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Abstract

For a given time series observation sequence, we can estimate
the parameters of the AutoRegression Moving Average (ARMA)
model, thereby representing a potentially long time series by a
limited dimensional vector. In many applications, these parame-
ter vectors will be separable into different groups, due to the dif-
ferent underlying mechanisms that generate differing time series.
We can then use classification algorithms to predict the class of a
new, uncategorized time series. For the purposes of a highly au-
tonomous system, our approach to this classification uses memo-
ry-based learning and intensive cross-validation for feature and
kernel selection. In an example application, we distinguish be-
tween driving data of a skilled, sober driver vs. a drunk driver, by
calculating the ARMA model for the respective time series. In this
paper, we first give a brief introduction to the theory of time se-
ries. We then discuss in detail our approach to time series recog-
nition, using the ARMA model, and finish with experimental
results.

1. Introduction
A time series is a sequence of signals or observationsxt, each

one recorded at a specified time instantt. For example, if we
record the volume and tone of a piece of music at each time unit,
we get a time series. Notice that each observationxt consists of
two variables, volume and tone. We might wish to categorize the
mood of the music from the time-series. Another example is the
observation sequence of the distances from a car's center to the
road's center. We might wish to categorize the driving style; per-
haps distinguishing between normal, drowsy, and drunk. Music
and car position are two examples amongst a wide range of poten-
tially useful time series categorization applications.

A discrete time seriesis one in which the signals or observa-
tionsxt are recorded at discrete time points. Without special nota-
tion, a discrete time series often refers to an observation sequence
with fixed time interval between two neighboring observations.
Our research handles only such discrete time series.

A time series ismultivariate if there is more than one variable
involved in each observation and if these variables are cross-relat-
ed. In the music example above, if the volume and tone are cross-
related, the music signal sequence is a multivariate time series. In
this initial study, we only consider univariate time series.

We divide the time series recognition approaches into two
classes: non-parametric and parametric ones. Parametric methods

assume there is a model underlying the generation of the time se-
ries. The recognition of a time series is equivalent to the classifi-
cation of the underlying models. HMM [Rabiner, 1989],
[Hannaford & Lee, 1991] is such a model, [Nechyba & Xu, 1997]
and [Pook & Ballard, 1993] used this model to do the time series
recognitions in different domains. Other popular parametric mod-
els for time series are neural networks and recurrent networks [El-
man, 1990], [Feldkamp, 1994], [Seawell & Kalman, 1995],
[Nikovski, 1995].

Non-parametric methods do not use models. Instead, given
some time series samples, they extract the features of these sam-
ples, such as the mean values, variances, correlations and frequen-
cies, and do the recognition job based on these features. Non-
parametric recognition researches include [Vandewalle & Moor,
1988], [Dellaert, Polzin & Waibel, 1996] and many more.

In this paper, we explore the parametric approach using a well-
established model called AutoRegression Moving Average, or
briefly ARMA(p,q). ARMA model has been tried previously in
the field of signal processing [Basseville & Nikiforov, 1993], es-
pecially speech recognition [Makhoul, 1975]. Compared with
HMM, neural networks and recurrent networks, ARMA(p,q) is
specially good at modeling stationary and Gaussian-distributed
time series. And since ARMA(p,q) is a linear model, it can require
vastly less computation to estimate the coefficients of the model.
For our purposes ARMA(p,q) is an ideal model; for a certain time
series sample, there is one and only one ARMA(p,q) model with
specified coefficients corresponding to it. This property makes the
recognition work much easier. Section 2 will discuss the relation-
ship between our methods with other parametric methods. Com-
pared with non-parametric methods, our ARMA(p,q) model-
based recognition methods offer some information, such as lag in-
fluence and interactions, which is not easily summarized by fea-
tures. Since feature-based recognition is domain-dependent, we
will talk about the relationship between ARMA-based recognition
with feature classification while we describe the sober-drunk
driving experiments in Section 4.

Given a time series observation sequence, we can estimate the
parameters of the ARMA model which (approximately) generates
this time series. Hence, we represent a time series sequence
(which might be very long) by a limited dimensional vector con-
sisting of the ARMA parameters. Suppose we collect many time
series samples generated by a drivers in two different sobriety
conditions, either drunk or normal. We will show that the param-



eter vectors of the driving performance time series fall into two
groups.

