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Chapter 1

Introduction

For many medical applications of ultrasonic devices, it is of interest to de-
termine the distortion of ultrasound waves due to tissue inhomogeneities.
Propagation of ultrasound through layered media is of interest because in
various regions of the human body, the soft tissue is composed of layers of
fat and muscle. Bending of the acoustic rays due to refraction at interme-
diate layers not only increase the lateral beam widths but also, can cause
shifts in the beams (which could be as high as a few millimeters, depending
on wavelength used and depth of interest), specially in cases where there is
asymmetry in the intermediate layers. These e�ects results in degradation
of resolution as well as causes geometric distortions and other artifacts in
ultrasound images.

For applications such as therapeutic ultrasound, a good focussing of the
ultrasonic beam is essential. It is important to evaluate the shift in the
beam due to the inhomogeneities and also correct for the defocussing. An-
other set of applications involve ultrasound as a surgical accessory such as
in computer-aided orthopedic surgeries. For example, for computer-aided
Total Hip Replacement Surgery, it would be very useful if intra-operatively
obtained ultrasound linear array images of bone could be used for accurate
registration of pre-operative CT images of femur bone. Ultrasound is less in-
vasive than existing registration techniques. Also, it is a cheap modality. For
accurate registration however, it is necessary that the geometric distortion
due to the layered inhomogeneities are estimated and compensated for.

The state of the art ultrasound scanners assume a homogeneous soft-tissue
medium and an average longitudinal velocity of propagation of ultrasound at
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1540m=sec. In reality, the velocities across di�erent media vary considerably.
Propagation velocity in typical fat layer is around 1480m=sec and that for
muscle is around 1570m=sec. There is also less signi�cant within-medium
variation due to temperature, compression, and various other factors such as
possible directional variation due to within-medium strati�cation (for certain
muscles).

Sound-waves propagate longitudinally in tissue; transverse or shear-waves
are not transmitted very e�ectively through human soft-tissue [1]. However,
for solid media such as bone, shear-waves are also important.

In this work, ultrasound longitudinal propagation in layered media is
analytically derived, under ray-tracing approximations. Closed form expres-
sions for the �eld amplitude of hemi-spherical waves has been derived for the
following cases (1) transmission through a general three-layered media, (2)
extension to transmission through multi-layered medium, (3) a special case
of modelling the received echoes from a re
ective media under two interme-
diate layers. This last case is of special interest for us because the scenario
is akin to bone under intermediate fat-muscle layer. We are particularly
interested in this case because it could be an useful tool for non-invasive
tracking the skeletal bone (through fat and muscle layers) of a patient intra-
operatively. A potential application is accurate intra-operative registration
with pre-operative CT data.

In the derivations of the �eld for these cases, the interfaces between media
are assumed to be arbitrary shaped, but can be broken up into small planar
segments. We �rst derive the case for a point source emitting a spherical
wave. We use ray-tracing approximations and derive the amplitude and the
phase for each ray. To derive the amplitude, we apply boundary conditions
to each ray at the interfaces of the media, while within each medium, the
attenuation due to spreading of the wave is derived (in closed form). This
spreading factor has been calculated algebraically by taking di�erentials of
the rays and the points of intersections of the rays at the interfaces. Finally,
the cross-section areas along the wavefront (locally perpendicular to the rays)
are calculated.

The result can then be extended to di�erent aperture geometries and dif-
ferent beam formations by delaying and summing the result for the Huygen
waves emanating from each point-source forming the aperture. The analysis
is extended to the broad-band pulses. Each ray \carries" a pulse with a par-
ticular amplitude and delay speci�c to the ray and the di�erent pulses inter-
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fere. Advantage of a closed-form equation for the �eld is that it is more exact
than numerical evaluation. It would also simply the ray-tracing implementa-
tions in that we do not have to calculate the amplitudes by constructing an
approximate ray-tube for each ray. The closed form expressions are also more
amenable to non-linear inversions techniques such as Levenberg-Marquardt.

We also take into account the frequency dependent attenuation in the
medium, due to absorption losses and backscattering. Losses due to viscosity
has not been considered. This loss can be usually neglected.

A simulator has been built (using C) to simulate circular aperture trans-
ducers as well as linear-arrays for di�erent media geometries. We present
simulation results and compare with experiments performed on tissue mim-
icking phantoms for a single-element circular aperture transducer at 7.5 MHz.

1.1 Related Work in Ultrasound Propaga-

tion in Strati�ed Layers

Forward modelling of ultrasound propagation assuming tissues to be homo-
geneous strati�ed layers is important for some sections of the human body,
such as imaging skeletal bone through layers of fat and muscle, imaging and
insoni�cation of brain-matter through the skull. There has been considerable
prior work in this area [2, 3, 4, 5, 6, 7, 8].

In [6, 5, 7], ray-tracing approach is taken to evaluate the beam distor-
tions when propagating between two media. Very interesting, experimentally
validated simulation results have been presented in [6] for a 3.5 MHz, array-
transducer geometrically focussed at 100 mm, showing beam displacements
as high as 1.5 mm for some cases where there is asymmetry of the interface
with respect to the beam axis. The theoretical approximations as detailed in
[6] involve assuming that for each element of the array, the region of interest
is the far-�eld with respect to the element-widths and the near-�eld with
respect to the element heights. The azimuth angle of each ray is used to �nd
the directivity-factor due to the ba�e and the path-lengths of the rays in
each medium are used for the range spreading.

