
Jacobian Images of Super-Resolved Texture Maps
for Model-Based Motion Estimation and Tracking

Frank Dellaert Sebastian Thrun Chuck Thorpe
Computer Science Department and The Robotics Institute

Carnegie Mellon University, Pittsburgh PA 15213

Abstract

We present a Kalman filter based approach to perform
model-based motion estimation and tracking. Unlike previ-
ous approaches, the tracking process is not formulated as
an SSD minimization problem, but is developed by using
texture mapping as the measurement model in an extended
Kalman filter. During tracking, a super-resolved estimate
of the texture present on the object or in the scene is ob-
tained. A key result is the notion of Jacobian images, which
can be viewed as a generalization of traditional gradient
images, and represent the crucial computation in the track-
ing process. The approach is illustrated with three sample
applications: full 3D tracking of planar surface patches, a
projective surface tracker for uncalibrated camera scenar-
ios, and a fast, Kalman filtered version of mosaicking with
detection of independently moving objects.

1. Introduction

This paper deals with model based motion estimation
and tracking in video-streams, an area of intense research
with many applications [2]. The motion we consider can
be due to a moving object in the scene, the camera mo-
tion, or both. We expect that prior knowledge about the
application led to the formulation of a model, whosestate
variablesx we will track over time, using information con-
tained inmeasurementszi. As an example, consider a pla-
nar surface patch moving in 3D, and observed in a monoc-
ular video stream. We use a six-variable state vectorx =
[X Y Z ψ θ φ]T to characterize the pose of the patch, and
each measurementzi is a vector of pixels.

We present a Kalman filter approach to the motion es-
timation problem, in whichtexture mappingis used as the
measurement model. Atexture mapof the object or scene is
incorporated in the model state and is estimated along with
the pose state variables. Texture mapping is then used to
predict the measurements and to revise the pose estimate.
Then, the texture map part of the state is updated using the

newly recovered pose. This two-step makes the approach
computationally feasible. If the texture map is kept at a
higher resolution than the input image, super-resolved tex-
ture maps can be built during the tracking process. This has
applications in model building, image restoration and robot
vision. Our approach can also be used to register incoming
images in a pre-existing texture map, possibly at lower reso-
lution. This has applications in (robot) localization, and can
also be viewed as an alternative approach to mosaicking.

In what follows, we first pose the problem in a Bayesian
framework in Section 2. This will naturally lead to a
Kalman filter based approach. In Section 3 we discuss the
use of texture mapping as the measurement model, and in
Section 4 we explain how it can be used as part of an it-
erated Kalman filter, to track motion parameters over time.
Of crucial importance here is the calculation of theJaco-
bian images, which we elaborate on in Section 5. Finally,
in the applications section (Section 6) we present three dif-
ferent applications in which this approach has been used,
after which we conclude in Section 7.

2. A Bayesian View

In this section we first view the motion estimation prob-
lem in the general framework of Bayesian estimation the-
ory. We will be interested in tracking the statex of a model
for an object or a scene, given as input one or more video-
streams. In the Bayesian tradition, we will base our estimate
x̂(t) on the posterior probability densityP (x|Zt0 = z0 . . .zt)
of the statex given all measurementszi up to the current
time t. We can express this density in terms of a prior
P (x|Zt−1

0 ) and a likelihoodP (zt|x,Zt−1
0 ), using Bayes law:

P (x|Zt0) =
P (zt|x,Zt−1

0 )P (x|Zt−1
0 )

P (zt|Zt−1
0 )

(1)

Previous approaches have traditionally modeled the likeli-
hoodP (zt|x,Zt−1

0 ) by assuming that the current imagezt
is equal to the previous imagezt−1, warped according to
x, and corrupted by noise. Under certain assumptions the



maximum likelihood solutionis then equivalent to minimiz-
ing the sum of square differences (SSD), the approach fol-
lowed in much of the literature [10, 2]. Note that in this case
(a) no prior knowledge aboutx is used, and (b) the previous
measurementzt−1 needs to be kept around.

The approach taken in this paper is to extend the statex
so that we can predictzt fromx alone, satisfying theMarkov
propertyP (zt|x,Zt−1

0 ) = P (zt|x). For example, for a sur-
face patch, we could explicitly estimate the texture on the
surface and use it to predict the image. There are many ad-
vantages to taking this view. First, the texture map can be
kept at a higher resolution than the images to yield superior
predictions. Second, the estimated texture is a composite
of all previous images in the video-stream, not just the last
image. Finally, the texture would remain valid even when
the surface patch is temporarily occluded.