In this paper, we first give a brief introduction to the theory of
time series, especially ARMA(p,q). Then, we discuss in details
our memory-based approach to time series recognition using
ARMA model, and the relationship between our method with oth-
er approaches. Finally, we show promising preliminary experi-
mental results for a driving simulator, where we distinguish the
driving performance of a sober and a drunken driver.

2. ARMA(p,q) model
The most important property of time series is that the cur-

rent signalxt influenced by the previous signalsxt-1, xt-2, etc. A
general time series model may be formed as,

,

whereut is the control knob andξt is the white noise at timet.
We have a special interest in linear models because they are

tractable and useful for many cases, for many years. One linear
model looks like,

.

Let’s omit the control itemsut-i temporarily. The remaining equa-
tion is calledAutoRegression model, or AR(p), in whichp is the
window size.

More careful study of this model raises one question. If the
model includes the noiseξt disturbing signalxt, why should we ig-
nore the past noise itemsξt-1, ξt-2, etc.? A more sophisticated
model is thus:

To be even more general, the time series model can be formed as,

(1)

This is called AutoRegression Moving Average model, or AR-
MA (p,q) model. Theα’s are the coefficients of the AutoRegres-
sion part, andβ’s are the coefficients of the Moving Average part.
The AR model’s window size isp, while MA’s is q. The size of
the whole model isp + q. For different application domain,p and
q may be different.

ARMA (p,q) defined in equation (1) is not a panacea for all
kinds of time series, it assumes the time series isstationary and
invertible. There are many cases of the violation of the stationarity
and invertibility restrictions. Some of them can be easily pre-
eliminated, and ARMA model is then still useful. Trend and sea-
sonality are two examples, referring to [Brockwell & Davis,
1991] in the chapters about ARIMA model. More advanced ex-
plorations about non-stationary time series are summarized in
[Tong, 1990]. Most music time series are not stationary and in-
vertible, and they are more complicated than trend and seasonali-
ty. Hence, we don’t plan to apply our new approach to music
recognition, though it is a very appealing topic. We started from
distinguishing sober and drunk drivers.

3. Memory-based time series recognition
Memory-based time series recognition consists of following

four phases.

1. Model selection and validation

Given a certain application domain, first of all we need to se-
lect an adequate model for it. Because we presume ARMA(p,q) is
the model we prefer, we want to figure out what values ofp andq
are the best. To be more careful, we also want to reconfirm that
the ARMA(p,q) is qualified for this domain. One way to decide
whichp andq are best for a certain domain consists of three steps,
1. selecting several typical time series samples from this domain;
2. for each possible combination ofp andq (usually bothp andq
are no bigger than 10), calculating the value of AIC, which is a se-
lection criteria proposed by [Akaike, 1976], based on the time se-
ries samples selected; 3. The bestp andq should correspond to the
minimum AIC value. [Choi, 1992]

To reconfirm the validation of ARMA(p,q) with specifiedp
andq for a certain domain, we can usePortmanteau testing meth-
od, referring to [S-plus].

2. Collection of time series samples

We collect numerous time series samples from this domain.
For each of them, we estimate the parameters  and  involved
in the ARMA(p,q) model (the values ofp andq are fixed for all
the samples from a certain domain). The vectors of  and  are
the underlying mechanism of this time series; or in other words,
this time series sample is a realization of the ARMA(p,q) model
specified by  and . Therefore, it is reasonable to represent a
time series by its corresponding ARMA model parameters  and

. The estimation of  and  is often done by Maximum Like-
lihood method [Brockwell & Davis, 1991].

If several time series samples shares the same  and , it
means these samples are homogeneous. Suppose we have several
car position time series samples, all the samples are generated by
the same driver, the same car with the same road condition. These
time series samples are homogeneous, and ideally their ’s and

’s should be the same, or at least their ’s and ’s
While we collect the time series samples, we evaluate the

physical and/or psychological properties of each of them. For the
car performance series, we can label each series as drunken or so-
ber depending on the driver’s sobriety condition. Or, if we want
to be more accurate, we may measure the alcohol level in the driv-
er’s breath as the evaluation value. Let’s denote the evaluation
value of a time series asv. The evaluation valuev can be either
categorical or continuous depending on the application domain
and the evaluation method.

