
Specification and Role of the Sensor Manager
In the Science/Autonomy System

Lenny J. Delligatti      Dimi S. Apostolopoulos

CMU-RI-TR-99-08

Submitted in partial fulfillment of
the requirements for the

CIT Honors Research program

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania  15213

December 1998

 1998  by Lenny J. Delligatti.  All rights reserved.

This research was supported in part by NASA grant NAG5-7707.  The views and
conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of NASA,
Carnegie Mellon University, or the U.S. Government.



Abstract

The NOMAD project focuses on producing a rover capable of autonomously searching
for and classifying Antarctic meteorites.  The rover is equipped with a sensor array and a
network of software modules, the Science/Autonomy system, which work in conjunction
to enable the rover in its aforementioned task.  The sensor manager is a communications
interface between the sensor array and the higher-level decision making modules of the
Science/Autonomy system.  The use of the sensor manager in the system simplifies the
system’s communications web while making the details of sensor operation and control
transparent to the higher level modules.  The current implementation of the sensor
manager uses a sensor class to give the sensor hardware a representation in software,
which changes to reflect the current status of the sensor as it runs through a series of
operations.  NDDS is used for communication with the sensor manager.  Future
implementations will give the sensor manager a decision making capability with respect
to which sensor to use under a given set of circumstances.

1   Overview of the (SAS)
Science/Autonomy System

The SAS hardware is comprised of the
sensor array and the mobile platform on
which they are mounted.  The SAS
software relevant to sensor control and
operation is comprised of the mission
planner, database, sensor manager, and
the sensor device drivers.

1.1   Platform and Sensors

The SAS sensor array contains a high-
resolution color camera and a
spectrometer.  Ultimately,  this array will
be expanded to include a magnetometer
and metal detector.  The system, also,
uses a panoramic camera for
environment imaging and eventually for
landmark-based navigation, however,
this sensor is not under the control of the
sensor manager.  All sensors are

mounted on the NOMAD mobile
platform.

1.2.   Software Modules

The relationships of the software
modules relevant to sensor control and
operation are shown in Figure 1.

                                           . . .

     Figure 1

The mission planner is responsible for
making decisions with respect to

  Mission
  Planner

 Database

   Sensor
 Manager

Sensor 1 Sensor 2 Sensor  N



Lenny Delligatti                                                                                                                                                2

whether NOMAD will continue to
follow a search pattern or deviate to
investigate a target of interest.

The database contains records for all
targets encountered.   These records
include the target’s GPS coordinates,
class probability statistics, as well as the
filenames for sensor data.

The sensor device drivers,
ultimately, will be responsible for
actuating the sensor’s deployment
mechanism as well as interfacing with
the hardware to acquire data and save
this data to disk.

The sensor manager is primarily
responsible for making the details of
individual sensor control and operation
transparent to the mission planner when
it sends the command to deploy a sensor
or use it to acquire data from a target.

2   Sensor Manager

2.1   Role of the Sensor Manager

The sensor manager provides a
communications interface between the
sensor device drivers and the higher
level modules of the science/autonomy
system.  Every sensor has unique
requirements and procedures for
deployment and data acquisition.  The
sensor manager’s primary job is to hide
the details of a sensor’s operation under
an umbrella of a simple functional
interface.

A secondary function of the sensor
manager is to simplify the
communications web in the SAS.  The
system without the sensor manager
would appear as shown in Figure 2.  The
mission planner would have to
communicate with each sensor
individually to acquire data, cost
estimates, or to deploy the sensor.  The

sensors, in turn, would then have to
communicate with the database on an
individual basis in order to get target
data such as GPS position which it will
need to deploy, as well as to save the
data file names after data acquisition.
Use of the sensor manager allows each
module in the system to establish fewer
NDDS ports required for communication
(see section 3.1).

                                         . . .

    Figure 2

The benefit of using the sensor
manager, for purposes of simplifying the
communications web, increases in direct
proportion to the size of the sensor array
mounted on the rover.