In general, one needs to estimateall variables relevant
to the appearance of the scene, including surface structure,
surface reflectance characteristics and lighting conditions.
Then, by modeling how the image measurement is obtained
by the camera(s), we can derive an expression forP (zt|x).
If this density is Gaussian, and if the dynamics of the model
can be described using a linear system, then theKalman fil-
ter [11] can be used to efficiently evaluate Bayes law (1)
over time. This approach has been used before in feature-
based approaches to structure from motion [3, 1], visual ser-
voing [13], and model-based tracking [4]. By making the
surface characteristics part of the state, and using an appro-
priate measurement model, the set of tools provided by op-
timal estimation theory, foremost the Kalman filter, can be
applied equally well to iconic or image based approaches.

3. The Measurement Model

Here we discuss the use of texture mapping as the mea-
surement model. Without loss of generality, we continue
the discussion for the case of a planar surface patch ob-
served in a video-stream, as introduced above. Thus, we
extend the state estimate tox̂ = {x̂p, T̂ }, where x̂p col-
lects the pose variables, and̂T is a texture map modeling
the actual textureT present on the patch. We will refer to
the pixels of this texture map asmixels, or model pixels,
to distinguish them from image pixels. In this caseeach
measurementzi consists of a collection of image intensity
valuesI(p, xp, T ), one for each pixelp in the area occupied
by image of the patch. As indicated, these pixel values will
be a function of both the posexp and the textureT . Predict-
ing the measurement can then be reformulated as asking the
question:givenx̂p and T̂ , what is the valueI(p, x̂p, T̂ ) of
each pixel in the image of the patch ?This is exactly the
problem addressed by texture mapping [7, 12].

The most basic form of texture mapping simply inverts
themappingm between (homogeneous) texture coordinates

(s, t, u) and image coordinates(x, y, w). In this scheme,
each pixel is inverse-mapped to itspre-imagein texture
space, and assigned the value of the nearest mixel [12]:

I(p, x̂p, T̂ ) = T̂ (round(m−1(p))) (2)

The dependence on the pose estimatex̂p is subsumed in the
mappingm. In the case of a planar patch,m is simply a
projective mapping, characterized by a3×3 matrix itT(xp),
that transform pointsk in texture space to pixelsp in image
space. Thishomographyis invertible, and we can apply
inverse mapping as in (2).

However, as we are resampling from one discrete grid
(the texture) to another (the image),aliasingcan occur if the
warping process introduces spatial frequencies in the image
that exceed the Nyquist sampling frequency. As this will
negatively affect our ability to perform motion estimation,
we need to prevent aliasing from occurring. Ideally, this
is done by first reconstructing the continuous texture signal
using a sync filter, warping it according to the mappingm,
and then pre-filtering it with an ideal low-pass filter that cuts
off undesired high frequencies. By combining these two
filters the predicted value for each pixelp can be obtained
by convolving the texture imagêT with a resampling filter
ρ centered aroundm−1(p): [7]

I(p, x̂p, T̂ ) =
∑
k∈Z2

T̂ (k) ρ(m−1(p), k) (3)

In practice we use a Gaussian low-pass filter for both the
reconstruction filter and the prefilter. In the planar case, this
has the convenient property that the combined filter is again
a (warped and space-variant) Gaussian filter in texture space
[7, 5]. The resulting filter yields high quality predictions
for the image measurement, and has smooth and continuous
derivatives, which will be required below.

4. Recursive Motion Estimation

At this point we are in a position to recursively obtain
P (x|Zt0) by evaluating Bayes law. Texture mapping yields
a measurement predictionẑ = h(x̂) that, assuming Gaussian
additive noise, yields a Gaussian likelihood densityP (zt|x)
centered around̂z and with covariance matrixR. The mea-
surement noise covarianceR is typically taken to be diag-
onal, i.e., individual pixel measurements are assumed to be
conditionally independent givenx.

If the measurement model is linear, i.e., described by a
matrix equationz = Hx, and corrupted by Gaussian white
noise, then the Kalman filter (KF) can be used to efficiently
evaluate Bayes law at each time step. Indeed,under those
assumptions the densityP (x|Zt0) will remain Gaussian at
all times (providedx is propagated over time using linear
dynamics), and can be characterized using only two quanti-
ties: a mean̂x and a covariance matrixP. At each time step



then, the incoming measurementz can be integrated using
the standard KF measurement update equations [11]:

K = P HT [H P HT + R]−1 (4)

x̂⇐ x̂ + K [z− h(x̂)] (5)

P⇐ P−K HP (6)

Here the gain matrixK is used to weigh how much and in
what direction the state estimatex̂ is updated in function of
the difference between the predicted measurementh(x̂) and
actual measurementz.