3. Construction of the knowledge memory

For a specific application domain, following phase 1 we find
an adequate ARMA(p,q). After phase 2, we collect many time se-
ries samples and represent each of them (which can be very long)
using limited dimensional vectors of ARMA(p,q) model parame-
ter  and . Also, each time series sample has an evaluation val-
uev.

Recalling the car position time series example, suppose we
have collectedN such driving performance series samples, we can
construct a knowledge memory containingN data points. Each
data point stands for a driving performance series sample. It con-
sists of two parts, the ARMA(p,q) parameter vectors  and ,
and the evaluation valuevi, i = 1, ..., N.

4. Query recognition

xt f xt 1– xt 2– … ut 1– ut 2– …, , , , ,( ) ξt+=

xt α1xt 1– … αpxt p– γ1ut 1– … ξt+ + + + +=

xt α1 xt 1– ξt 1––( ) α2 xt 2– ξt 2––( ) …+ +=

… αp xt p– ξt p––( ) ξt+ +

xt α1xt 1– α2xt 2– … αpxt p–+ + + +=

β1ξt 1– β2ξt 2– … βqξt q– ξt+ + + + +

α̂
˜

β̂
˜

α̂
˜

β̂
˜

α̂
˜

β̂
˜ α̂

˜β̂
˜

α̂
˜

β̂
˜

α̂
˜

β̂
˜

α̂
˜β̂

˜
α̂
˜

β̂
˜

α̂
˜

βˆ
˜

α̂
˜ i β̂

˜
i



A query time series is defined as a time series observation se-
quence whose evaluation value is unknown. The objective of que-
ry recognition is to approximate a query time series’ evaluation
value. Still for the driving example, suppose we are given a car
performance time series generated by a driver in unknown sobri-
ety, our task is to judge if the driver is in the normal sobriety con-
dition. This task can be done in three steps,

 a. Estimating the parameters of the query series,  and .

 b. Calculating the distance from the query series to every
data point in the memory. Let’s define the distance from
the query to thek’th data point in the memory as,

(3)

in whichk = 1, ..., N.

Usually not all the parameters are equally significant for
recognition. we can insert weights,ui andwj, into the dis-
tance definition and assign high weight values to those
more significant parameters so that they have bigger
influence on the distance. We can use cross-validation
method to decide the values of these weights.

If dist(k) is small enough, we claim that the query series
is similar to a time series observed previously, which is
represented by thek’th data point in this memory. The
reason is that their underlying mechanisms, or their cor-
responding ARMA parameters are similar.

 c. Based on the distances from the query time series to each
data point in the memory, we can find the nearest mem-
ory data point, whose underlying mechanism is most
similar to the query’s. Therefore, it is reasonable to guess
the evaluation value of the query time series is close the
evaluation of the nearest neighbor’s in the memory.

However, since there exists noise in the estimation of
ARMA (p,q) parameters, it is not wise to bet the evalua-
tion of the query only on one data point. Besides, it is
costly to enumerate the distances from the query to all
the data points in the memory. Therefore, we need more
advanced techniques, such ask-nearest neighbor, kernel
regression [Atkeson, Moore & Schaal, 1997], locally
weighted logistic regression [Deng & Moore, 1997],
logistic regression-based classifier, etc., and more effi-
cient memory retrieval mechanism.

4. Related models
In this section, we discuss two other methods for time series

classification: (1) Hidden Markov Models (HMMs) and (2) recur-
rent networks. First, a Hidden Markov Model consists of a set of
states interconnected through probabilistic state transitions. The
states themselves cannot be observed directly; rather each state

outputs some observable, based on some output probability distri-
bution.Discrete HMMs output discrete symbols, whilecontinu-
ous HMMs output continuous values, based on a mixture of
Gaussian probability distributions. In both cases, the overall out-
put of an HMM is generally neither uniform nor Gaussian distrib-
uted, but instead is more complicated. Unlike HMMs, the
distribution of an ARMA time series is, however, asymptotically
Gaussian distributed.