In its first implementation, the sensor
manager has no decision making
capability.  The decision of which sensor
to use for data acquisition of a particular
target will be made by the mission
planner and passed to the sensor
manager which will process the message
and take the necessary steps to see that
the command is executed.  These steps
include everything from sending a
request to the database for target data
needed by the sensors, to sending
messages to the sensors for calibration,
diagnostics, and data acquisition.  The
sensor manager, in this implementation,
effectively acts as the central
communications hub of the SAS for
purposes of sensor control.  See section
4.1 for a discussion of future
implementations of the sensor manager

  Mission
  Planner

 Database

Sensor 1 Sensor 2 Sensor  N



Lenny Delligatti                                                                                                                                                3

  Sensor:
  Hi-Res
 Camera

  Sensor:
Spectro-
  meter

  Sensor:
   Other
  Sensor

Hi-Res Camera    Spectrometer     Other Sensor

in which it will have increased
responsibility for making decisions
about sensor usage.

2.2.   Architecture

Each sensor is represented in
software by a sensor object contained
within the sensor manager.  The sensor
manager maintains an array of these
objects which together represent the
sensor array mounted on the NOMAD
platform (refer to Figure 3).

In the current implementation, the
array of sensor objects in the sensor

manager acts as a status board.  The
sensor class contains fields that keep
track of the current state of a sensor as it
passes through a series of operations (see
section 3.2.1 for a listing of these fields).
As new commands are received for the
sensor, the sensor manager first checks
the corresponding sensor object to
determine the current state of the
hardware to determine an appropriate
sequence of steps to ensure that all
commands are executed reliably, or
failing this, ensuring that an appropriate
status message is returned to the mission
planner.

                                                            Sensor Array
                                                                                . . .

                                              Figure 3:  Sensor Manager Module

3   Implementation

3.1   Network Data Delivery System
(NDDS)

3.1.1 Consumers and Producers

NDDS is the communications package
used to transmit data between the
software modules in the SAS.  Currently,
NOMAD has one computer devoted to
the SAS software.  In the future, these
modules may be run on different host
computers.  Each computer in the
network, however, must be running the

NDDS application to establish it as a
node in the link.

Each application must then create
NDDS consumers and producers to
establish channels of communication
with other modules.  The NDDS
consumers are ports dedicated solely to
the reception of particular messages
which are registered with them.
Messages of other types are ignored.
Producers, like the consumers, are
dedicated to particular messages, which
they sample and send out across the
network. Refer to Figure 4 for an





Lenny Delligatti                                                                                                                                                5

class Sensor {

//static sensor parameters
float Workspace_parms;   // *NOTE* struct to be defined later
CString SensorName;
int NumPowerModes;
float *ModePowerConsumption;
float RateOfDeployment;  //(arc sec./sec) *to be refined later
float *HeatOutput;  //(W) heat produced by unit
float SensorLifetime;  //finite num. uses? time period?
Float DAQtime;       //time period to acquire data sample
float restInterval;  //time period between successive DAQ’s
float storageSpace;  //memory (kBytes) required per data sample
float Risk;    //risk to sensor/system associated with use?
float PercentCPUcycles;   //CPU usage by sensor
float MinSensorOpTemp;  //min. operating temp. of sensor (C)
float MaxSensorOpTemp;  //max. operating temp. of sensor (C)

//dynamic sensor variables:
int CurrentPowerMode;
int SensorState; //see sensor state enums. in file smEnums.h
float RemainingLifetime;
float CurrentSensorTemp; //in degrees Celsius

     //class methods:
     Sensor (CString filename);
     ~Sensor (void);
};//end of Sensor class declaration

typedef enum {
//initiated by sensor device drivers
REGISTER_SENSOR_FUNCTION,
UNREGISTER_SENSOR_FUNCTION,
SAVE_DATA_FUNCTION,
GET_DATA_FUNCTION,
SENSOR_REPORTING_FUNCTION,

//initiated by mission planner
ACQUIRE_DATA_FUNCTION,
DEPLOY_SENSOR_FUNCTION,
STARTUP_SENSOR_FUNCTION,
SHUTDOWN_SENSOR_FUNCTION,
SENSOR_DIAGNOSTIC_FUNCTION,
COST_ESTIMATE_FUNCTION,

//initiated by database
RETURN_DATA_FUNCTION

} SM_FUNCTION;

3.2 Language and Data
Structures

The sensor manager was developed with
the Microsoft Visual C++ Developer
Studio 5.0 using the Microsoft
Foundation Class (MFC) package.

3.2.1   Sensor Class

This excerpt of code shows the sensor
class declaration.  The static sensor
parameters are taken from a data file
associated with the given sensor.  These
fields are set when the sensor object is
created.