In [3, 4], the ray-tracing approximation has been extended to refraction
and re
ection at multiple interfaces, considering propagation through multi-
ple medium. Furthermore, absorption loss in the medium has been also con-
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sidered. For each spherical wave, the resulting �eld has three-factors, �rst is
the attenuation for the range \spreading of the wave", second the absorption
loss and the third, the attenuation due to re
ection of energy at previous in-
terfaces. The last two factors have been rigorously derived. The �rst, range
spreading factor has been determined numerically, by perturbing each ray
slightly in direction and forming the ray-tube. The numerically-calculated
relative cross-sectional areas of the ray-tubes gives the broadening-factor.

In [8], experiments have been done to test refraction e�ects on planar
tissue layers, parallel to the aperture. Both fat/organ as well as skull/brain
interfaces have been considered. It shows the important result that even for
a symmetric interface, the skull/brain planar interface degrades resolution
and introduces geometric distortion.

The exact form of the distortion that a spherical wave undergoes after
refraction at an interface under ray-tracing approximations, is given in [2, 9],
as described in detail in the next chapter. This analysis assumes a planar
interface.

In the present work we derive a theoretical model for more general media
geometries.

1.2 Applicability

The model derived here would describe the distorting e�ect of layered me-
dia for fairly common cases. Much of the human body is layered. We have
assumed homogeneity within the individual layers. This, while somewhat
restricting, is still an improvement over the state-of-the-art scanners, where
the mechanism works under the assumption that the whole medium is homo-
geneous. Also, the within layer variations are usually not as signi�cant as the
across-medium variation. We have also assumed longitudinal propagation of
sound, which is a good approximation for most soft-tissues.

The model can work as long as the ray-tracing approximation holds. For
the transducer frequencies commonly used, this model is valid for near-�eld
operations. Some calculations shown in Chapter 6 shows that the ray-tracing
approximation is not very restricting. To quote a few calculations, for exam-
ple, as long as we are interested in points at least z >> 0:2017mm away from
the interface, we can use the ray-tracing approximation for the fat-muscle in-
terface, for a 3.5 MHz transducer. The shorter the wavelength used, the less
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restricting is this criterion. For a 7.5 MHz transducer, the required depth
is z >> 0:0941mm. The range of distances involved for the applications of
interest to us are about 10 to 50 mm.

In Chapter 6 of this report we discuss some general applicability, the
advantages and limitations of the model in more detail.

1.3 Contents

In the next chapter, we �rst give the background theory relevant to this work.
In Chapter 3, we present our derivations for three-layered media and then

extend them to multi-layered media.
In Chapter 4, we present our derivations for a special case of modeling

echoes received from an interface under two layers. We show that this case
simply transforms in to into a case of three-layered medium.

Chapter 5, shows the experimental results on a custom-made phantoms,
mimicking fat and muscle, using 7.5 MHz single element circular-aperture
ultrasound transducer. We discuss results and draw conclusions.

In the last chapter we discuss the applicability of the work and mention
the work in progress and future work.
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Chapter 2

Background

In this chapter we give some background of ultrasound propagation and imag-
ing.

In Section (2.1) we give the theoretical background of the di�erent aper-
ture integrals used to describe the �eld propagating into a homogeneous
medium, in terms of the excited �eld at the aperture. The Raleigh-integral
for a transducer in a rigid-ba�e is of particular interest to us, in presence of
absorption loss.

In Section (2.2), we give the background material for the full closed form
equation of �eld upon re
ection and refraction of a spherical wave at a sin-
gle boundary [2], with and without the ray-tracing approximation. This is
derived in great detail in [2] for evaluating the �eld propagating through
two-media, separated by an interface.

2.1 Background on Ultrasonic Transducers

2.1.1 Rayleigh-Sommerfeld Equation for monochro-

matic waves

The wave-equation guiding the propagation of a longitudinal wave in a loss-
less homogeneous medium is given by [10, 11, 9, 12, 2]

r2� =
1

C2

@2�

@t2
(2.1)
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where � is a scalar potential function of x; y; z; t, whose gradient is the lon-
gitudinal particle displacement, i.e, r� = u where u. C is the longitudinal-
wave propagation velocity. From �, all the other physical variables such as
longitudinal displacement and pressure, can be deduced.

For a monochromatic wave, we get the equivalent Helmholtz equation,
[10, 11, 9, 12, 2]

r2�(r) + k2�(r) = 0 (2.2)

where k = 2�
�
, where � = C=f where f is the frequency of the wave.

This equation can be solved with di�erent Green's functions, depending
on the type of ba�e the 
at-piston transducer is in [10].

The two Green's functions by Sommerfeld, given in [10] (or [11]), that
can be used for a rigid-ba�e or a pressure-release ba�e are given by

G = � 1

4�
(
exp(jkram)

ram
� exp(jk~ram)

~ram
) (2.3)

where ram is the distance between the apeture point and point m in
the medium while ~ram is the distance between the aperture point and a
point which is geometrically located at \mirror"-image of the point \m"
with respect to the planar-aperture, illustrated in [11].

The \+ve" signed Green's function in Equation 2.3 corresponds to a trans-
ducer surrounded by a rigid-ba�e [10]. Solving the Helmholtz equation
with this function, the Rayleigh-Sommerfeld equation guiding the operation
of the aperture for a particular frequency (considering a harmonic wave) for
a homogeneous medium is given by

�(Pm) =
1

2�

Z Z
uz(Pa)

exp(�jkram)
ram

dS (2.4)

where k = 2�
�
, where � = C

f
where, f is the frequency of the harmonic

wave. The uz(Pa) is the aperture transmittance. This transmittance can
potentially have appropriate complex weighting functions (created by lenses
in optics/acoustics, or electronically in acoustics applications) creating the
delays needed to focus and steer the beam emanating from the aperture. The
function uz is zero out side the transducer (i.e., on the ba�e), thus the �rst
choice of the Greens function corresponds to a rigid-ba�e [10].
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The physical meaning of equation 2.4 is that the response at any point
in the medium, is given by the sum of all the spherical harmonic waves
(Huygen's waves) emanating from the point sources composing the aperture,
weighted and delayed by the appropriate transmittance of the aperture at
that point.