4.1. Recursive Estimation Overview

Each iteration consists of three phases: prediction, pose
registration and texture update. In the first phase, we pre-
dict the statex by using a model for the dynamics of the
system. The ability to do this is a crucial advantage of using
a Kalman filter, as it makes the ensuing image registration
process easier, by providing a good initial state estimate.
The two remaining phases comprise the measurement up-
date step. Because the texture mapping processh described
by (3) is linear in the texture variableŝT (k), but highly non-
linear in the pose variableŝxp, we have taken a two-tier ap-
proach. First, the model is registered by estimating the pose
variablesx̂p using an extended Kalman filter (see below).
Only then the texture map̂T is updated using a linear KF.
In summary, the recursive estimation approach we propose
follows the usual KF structure, albeit with the measurement
update step split into two phases:

1. Dynamics (Section 4.2): use a motion model to predict
the posexp at the next time step.

2. Estimate Pose (Section 4.3): incorporate an image
measurementz to estimate theposêxp.

3. Estimate Texture (Section 4.4): update thetexturees-
timateT̂ using the newly aligned image.

4.2. Dynamics

The Kalman filterdynamics updateequations are used to
propagate the state estimatex̂ forward in time. In our cur-
rent work, we have used various motion models to predict
the changing pose, depending on the application. In princi-
ple, although we have not yet attempted this, one could also
model time-variant properties of the texture, e.g. changes in
lighting. One could even attempt to track a television screen
by modeling the changes in the televised image.

In most cases, we have simply used a linear constant ve-
locity model, with appropriate noise terms to account for
acceleration. One important approximation we make is ne-
glecting the cross-correlation terms between texture and po-
sition variables. The pose estimate{x̂p(t), Pp} is then prop-
agated by integrating the dynamicsf forward in time until

the next measurement is available:

˙̂xp(t) = f[x̂p(t), u(t)] (7)

Ṗp(t) = F(t) Pp(t) + Pp(t) FT (t) + G Q GT (8)

HereF(t) is the Jacobian of the system dynamicsf, andQ is
the covariance kernel of the dynamic driving noisew. If f is
non-linear,F(t) represents the (time-varying) linearization
of f around the estimatêxp(t).

4.3. Pose Update

For the pose update the texture partT̂ of the state is held
constant, and the posêxp is updated using theiterated ex-
tended Kalman filter(IEKF), explained below. This pro-
cess is the counterpart of the conventional image registra-
tion techniques in the literature. In fact, it can be shown
that the IEKF is equivalent to Gauss-Newton non-linear op-
timization. However, unlike previous work, here we are
maximizing aposteriorprobability and not a likelihood, as
the dynamics update step yields a prior on the statex̂p.

The extended KF simply uses equations (4-6), but lin-
earizes the measurement functionh at each step, by means
of themeasurement JacobianH:

H(x̂p) def=
∂h(xp, T̂ )
∂xp

∣∣∣∣
xp=x̂p

(9)

The IEKF is based on the idea that the JacobianH and the
predictionh(x̂p) are likely to be of better qualityafter the
update has been done, since the new state estimate is pre-
sumably closer to the true state. Repeating this process mul-
tiple times leads to the IEKF update algorithm [11, 3]:

Kn = P H(x̂n)T [H(x̂n) P H(x̂n)T + R]−1 (10)

x̂n+1 ⇐ x̂0 + Kn [z− h(x̂n, T̂ ) −H(x̂n)[x̂0 − x̂n]] (11)

Herex̂0 is initialized to the estimatêx before the update, and
the above equations are iterated inn until convergence.

4.4. Texture Update

After the pose update, the newly aligned image measure-
ment is incorporated to refine the texture estimateT̂ . The
usual KF measurement update equations are used to update
the texture, but to keep the computation tractable we make
a number of approximations. Since the estimated texture is
typically large, it is infeasible to maintain a full covariance
matrix. Instead, we neglectall cross-correlation terms be-
tween neighboring texture mixels, i.e., we assume a diago-
nal texture covariance matrixPt. Furthermore, we currently
neglect any mixel-pose cross-correlation terms.