Second, recurrent neural networks are similar to feedforward
neural networks, but allow connections in all directions, including
self-connections and backward connections. As such, a recurrent
network is theoretically capable of modeling any time series (as-
suming no limit on the number of nodes in the network). Depend-
ing on the structure and weights of the recurrent network, the
output of the network can be either discrete or continuous, and
will generally be distributed non-Gaussian. If we were to substi-
tute a recurrent network for the ARMA model in our recognition
approach, we could, however, not follow our outlined procedure.
For example, if two time series are homogeneous, the weights of
the corresponding recurrent networks may or may not be similar.
In fact, for the same time series observation sequence, there may
well exist infinitely many equivalent recurrent networks with dif-
ferent weights. There currently exists no good method for judging
the similarity between recurrent networks with different weights.

Concerning computational complexity, the cost of the ARMA
estimation algorithm is , whereT is the length of the
time series sample, . The cost of training an
HMM is , whereN is the number of states in the HMM,
andT is the length of the time series sample. In general, HMMs
require more data to train, so that theT in the HMM’s computa-
tional cost is usually larger than in the ARMA model. Therefore,
the overall computational cost of training HMMs is larger than the
cost of estimating the ARMA parameters. Also, the cost of train-
ing a recurrent neural network tends to be much higher than for
the ARMA model. To summarize, we expect that the ARMA
method will be more tractable than either of the above.

5. Experiments

In this section, we use our proposed method to distinguish
driving performance between a sober, alert driver and an intoxi-
cated driver. Since it is clearly unsafe to ask someone to driver
while drunk, we use a dynamic driving simulator (see Figure 1)
instead [Nechyba, 1997]. The user has independent control over
steering (horizontal mouse position), the brake (left mouse but-
ton) and the accelerator (right mouse button). For a particular
driver, the simulator records the distance from the road median at
5Hz (the simulator itself runs at 50Hz).

Prior to collecting actual data, we allowed the operator (let’s
call him Larry) to get used to the simulation interface. Larry is
asked to stick to the right as much as possible and keep speed
around 50m/hour. We then collected multiple data sets from Larry
--- first, while he was sober, and second while he was under the
influence. To collect driving data under the influence of alcohol,
we had Larry consume approximately 150mL of alcohol (in the
form of brandy). Within a half hour, Larry begins to feel the ef-
fects of the alcohol. For an hour thereafter, we collect driving data
from Larry as he becomes increasingly intoxicated. While we
classify the time series data as either “sober” or “drunken,” the so-
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briety levels of the “drunken” data clearly varies over time. Ini-
tially, Larry exhibits few side effects from the alcohol he had
consumed 30 minutes before. Later, as he becomes increasingly
intoxicated, however, he has significant difficulty staying on the
road. Figure 2a shows an example of sober driving performance,
while Figure 2b indicates an intoxicated driving performance (50
minutes after consuming the alcohol).

Once we have collected the time series observation sequences,
we want to determine the appropriate model sizep andq for the
ARMA model. For two randomly chosen time series samples —
one from the sober category, the other from the drunken category
— we try different combinations ofp andq, and estimate the cor-
respondingα andβ parameters. We then calculate the goodness-
of-fit and AIC values for the corresponding ARMA models, as re-
ported in Table 1 below. Clearly, the smallest AIC value corre-
sponds to the ARMA(4,4) model. After selecting the appropriate
model size, we estimate the ARMA(4,4) parameter vector for all
N different time series samples.

Now, in order for our proposed method to work, we expect that
the parameter vectors fall into two clusters, one corresponding to
sober driving, the other corresponding to drunken driving. We
also expect the “drunken” parameter vectors to be more widely

scattered, due to the varying levels of intoxication experienced by
Larry. Figure 4, which illustrates the clusters of parameter vectors
for the driving time series, confirms our expectations.

Looking at the results in Figure 4, two questions arise: (1) Why
not just use variance to perform the classification task? and (2)
Does the ARMA-based method give discrimination capability be-
yond that of simple variance? To answer the first question, we
suggest that variance alone does not necessarily discriminate suf-
ficiently between sober and intoxicated driving. For example,
suppose a sober driver prefers to change lanes frequently while
driving. In this case, the variance for his driving data would be
quite large, and might be mistaken for intoxicated driving.