For the second choice of the Green's function (with \-ve" sign) in Equation
2.3, we would get what is appropriate for a pressure-release ba�e, for
which the pressure is zero on the ba�e [10]. Using this, the aperture equation
is,

�(Pm) =
jk

2�

Z Z
�(Pa)

exp(�jkram)(1 + 1=jkram)

ram
cos(n̂; ^ram)dS (2.5)

This, for regions where the radius ram >> �, we can ignore kram with
respect to 1 and get,

�(Pm) =
jk

2�

Z Z
�(Pa)

exp(�jkram)
ram

cos(n̂; ^ram)dS (2.6)

This equation has the added cosine factor, called the directivity function
or the obliquity function.

2.1.2 Rayleigh-Sommerfeld Equations for an emitted

Pulse

In many cases, the incident �eld is not a monochromatic wave, but a pulse,
with a range of frequencies. The generalization of the Rayleigh-Sommerfeld
theory to these non-monochromatic waves is given in Section 3-5 in [11].

For a rigid ba�e, the phase in the Equation 2.4 gives the time delays
of the pulses, resulting in the so-called Raleigh integral,

�(Pm; t) = � 1

2�

Z Z 1

ram
uz(Pa; t� ram

C
)dS (2.7)

But the 1
�
= f

C
term in the Equation 2.6 results in another interesting

e�ect that disturbance in the medium is the time derivative of the disturbance
in the aperture (apart from the delay).

Thus for a pressure-release ba�e the disturbance in the medium is
given by,
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�(Pm; t) =
Z Z d

dt
�(Pa; t� ram

c
)

2�Cram
cos(n̂; ^ram)dS (2.8)

2.1.3 Rigid-Ba�e vs. Pressure-Release Ba�e

Examples of rigid-ba�e and pressure-release ba�e are given in [10], at the
end of Section 3.2.1 (Pg. 171). For example, a transducer in water, sur-
rounded by a metal disk whose impedance is much higher than that of water,
would be one in a rigid-ba�e. A transducer in a pressure-release ba�e would
be a small transducer (dimensions of one wavelength or less) or one element
of an array of identical transducers, separated by a distance of a wavelength
or more, separated from a water-bath, by a Mylar �lm, such that there is air
on one side of the �lm and water on the other side.

An ultrasound array has an angular response somewhere in between that
of a source in a rigid-ba�e and that in a pressure-release ba�e [3]. In this
work, as in most simulations, we have assumed the Raleigh Integral (that is
the equation for a rigid-ba�e) given in Equation 2.7. This gives good results
near the axis.

For more details on ba�ed planar pistons, the excellent paper [13] or [14]
are referred.

2.1.4 Linear-Arrays : focussing and steering

Di�erent aperture transmittance functions can be applied to focus and steer
the beam emanating from an aperture. The concepts are similar to focussing
lens in optics [11]. For acoustical applications, since sound velocities are
much lower than the electronic delaying speeds, the aperture can be broken
up into little elements and each element can be delay-triggered according to
what sort of beam is needed. The mathematical details can be found in many
books and papers, such as [11, 10, 15, 16, 17], to cite a few.

Here we brie
y give the intuitive idea behind the focussing. To focus at
a point z = rf , a curve given by uz(Pa) = exp(�jkrf) is required across the
aperture. That is, instead the triggering all of the elements of the array at
once, they are triggered with delays such that, for a uniform known velocity
of the medium, the waves from all the elements would reach the point of
focus in phase at the same instant. The delays would exactly compensate
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for the path-di�erences. Figure 2.1 shows focussing the aperture (composed
of small rectangular elements) when transmitting.

 

N1 2

TIME-SHIFTERS

TRIGERRING PULSES

PIEZO-ELECTRIC 
ARRAY OF ELEMENTS

TRANSMIT MODE

MEDIUM

D

d

R
Beam
Focussed

Scans

Figure 2.1: Transmit Focus

There could be focussing during receiving as well, shown in Figure 2.2.
The wave reaching \R" is scattered or re
ected back. The signal coming
back reaches the element just above it �rst, and the other elements later,
delayed by the path-di�erences. Hence the signals received are delayed (by
the same curve as on transmit-focus) according to the path-di�erences again
and added in phase.

The focussed beam can be steered to right/left as well, if we add a \lin-
ear" delay across the aperture in addition to the focussing-delays (which
are almost \quadratic"-delays for focussing distance large compared to the
aperture dimensions). Refer to Figure 2.3.

2.1.5 Disturbance in a homogeneous non-viscous medium

with absorption loss

To consider absorption loss, the state equation used to derive the wave-
equation can be modi�ed as shown in [3] to incorporate absorption loss. The
e�ect is that the k in the Helmholtz Equation 2.2 is complex as shown in [3, 2].
The complex k results in a factor e��ram multiplied to the intensities. Here �
is given by � = RK !2

c
, where K is the compressibility and R (which maybe a
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A SINGLE SCAN LINE

N1 2

ADD + DEMODULATE
           + PROCESS 

RECEIVE MODE
R

Figure 2.2: \Listen" in Focus

 

Θ

STEERING + FOCUSSING

F0
Fn

R

Figure 2.3: Steering and Focussing
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function of frequency) is the proportionality factor relating the rate of change
of the normalized mass-density, to the energy absorbed (and transformed to
heat) [3].