The mixel update equations then become particularly el-
egant. From (3) one can see that each row of the mea-
surement JacobianH will simply contain the resampling



weightswpk = ρ(m−1(p), k). In addition, we have a di-
agonal covariance matrixPt, having as elements the mixel
variancesPkk. If the measurement noise covariance R
is also diagonal, with elementsσ2

p, we can integrate one
pixel measurement at a time, and the innovationv(p) =
z(p)− I(p, x̂p, T̂ ) reduces to a scalar. It can then be easily
derived that the update equations (4-6) for mixelk become:

Kkp = Pkkwpk/(σ2
p +

∑
j
Pjjw

2
pj) (12)

T̂ (k)⇐ T̂ (k) +Kkpv(p) (13)

Pkk ⇐ Pkk(1 −wpkKkp) (14)

Remarkably, these simple equations produce quite satisfac-
tory super-resolved estimates of the textureT . They are
also intuitively appealing: the gainKkp determines how
much a pixel measurementz(p) contributes to a mixelk.
This gain is higher for mixels with high resampling weight
wpk, and decreases as the noise varianceσ2

p increases.

5. Jacobian Images

Figure 1. A texture mapped planar patch and Iψ , its par-

tial derivative with respect to yaw (rotating around Z).

In this section we elaborate on the calculation of the mea-
surement Jacobian in equations (10-11). In our case,H(x̂p)
contains the partial derivatives of the texture mapping pro-
cess with respect to the pose state variablesxp. These par-
tials can also be visualized as images. For example, in the
case of a planar surface patch, the pose is characterized by
the 6 variablesxp = [X Y Z ψ θ φ]T . Thus,H will be com-
posed of six partials, each expressing how the image of the
patch will change in response to a small change in position
or orientation. As an illustration, Figure 1 shows a checker-
board pattern mapped onto a patch, and the difference im-
age that is generated when the patch is rotated an infinites-
imal amount around its surface normal. As expected, most
change occurs furthest away from the rotation center, while
the change incurred at the center itself is zero.

We call this partial derivative image theJacobian image
with respect to yawψ, and the way in which it is obtained
provides considerable insight into the texture tracking pro-
cess. If we rewrite the resampling filterρ using separate,

scalar functionss(p) andt(p) for the texture coordinates of
m−1(p), (3) becomes:

I(p, T̂ ) =
∑
k∈Z2

T̂ (k) ρ(s(p), t(p), k) (15)

Taking the partial derivative of (15) with respect to (for ex-
ample) yawψ, we get:

∂I(p, T̂ )
∂ψ

=
∂s(p)
∂ψ

∑
k∈Z2

T̂ (k)
∂ρ(s(p), t(p), k)

∂s

+
∂t(p)
∂ψ

∑
k∈Z2

T̂ (k)
∂ρ(s(p), t(p), k)

∂t
(16)
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Figure 2. Top: gradient kernels in texture space. Bottom:

predicted horizontal (left) and vertical gradient images.

As we use Gaussian low-pass filters for the resampling,
the derivatives of the combined filterρ are derivative of
Gaussianfilters. For the example in Figure 1 these gra-
dient kernels are shown in Figure 2. Convolving the texture
T̂ with these gradient kernels yields twopredicted gradient
images, also shown above (corresponding to the patch in
Figure 1). The gradient filters require only an incremental
amount of computation in addition to the resampling filter,
and the resulting predicted gradients are of high quality.

Equation (16) can now be interpreted as follows: the Ja-
cobian images, representing the partial derivatives of the
image with respect to one pose variable, can be obtained
as a linear combination of the two gradient images. The co-
efficients of the linear combination arepixel dependentand
are the components of a vector field, induced by the motion
of the patch. In the planar surface patch example, the vec-
tor field induced by yaw is shown in Figure 3. This is used
to combine the gradient images of Figure 2 into the Jaco-
bian imageIψ of figure 1. Since a patch has six degrees of



Figure 3. Vector field induced by a change in yaw ψ.

freedom there are 6 vector fields, yielding 6 different Jaco-
bian images. These vector fields correspond to the motion
in texture spaceof the pre-images of the pixels, as a result
of a change in one of the pose parameters. Intuitively, if one
casts rays from the camera center to the surface patch, these
rays intersect with the patch at specific locations. When the
patch moves, these locations move as well.

In summary, the calculation of the measurement Jaco-
biansH proceeds as follows: (a) calculate the predicted gra-
dient images; (b) calculate the vector fields; (c) combine
them as in (16). In practice, we never calculate complete
Jacobian images as shown, but proceed on a pixel per pixel
basis. This is useful, as pixels can be selectively integrated
one at a time, until the pose uncertainty has dropped below
a given threshold. This yields considerable savings.