The dynamic sensor variables reflect
the current state of the sensor.  These
fields (most importantly the sensor state
field) serve as the sensor’s status board
which is checked prior to the execution
of a new command.

3.2.2 Sensor Manager Class

The sensor manager class contains an
array of pointers to sensor objects (refer
to Figure 3).  The array is indexed with a
unique sensor ID sent in a message from
another module.

This class contains two methods in
addition to the constructor and
destructor: a Sensor Object Create and a

Sensor Object Destroy method
(see section 3.3.3 for a more
in-depth discussion of these
functions).

3.3   Functional Interfaces

The following enumeration
lists the possible values that
can be placed in the function
field of a message to the sensor
manager from another module
(i.e. mission planner, database,
sensor device drivers).   The
following sections discuss the
above set of functions in
relation to the modules in
which they are implemented.
Since none of the above
functions are implemented in
the mission planner, it’s
functional interface is not of
relevant importance.





Lenny Delligatti                                                                                                                                                7

typedef enum {
SENSOR_OFF_LINE_STATUS,
SENSOR_READY_STATUS,
SENSOR_BUSY_STATUS,
SENSOR_WAITING_STATUS,
SENSOR_RESTING_STATUS,
SENSOR_MALFUNCTION_STATUS,
SUCCESSFUL_STARTUP_STATUS,
STARTUP_FAILURE_STATUS,
SUCCESSFUL_DEPLOYMENT_STATUS,
DEPLOYMENT_FAILURE_STATUS,
SUCCESSFUL_SHUTDOWN_STATUS,
SUCCESSFUL_DAQ_STATUS,
DAQ_FAILURE_STATUS,
OUT_OF_WORKSPACE_STATUS

} SM_SENSOR_STATUS;

diagnostic returns a sensor
malfunctioning status report.

The sensors, additionally, have an
off-line state, however, this is
determined by checking if the
corresponding sensor object pointer
equals NULL.   The off-line state is
equivalent to the sensor object being
uninstantiated.

3.5 Sensor Operation Status

The following enumeration lists the
possible values that can be returned in
the status field of a sensor manager
status message to the mission planner:

The first six directly correspond to the
sensor state field of the sensor object or
lack of an existing object entirely (e.g.
off-line).

The next seven correspond to the
success or failure of the various sensor
operations, which can be initiated by the
mission planner.

The final status, out of workspace,
indicates that a data acquisition failure
occurred due to the indicated target
being out of range of the chosen sensor’s
deployment mechanism.  This status is
reserved for future implementations.

4 Future Work

4.1 Role of the Sensor Manager

Future implementations of the sensor
manager will have a decision-making
capability regarding which sensor to use
for data acquisition under a particular set
of circumstances.  This decision will be
based on a cost estimate function, which
takes into account factors such as time to
deploy a sensor and acquire data from a
target and the power consumed by the
sensor in performing these operations.  It
will also take into account
environmental factors such as
accessibility and size of the target, as
well as statistical data such as the
estimated info. gain expected from a
given sensor.

4.2 Implementation

The next line implementation of the
sensor manager will use an array of
sensor threads, which will be responsible
for processing messages sent to the
corresponding sensor and for ensuring
that the appropriate steps are taken to
execute the commands reliably.

In the current implementation,
processing and distribution for all
messages is performed within the NDDS
callback routines of the sensor manager.
The disadvantage of this design is that
these callback routines run within the
context of the sensor manager
application.  NDDS does not spawn
individual threads to handle the
processing of each message.  Thus, it is
possible for incoming messages to be
blocked while one is currently being
processed.

In the next implementation, all
incoming messages will initially be
received by one of the sensor manager’s



Lenny Delligatti                                                                                                                                                8

consumers, but will immediately be
inserted into a queue devoted
specifically to a particular sensor’s
messages.  This frees up the sensor
manager’s main thread to receive new

messages while providing the individual
sensor threads in the array the flexibility
of processing the messages in the queues
in a non-time-critical manner.

5 Conclusion

The use of the sensor manager in the science/autonomy system serves several purposes.
The primary purpose is to hide the low-level details of a sensor’s operation from the
higher level modules.  This provides the mission planner a simple functional interface to
communicate with the sensors to perform the critical tasks of sensor deployment and data
acquisition.

This design has the added benefit of simplifying the communications pathways
between the modules in the SAS.   In its role as a communications hub, the sensor
manager reduces the number of NDDS ports that would be required for each module to
independently establish communications with one another.