For multiple layers, under ray-tracing approximation, the absorption loss
results in the intensities getting multiplied by a series of exponentials, i.e,
e�(�1L1+�2L2+:::), where L1; L2::: are the distances travelled by the ray in suc-
cessive media.

Note : The other two equations that are used to derive the wave-equation
are the conservation of mass and momentum. For 
uids with viscous loss,
the momentum conservation equation has to be modi�ed. This e�ect is not
considered in this work.

2.2 Re
ection and Refraction of A Spherical

Wave with one layer of inhomogeneity

Since the aperture Equations 2.4 and 2.6 are basically summing up the re-
sponses of the spherical waves emanating from each point in the aperture,
it is of interest to see what happens to a spherical wave upon re
ection and
refraction at a planar boundary, referring to Figures 2.4 and Figure 2.5.

r

θo

θo θo

(x,y,z)P

z

Source

z0
C

C

a

2

1R

R

1

1L

Figure 2.4: Re
ection a of Spherical Wave
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θ

1

a

2

1

2

C

m

C
L

L

Figure 2.5: Refraction of Spherical Wave

2.2.1 Exact Waveforms

The exact waveforms after refraction and re
ection for a single intermediate
layer is derived in [2]. The approach was to break up the spherical wave into a
series of plane waves Equations 26.17 (or 26.19) in [2] and apply the boundary
conditions for re
ection and refraction for each of these plane waves.

The re
ected waveform is found in [2], Equation 26.27, as

Grefl(P ) = (ik=2)
Z �=2�i1

��=2+i1
H

(1)
0 (u)eik(z+z0) cos �V (�) sin �d� (2.9)

where, H(1)
0 (u) is the Hankel function of �rst kind, and the argument

u = kr sin �.
The total waveform at a point P in the �rst media is the sum of the wave

directly incident on P and the re
ected wave,

Gtotal(P ) =
eikR

R
+Grefl(P ) (2.10)

The refracted waveform is found in [2], Page 280, as

Grefr(P ) =
ik

2�m

Z �=2�i1

0

Z 2�

0
exp[i(k(x cos�+ y sin�) sin �
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+kz0 cos � + k1z cos �1)](1 + V (�)) sin �d�d� (2.11)

2.2.2 Ray-Tracing approximation and correction terms

Di�erent approximations of the exact equations can be obtained as derived
in Section 27-28 and Section 32 of the book [2].

When we 1=(kR1)2 << 1, the approximate re
ected wave is (from
Equation 28.13 in [2]).

Grefl(P ) =
ejk1R1

R1
[V (�0)� jN=kR1] (2.12)

where

N =
1

2
[V 00(�0) + V 0(�0) cot �0] (2.13)

where V 0(�0) and V 00(�0) are �rst and second derivatives with respect to
� (evaluated at �0).

The �rst term, Grefl(P ) = ejk1R1

R1

V (�0) gives the geometric-optics or
ray-tracing approximation. This approximation indicates the re
ection
coe�cient of the spherical wave is the same as that of the component plane
waves. The physical structure of the re
ected wave under ray-tracing approx-
imation is spherical, as can be seen from the equation, as well as deduced
from the geometry. The other physical interpretation is that this approxima-
tion means that the �eld at the observation point P in Figure 2.4 is composed
of mainly the component plane waves close to � = �0.

The \correction term" is important only if the source and the receiver
are close to the boundary, compared to the wavelength [2].

The refracted wave with geometric-optics approximation and the �rst
correction term are given for n > 1 and n < 1 in Equations 32.11 and 32.12
in [2], not reproduced here.

The criterion under which the \correction" term can be neglected are
given as follows.

Referring to Figure 2.5, for n > 1, geometric-optics criterion would be
valid if the elevation of the source is high enough from the boundary com-
pared to the wavelength. The observation point position is not that impor-
tant.
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k1z0 >>
mp
n2 � 1

(2.14)

where m = �2=�1 and n = C1=C2 (where � denotes the density and C
denotes velocity, n is the relative refractive index).

However, for n < 1, the observation point needs to be far from the bound-
ary, while the position of the source is not that important.

k1z >>
1p

1� n2
(2.15)

The equation for geometric optics approximation for a spherical wave
after refraction at a planar interface is derived in Eqn. 32.8, page 279 of [2]
(as well as in [9], page 411). This is derived from a geometric viewpoint by
taking a ray and perturbing it by d� as shown in Figure 2.5. The proof is not
reproduced here, but the main idea behind the derivation of the amplitude
is that at the boundary, one applies the boundary conditions (continuity of
the total wave above and below) to get the relationship between the waves
just above and just below T. In the second medium, there is attenuation due
to \spreading of the wave" is given by the conservation of energy in annular-
regions swept by AreaA1 and A2, that is, the amplitude \drop" between point

T in the medium and the point m is given by
q

2�r2A2

2�r1A1

. These concepts are
adopted in the next section where we derive the closed form amplitude for the
more general cases. The phase is given simply as the exp(jk1L1 + jk2L2) =
exp[jk1(L1 + nL2)], that is the delays in the time domain are simply the
path-lengths in the two media divided by their corresponding velocities. The
resulting waveform is given by,

G(Pm) = A(Pa; �; n) exp(jk1L1 + jk2L2) (2.16)

The amplitude is given by

A(Pa; �; n) =

p
sin � exp[jk1(L1 + nL2)]

(m cos � + n cos �1)
q
[L1 sin � + (L2) sin �1][L1 cos�2 � +

L2
n
cos�2 �1]

(2.17)
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2.2.3 Aperture Equation With Ray-Tracing Approx-

imation

We attempt to obtain the aperture equation by modifying the Raleigh inte-
gral using the above G(Pm), (in Equation 2.16).