6. Applications

In this section, we discuss three application settings in
which we have applied this approach. All three applica-
tions involve the planar case, and concern monocular video-
streams. However, no important difficulties should arise in
extending the approach to more general surface models and
multiple video-streams.

6.1. Super-Resolved Tracking in 3-D

Figure 4. 16 ’stickers’ tracking the textured face of a cube.

A first application involves the tracking of planar surface
patches, moving in 3D, as already introduced above. As an
illustration, Figure 4 shows two frames from an image se-
quence of a textured cube, which is tracked by 16 planar

Figure 5. Super-resolution. Left: original image resolu-

tion. Right: estimated texture (in circle) after 15 frames.

surface patches in parallel. Because of the way these track-
ers stick to the surface of the cube, we have named them
stickers. Each sticker is modeled using a six-dimensional
pose state vector̂xp = [X Y Z ψ θ φ]T , and an appropri-
ately sized texture map. Knowledge of the camera calibra-
tion is used to calculate the homographym between the tex-
ture plane of the sticker and the image plane, which is then
symbolically differentiated as part of the Jacobian calcula-
tion. Further details can be found in [5].

Figure 5 highlights the super-resolution aspect of our ap-
proach. In this case, the cube was tracked as it was moving
away from the camera. The original image resolution as
seen by the camera is at left: it is hard if not impossible
to read the words in the oval. The right panel shows the
estimated texture after 15 frames of tracking the sequence,
where now the words in the oval can be read. In this case,
the texture map was kept at about four times the resolution
of the original images.

6.2. A Projective Tracker

For situations in which the camera calibration is un-
known or changing, we have also devised aprojective
trackerwhich estimates the changing homography between
a plane in 3D and the image plane. In this case, the state
x̂p consists of theimagecoordinates of 4 points known to
lie in the same 3D plane. Again the Jacobian is derived by
differentiating a symbolic expression of the homographym
with respect to each of the 8 state variables. If properly
initialized (e.g. by user interaction), this projective tracker
can track the deforming quadrilateral without camera cali-
bration. When combined with super-resolution, one appli-
cation isreading off moving objects, e.g., trucks, passing
traffic signs, or in general any planar surface in any video-
stream that contains some interesting texture.

6.3. Fast Mosaicking

A final example illustrates the use of our technique as
an alternative approach to mosaicking. The specific appli-



Figure 6. Top: Mosaicked scene. Bottom: Comparing

the actual (left) with the predicted (right) measurement

can serve to detect independently moving objects.

cation in which we have investigated this is the tracking of
moving objects filmed by a hand-held camera. For exam-
ple, Figure 6 shows the mosaic obtained from a sequence
in which a moving truck was followed. As input we used
down-sampled low-resolution images, and the mosaic was
obtained by resampling image strips rather than using the
texture update from section 4.4. Figure 6 shows how this
mosaic is used to detect independently moving objects.

In contrast to the tracking applications above, here the
estimated texture map islarger than the field of view, and
the state consists of translation and rotation with respect to
a reference frame. Advantages of using our method rather
than the more conventional SSD minimization include (a)
Kalman filtering can lead to improved tracking, (b) other
sources of information can be easily integrated, (c) it can
be much faster by only integrating selected pixels (in the
example, only 100 pixels were used at each time step).

7. Conclusions

We propose using texture mapping as the measurement
model in a Kalman filter approach to motion estimation.
This technique is easy to apply in many different applica-
tions. In addition, we introduced the notion of Jacobian im-
ages, which are a crucial component of the approach, and
have shown an intuitive way to view their computation. Fi-
nally, the key computational burden involves texture map-
ping, which is now typically hardware-accelerated even on
low-end PC’s. Thus, our approach could be well suited to
enabling vision-based applications in the consumer domain.

We view our main contribution as introducing one uni-
fying framework to derive and formalize many different as-
pects of image-based motion estimation and tracking. Sev-
eral of the results or individual computational techniques

we derive in this way were already present in the litera-
ture in one form of another. Most notably, Irani and Peleg
have written several papers on super-resolution from motion
analysis [8, 9], and Hager and Belhumeur’s motion tem-
plates [6] are analogous to the Jacobian images presented
here. The Bayesian estimation framework used here intro-
duces a powerful new way to view these techniques in con-
text, and to make explicit the assumptions underlying them.
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