To answer the second question, we conduct the following ex-
periment. First we calculate the standard deviations of the sober
series (0.8921) and the drunken time series (1.4775). We then
scale the drunken time series by0.8921/1.4775 = 0.6038, and
again try our ARMA(4,4) estimation. If the ARMA model simply
classifies based on variance, the algorithm should now fail. Figure
5 shows the distribution of ARMA parameter vectors for the sober
and scaled drunken time series. Comparing Figures 4 and 5, we
see that the ARMA parameters of the scaled drunken timer series
are almost identical to those of the raw drunken time series. Thus,
the ARMA model clearly offers information beyond simple vari-
ance. But why?

Recall the ARMA(p,q) model,

Whenxt is scaled byr, theα’s andβ’s will ideally remain the
same; the variance of the noise will, however, be scaled byr2.
Thus, our ARMA-based classification does not cue off variance.
In fact, upon closer inspection, we conclude that response time,
rather than variance, is the most critical difference between sober
and drunken driving. Consider theα’s for the sober and drunken
time series, respectively. For the sober time series, the magnitudes
of α2 andα3 are most significant, indicating that the current state
xt is decided primarily byxt-2 andxt-3. For the intoxicated time se-
ries, however,α2 andα3 are close to zero, such thatxt-4 and car
positions further removed in time primarily determinext. Thus,
the response time of the drunk driver is significantly worse than
that of the sober driver. To further confirm this observation, we
will conduct simulated drunk driving experiments in the future,
where we will blank the simulator interface from time to time in
order to create an artificial lag in the response time of the driver.
If, under these conditions, the driving performance of the sober
drive is similar to the drunk driver, our conclusion would be cor-
rect.

Furthermore, note that theβ values of the drunk ARMA model
are scattered more widely than the soberβ values. This implies
that the drunk driver tends to jerk the driving controls significant-
ly more than a sober driver. In the near future, we will test this ob-

Fig. 1: Driving simulator interface (courtesy M. C. Nechyba).
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Fig. 2: Sober driving performance vs. drunken one.

Table 1: Selection an adequate ARMA(p,q) model

(p,q) (3, 3) (4, 4) (4, 5) (5, 4) (5, 5)

Good-fit 0.2831 0.2772 0.2898 0.2827 0.2959

AIC 323.60 322.89 342.81 326.02 344.89

xt α1xt 1– α2xt 2– … αpxt p–+ + + +=

β1ξt 1– β2ξt 2– … βqξt q– ξt+ + + + +



servation by adding random noise to the driver controls, so as to
further simulate drunk driving for a sober driver.

6. Discussion

In this preliminary experiment, we didn’t involve in the con-
trol variables, such as the curvature of the road, traffic and speed,
etc. To consider the influence of them, we can chop the driving
time series to many pieces according the change of the control
variables, and compare the ARMA parameters of those time se-
ries pieces with similar control variables.

Next, we plan to improve both the autonomy and computation-
al efficiency of our algorithm. A robust classifier for time series
data would be a useful tool and we hope that the combination of
ARMA, AIC and intense cross validation of memory-based mod-
els will achieve that. We plan to use our time series recognition
method to design a facility whose objective will be (1) to detect if
a driver’s sobriety condition is beyond acceptable bounds, and (2)
to generate warning signals to the driver if necessary. The system
will consist of three parts:

1. Calibration module, which measures the distance from
the car’s center to the lane’s center,

2. Time series module, which does the estimation of the
ARMA model and recognizes the time series based on
the classification of the ARMA parameters.

3. Signal module, which gives the driver a proper signal,
such as a blinking lamp, and/or a microphone.

[Pomerleau, 1995] has done some impressive work in autono-
mous driving. We can use their navigation system to build our cal-
ibration module. Our main contribution will be the time series
module. Finally, the signal module can be done by engineers in
Detroit. The overall system is illustrated in Figure 3.
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Fig. 4: ARMA(4,4) parameter clusters which distinguish driving performances from sober ones.
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Fig. 5: The same as Figure 6, except that the drunken series have been scaled to have equal variances as the sober ones.