�(Pm) =
Z
Pa

Z
A(Pa; �; n)uz(Pa) exp(jk1L1 + jk2L2)dS (2.18)

For n = 1, the amplitude is A(Pa; �; n) =
1

ram
, (as expected for a spherical

wave) and Equation 2.18 reduces to the equation for the aperture in a rigid-
ba�e.

In the next chapter we derive the received �eld amplitude and phase for
more general cases.

16



Chapter 3

Ray-Tracing of Ultrasound

Field Propagation through

Layered Medium

In this chapter we derive the function modeling the ultrasound �eld propa-
gating through layered media under ray-tracing approximations. In the next
two sections, we present a closed form equation for the �eld for (1) propaga-
tion through 3-layered media and extend it to (2) multiple media. A third
section deals with (3) a special case of imaging a re
ective media under two
layers, which we reduce to the problem of propagation through three media.

3.1 Propagation in a three-layered medium

In this section we derive the propagation equations through three layers and
then generalize to multiple layers. The assumptions are that each of the
layers are homogeneous within themselves. The other assumption is that
ray-acoustics approximation is valid for the relative dimensions of the layers
considered and the wavelength used. The third assumption is that interfaces
separating the media are locally planar (to the order of the wavelength used).

In Figure 3.1 we illustrate the rays propagating through three media.
First we show an aperture which is idealized to be composed of point sources,
emitting hemispherical waves into the �rst medium in contact. Then we trace
a ray passing through Medium 1, 2, 3, with acoustic propagation velocities
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Figure 3.1: Ultrasound Rays Through Three Layers
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C1, C2 and C3 and densities �1, �2 and �3 respectively. The ray is partly
re
ected and partly transmitted at every interface. In this derivation, we do
not consider absorption, however it can be incorporated by using the factors
mentioned in Section 2.1.5. In Figure 3.1 the di�erent sections of rays in the
di�erent media are denoted by vectors R1, R2, ... etc. The corresponding
lengths of the rays are (denoted in brackets), L1, L2, ... etc.

Conceptually, we follow the approach taken in [2, 9] to analyze the re-
fraction of a spherical wave at a single planar surface. At the boundary
of successive layers, we apply boundary conditions (continuity of pressure)
to obtain the relationship between the �eld just below and just above the
interface. Within the media we take into account the attenuation due to
\spreading of the wave".

ψd

A1

1

A2

dη

y

z

x

ψ medium

1

1

A

η
o

Plane

n

Figure 3.2: Considering Di�erential Rays in Two Directions

To calculate the spreading factor which we term as SF henceforward, we
compose a di�erential \
ux-tube" composed of three rays - the ray in consid-
eration and two other rays obtained by shifting di�erentially from this ray,
as shown in Figure 3.2. In absence of absorption or viscosity loss, energy is
conserved across 
ux tube areas perpendicular to the ray. The area, perpen-
dicular to the ray locally signi�es the wavefront. The attenuation factor due
to spreading, is given by the square-root of the inverse ratio of the 
ux-tube
cross-sectional areas [2, 9]. In our derivations the areas are of di�erential
dimensions. However they are all derived to a common di�erential measures,
which get cancelled when we calculate their ratios. As shown, the attenu-
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ation factors can be obtained as functions of the various ray's lengths and
directions and the directions perpendicular to the rays and the normals to
the planes.

The co-ordinate system we consider is shown in Figure 3.2. The plane
of the aperture is the x-y plane and z-axis is downward into the media.
The origin is shifted to the source point we consider. We de�ne the ray in
spherical-coordinates.  is the angle the ray makes with the z-axis and � is
the angle the projection makes with the x-axis. The 
ux-tube we construct is
illustrated in Figure 3.2. To form the 
ux-tube, another ray is by perturbing
the ray slightly to another angle  +d (keeping � �xed). The origin is the
same. We call this the d -ray henceforward. Similarly, another is ray is
obtained by perturbing the ray by an angle d� (keeping  �xed). We call
this the d�-ray henceforward. The primary ray, is called the main-ray from
now on.

The ray, the  -ray and the �-ray hit the �rst planar segment (interface
between the �rst and the second medium) at points A,A1 and A2 respectively.

Figure 3.3 shows (from another viewpoint) the three-rays undergoing re-
fraction at the two interfaces. The shaded triangles AA1A2 and CC1C2 are
the vertices of intersection of the rays with the (locally planar) interfaces.
However the areas perpendicular to the ray are the unshaded ones. The areas
of these are the ones to be considered for calculation of attenuation.

We refer to Figures 3.1 and 3.3 in our derivations. We intend to derive the
�eld at the point D given that a spherical wave emitted, from an unit-powered
source O, is incident at the point A (Figure 3.1).

The phase-shift between the emitted �eld at O and and the �eld at D
is obtained straightforwardly as a function of the time-delay in each media.
The phase is given simply as,

� = exp[j(2�f)(
L1

C1
+
L2

C2
+
L3

C3
)] (3.1)

Henceforward we consider the derivation of the amplitude at D.
The �eld just above A is the sum of the incident (spherical) wave and the

re
ected wave. Hence,

jfAjabove = j1 + V (�)j
L1

(3.2)

where V (�) is the re
ection coe�cient given by
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V (�) =
m cos � �

p
n2 � sin2 �

m cos � +
p
n2 � sin2 �

(3.3)

where � is the angle of incidence at the �rst interface (that is, angle
between R1 and normal n1), m = �2

�1
(that is the density ratio of second-

medium to the �rst), n = C1

C2

is the refractive index of the �rst-medium to
that in the second-medium.

