involved building and verifying analytical models of the properties of some simple
organizations.

The adaptive behavior at the individual agent level is supported by the reusable
agent architecture. We have reported examples and experimental results at the
level of planning and execution. At the planning level, we discussed adapting to
failures, the use of multiple task reductions, and interleaved planning and execution.
Our task reduction planner, which focuses on indicating the underlying information

ows between tasks, rather than directly indicating task ordering, was described.
Current work includes the integration of a highly adaptive scheduling component
(e.g., [20, 50]).
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This paper also discussed a fairly detailed model of, and experimentation with,
a simple cloning behavior we have implemented. This behavior is an agent's adap-
tive response to 
uctuating performance requirements. Several extensions to this
cloning model are being considered. In particular, there are several more intelligent
ways with which to divide up the tasks when cloning occurs in order to use resources
more e�ciently (and to keep queries balanced after a cloning event occurs). These
include:

1. partitioning existing tasks by time/periodicity, so that the resulting agents have
a balanced, schedulable set of tasks,

2. partitioning tasks by client so that all tasks from agent 1 end up at the same
clone, and

3. partitioning tasks by class/type/content so that all tasks about one subject
(e.g., the stock price of IBM) end up at the same clone.
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Notes

1. While SIMS agents do not have most of these capabilities, it is interesting to note that Et-
zioni's softbots provide for some of them|periodic and externally enabled actions|by adding
a programming language layer above the planner [17], rather than by adding a seperate local
scheduling component.

2. Here, the term periodic refers to to the fact that the task must be repeated at intervals that
cannot be any longer than the speci�ed period, i.e., \max invocation separation constrained"
[38].

3. Another way to recoup this time is to run the blocking external query in a separate process,
breaking run-query into two parts. We are currently comparing the overhead of these two
di�erent uni-processor solutions|in any case we stress that both behaviors are reusable and
can be used by any existing information agent without reprogramming. Cloning to another
processor still has the desired e�ect.

4. All the experiments described here were done on a standard timesharing Unix workstation
while connected to the network.

5. Since the potential second agent would, if it existed, be totally idle from 1 < n < 6, the idle
curve di�ers there in the cloning case.

6. All communications here are done via the appropriate KQML performatives or extensions [19].

7. This e�ect could be reduced if requesters make an e�ort at active load balancing.
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