At the boundary, we use the continuity of pressure condition, which in
turn gives, the relation for the �eld potential as [2], �1f1 = �2f2, where � is the
density, and f1 and f2 are the �eld potentials in the two media respectively,
above and below the point in question.

Hence, just below A, by boundary conditions of continuity of pressure,
the �eld is just 1

m
times the �eld above A.

jfAjbelow =
j1 + V (�)j
mL1

(3.4)

In Medium 2, to obtain the �eld at C we have to consider the attenuation
factor between A and C. To obtain this, we refer to Figure 3.3. The plane
perpendicular to the second section of the ray R2 �aa2A1 is obtained where
the plane perpendicular to the main rayR2 (in the second medium) intersects
the d -ray (at A1) and the d�-ray (at a2). The triangle, �aa2A1 is a projec-
tion of �AA1A2 on to the plane perpendicular to R2 at A, ignoring lengths
of second order of di�erentials (that is of form dldl) compared to length of a
single order (dl) 1. �aa2A1 is, therefore the 
ux tube crossectional-area just
under A.

At point C, the cross-sectional area of the 
ux tube is given byArea�CMN
(area perpendicular to R2 at C).

The spreading attenuation is given by,

1Note that the projection would have been exact if the vector A2a2 had been parallel to

Aa. But the di�erence is negligible. Let us consider a point a2
0

on the plane perpendicular
to R2, such that A2a2

0

is parallel to Aa. This would be the exact projection of A2

on to this plane. The di�erence between a2
0

and a2 is given by arc swept by A2a2 in
going through a di�erential angle (the angular di�erence between the R2 and its d�-ray
counterpart). Since A2a2 is by itself of di�erential length, the arc is therefore of second
order di�erential, of negligible dimensions. That is a2 and a2

0

are virtually coincident in
this di�erential world.
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SF 2 =

s
Area�aa2A1

Area�CMN
(3.5)

The su�x 2 on SF denotes that this is in Medium 2. We come back
later to deriving these factors in terms of the rays and the parameters of the
medium.

Hence, we get at C, just before the boundary, the �eld is,

jfCjinc = jfAjbelowSF2 (3.6)

where the su�x inc indicates the incident �eld just above C.
We proceed similarly along the ray to �nd the �eld just below C and then

consider the attenuation to obtain �eld at D.
Applying boundary conditions at C, and get,

jfC jbelow = jfC jinc1 + V
0

(�t)

m0

=
j1 + V (�)j
mL1

1 + V
0

(�t)

m0
SF2 (3.7)

where, m
0

= �3
�2

and

V
0

(�t) =
m

0

cos �t �
q
n02 � sin2 �t

m0 cos �t +
q
n02 � sin2 �t

(3.8)

Here �t is the angle of incidence at second interface (that is, angle between
R2 and normal n2) and n

0

= C2

C3

is the relative refractive index between
Medium 2 and Medium 3.

Finally going from C to D, we have to consider the attenuation factor
SF3, given by,

SF3 =

s
Area�cc2C1

Area�DS2S
(3.9)

The amplitude of the �eld at D, is therefore,

jfDj = j1 + V (�)j
mL1

j1 + V
0

(�t)j
m0

(SF2)(SF3) (3.10)
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But the product of the spreading factors in the di�erent media (SF2)(SF3)
can be simpli�ed if we refer to Figure 3.4. This shows the two cross-sectional
triangles just above and just below the point C.

Area�CMN is the projection of Area�CC2C1 onto a plane perpen-
dicular to ray R2 and Area�cc2C1 is the projection of Area�CC2C1 onto
a plane perpendicular to ray R3. Hence, by laws of orthogonal projection,
Area�CMN = cos �tArea�CC2C1 andArea�cc2C1 = cos �t

0

Area�CC2C1,
where �t is the angle of incidence (angle between n2 and R2) and �t

0

is the
angle of refraction at the interface (angle between n2 and R3).

Hence, we can write

(SF2)(SF3) =

s
Area�aa2A1

Area�CMN

s
Area�cc2C1

Area�DS2S1

=

s
Area�aa2A1

Area�DS2S1

s
cos �

0

t

cos �t
(3.11)

We have to therefore derive only the last (�DS2S1) and the �rst (�aa2A1)
areas.

The closed form derivation of the area ratios is the most elaborate portion
of the derivation as well as the major original contribution of this work. In
this chapter, we mention the main idea behind the derivations and present
the �nal results we arrived at. We leave the details to Appendix A.
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To derive the areas, we derive the sides of the triangles �rst. To brie
y
outline the proof, we derive the equations of the rays and �nd the points of
intersections of rays and the planes. Then we di�erentiate the equations for
the points of intersections to arrive at the sides of the triangles formed by
the points of intersections (shaded triangles in Figure 3.3). From these we
can arrive at the unshaded triangles progressively.

We consider the vectors aA1 and aa2 of the triangle �aa2A1 �rst. Re-
ferring to the Figure 3.3, these are obtained from �rst deriving the sides
of another triangle �AA2A1. The main ray and its di�erentially perturbed
rays in two directions intersects the �rst planar segment forming triangle
�AA2A1. We can then derive the sides of the triangle �aa2A1 from those of
�AA2A1.

The vector aA1 is derived in Appendix A as

aA1 = L1d [x̂1 � (n1 � x̂1 )
(n1 � R̂1)

R̂1

�((x̂1 � R̂2)� (n1 � x̂1 )(R̂1 � R̂2)

(n1 � R̂1)
)R̂2] (3.12)

where R̂1 and R̂2 are the ray-vectors, x̂1 is given in Equation A.6. n1
is the normal to the �rst interface, and the length L1 is the intercept of ray
R̂1 at the �rst medium.

The second vector side of triangle �aa2A1, is aa2. This is (neglecting
second order di�erences) derived as

aa2 = L1d�[x̂1� � (n1 � x̂1�)
(n1 � R̂1)

R̂1

�((x̂1� � R̂2) � (n1 � x̂1�)(R̂1 � R̂2)

(n1 � R̂1)
)R̂2] (3.13)

where

vector x̂1� is the direction of the derivative of the R̂1 (with respect to �) as
shown in Equation A.41.

Using these relations for the sides, the area �aa2A1 can be obtained as,

Area�aa2A1 = jaA1 � aa2j (3.14)
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Note there is factor L2
1 in this cross-product. Under the square root, of

Equation 3.11, this would result in a factor of L1 to get cancelled with the
1=L1 in Equation 3.9. The measure d d� in this cross-product gets cancelled
with the same ratio in the area in the denominator of Equation 3.11. This
second area, that of �DS2S1 is of interest next.

The sides of this triangle can be derived from sides of the triangle �CC2C1

and the additional \arcs" swept by the length L3, in bending from R̂3 to the
di�erential lengths in each direction, as shown in Figure A.2.

The expression for DS1 can be obtained by substituting Equations A.34
and A.30 in Equation A.32, as repeated below.

DS1 = � PC � (R̂3 � � PC)R̂3 + L3(� R̂3) (3.15)

where � PC and � R̂3 are given as

� PC = (d )[L1(x̂1 � (n1 � x̂1 )
(n1 � R̂1)

R̂1)

�L1R̂2(
(n2 � x̂1 )(n1 � R̂1)� (n1 � x̂1 )(n2 � R̂1))

(n1 � R̂1)(n2 � R̂2)
)

+L2x̂2 � L2R̂2

(n2 � x̂2 )
(n2 � R̂2)

] (3.16)

and

� R̂3 =
d 

n0
[x̂2 � n2(1� tan �t

0

tan �t
)(n2 � x̂2 )] (3.17)

where x̂1 and x̂2 are given in Equations A.6, A.26 respectively.

Similarly, DS2 is given by

DS2 = ��PC � (R̂3 � ��PC)R̂3 + L3(��R̂3) (3.18)

where ��PC and ��R̂3 are given by
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��PC = (d�)[L1(x̂1� � (n1 � x̂1�)
(n1 � R̂1)

R̂1)

�L1R̂2(
(n2 � x̂1�)(n1 � R̂1)� (n1 � x̂1�)(n2 � R̂1))

(n1 � R̂1)(n2 � R̂2)
)

+L2x̂2� � L2R̂2

(n2 � x̂2�)
(n2 � R̂2)

] (3.19)

and,

��R̂3 =
d�

n0
[x̂2� � n2(1 � tan �t

0

tan �t
)(n2 � x̂2�)] (3.20)

where x̂1�, x̂2� are given in Equations A.41, A.46 respectively.
So, we are ready to arrive at the area of triangle �DS2S1 by using the

lengths DS1 and DS2 to get,

Area�DS2S1 = jDS1 �DS2j (3.21)

Note that this area has the measure di�erential measure d d� which gets
cancelled with the same measure in Equation 3.14 when we take the ratio of
the two, in Equation 3.11.

3.2 Propagation in multi-layered medium

We extend the analysis in the last section to the case where there are multiple
layers in the media.

Again the time-delays encountered in each medium constitute the phase
factor. Inside the i-th medium, at the point Di, the phase is given by,

�i = exp[j(2�f)(
L1

C1
+
L2

C2
+ :::+

Li
Ci
)] (3.22)

To obtain the amplitude at the point Di at the i-th layer, Equation 3.10
can be extended to
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jfDi
j = j1 + V12(�12)j

m12L1

j1 + V23(�23)j
m23

:::
j1 + V(i�1)i(�(i�1)i)j

m(i�1)i
(SF2)(SF3):::(SFi)

(3.23)
The spreading factor (SF2)(SF3):::(SFi) can be similarly derived as square

root of the area of the �rst and the last triangles with the chain of cosine
factors.

L i

Ri-1

Pi

L i-1
Pi1

i1s
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Pi-1 Mediumi-1
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Si
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Figure 3.5: Recursive Relations

Figure 3.5 shows the interface between i-th and the (i-1)-th medium. Just
for notational convenience, the interface between medium i and medium i�1
is denoted by triangle �PiPi2Pi1, while the normal is n(i�1). There is no con-
fusion. For example the interface between Medium 1 and 2, would be called
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�P2P22P21, same as �AA2A1 in earlier section (Figure 3.3), while it has
normal n1. The rationale behind such nomenclature is that the unshaded
triangle just underneath, perpendicular to the ray Ri would be correspond-
ingly called pipi2Pi1. This is appropriate because it is inside the Medium i and
not (i-1). At the point of interest in Medium i, Di, the area perpendicular
to the ray is Disi1Si1.

Similar to the discussion in the earlier section, we can arrive at the fol-
lowing relation.

SF2SF3:::SFi =

s
�aa2A1

�Disi1Si1

vuutcos �
0

23

cos �23

cos �
0

34

cos �34
:::
cos �

0

(i�1)i

cos �(i�1)i

=

s
�p2p22P21

�Disi1Si1

vuutcos �
0

23

cos �23

cos �
0

34

cos �34
:::
cos �

0

(i�1)i

cos �(i�1)i
(3.24)

where �(i�1)i and �
0

(i�1)i are the incident and refractive angles at the in-
terface between Medium i-1 and i.

The area at the numerator has been derived already in the last section.
We refer to Equation 3.14.

To derive the general area at the point Di, �Disi1Si1, we resort to re-
cursive Equations. When going through the derivations for three-medium
(in the appendix) it is evident that many of the vectors and lengths can be
arrived at recursively. The generalized recursive extension to multiple layers
is given in the appendix.

We can use the �nal result in Equation A.60 to arrive at the two lengths
corresponding to the sides of the triangle �Disi1Si1 as follows,

DiSi1 = ��1Pi � (R̂i � ��1Pi)R̂i + Li(��1R̂i) (3.25)

and

Disi1 = ��2Pi � (R̂i � ��2Pi)R̂i + Li(��2R̂i) (3.26)

where �1 and �2 are the two variable angles about which the ray is di�er-
entially changed to obtain the 
ux-tubes. In the last section, �1 corresponded
to  and �2 corresponded to �.
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The various components of these equations such as ��Pi can be obtained
using the recursive relations derived in Equations A.57-A.59 in Appendix A.

Then, �nally the area is given by,

Area�Disi1Si1 = jDisi1 �DiSi1j (3.27)

Thus we can evaluate Equation 3.24 and substitute in Equation 3.23 to
get the �eld fDi

.

3.3 Losses

So far we have assumed a loss-less medium. In reality there are energy
losses in the propagation of sound. There is loss due to absorption and
back-scattering within medium. We can lump these two e�ects into a bulk
attenuation coe�cient characteristic of the medium. The attenuation is an
exponential function of the product of this coe�cient and the path-length tra-
versed in the each medium. Section 2.1.5 has some details on the absorption
loss. The attenuation coe�cient in general is a function of frequency [1]. The
frequency dependence is linear for muscle and is speci�ed in db/cm/MHz.
Fat (like water) has very low attenuation coe�cient but the frequency de-
pendence is not linear but quadratic. Bone is highly attenuative.

There is another frictional loss - viscosity. However, we can ignore this
loss in comparison to other phenomenon for the soft-tissues involved. In this
work we ignore this e�ect.

3.4 Extension to Broad-band Pulses

So far we derived the �eld for monochromatic waves. In reality the trans-
ducers emit broad-band pulses. If we can measure the emitted pulses in
advance or can model them in some way (for example using KLM modelling
[10]), we can simply use the amplitude and phase factors obtained here to
get the output for broad-band pulses . If we do not consider the distortion
due to frequency-dependent attenuation, then the result is straightforward.
The amplitude factors derived here are independent of frequency 2. Hence

2The refractive index of the media for ultrasonic applications is virtually independent
of frequency. Unlike optics, dispersion is negligible for the frequency-range [1]
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the amplitudes just weight the emitted pulses and the phases provide the
delays. This is true for low-attenuation medium such as water, fat etc.

Next we can take into account the attenuation to a �rst approximation.
We can consider that the attenuation at the center-frequency is a good rep-
resentation of the attenuation coe�cient across the bandwidth. In this case,
we could still add (interfere) the pulses undistorted. We just need to multi-
ply another attenuation factor obtained with the value of frequency at the
center-frequency of the pulse, on top of the intrinsic propagation-amplitude
calculated here (due to boundary-conditions and spreading-factor). This ap-
proach su�ces for most cases.

Finally, we can incorporate the true frequency dependent attenuation
across the pulse's bandwidth - if we do the analysis in the frequency domain.
For this case, amplitudes derived here and phases would be incorporated
in the frequency domain for each ray and then the inverse Fourier trans-
form gives the received pulse in time-domain, appropriately distorted by the
attenuation coe�cient.
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Chapter 4

Ultrasound Field Propagation

For a Special Case

In this chapter the goal is to derive the closed form equation for the the
received echoes from a re
ective media under two intermediate layers. This
case is of special interest to us because it could be an useful tool for tracking
the skeletal bone of a patient (through intervening layers of fat and muscle)
intra-operatively. A potential application is accurate intra-operative regis-
tration with pre-operative CT data.

In this chapter we show that this particular case of re
ection under two
layers essentially reduces to the case of propagation through three media and
therefore the results arrived at in the last chapter can be used.

4.1 Derivation of Field

In the following section we derive the received �eld amplitude and phase for
the case of re
ection o� a interface under two-layers, when the incident �eld
is a monochromatic spherical wave. As in the last chapter, we assume that
the interfaces are arbitrary shaped but, locally planar to each individual ray.
The ray-tracing approximation is assumed, which essentially means that the
thicknesses of the layers has to be large in comparison to the wavelength.
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4.1.1 Field received from a re
ective layer under two

intermediate layers
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Figure 4.1: Ray Skeleton For Analysis

The main skeleton of rays we need to consider are given in Figure 4.1. At
a later section (Section 4.1.2) we give the reasons for this. At this point
it su�ces to say that for example, when we are considering the boundary
conditions at C, we need not consider the incident �eld at C direct from the
source O. That �eld belongs to another skeleton and is taken care of when
we process that. Plane 1 and Plane 3 (the dimensions are exaggerated here
for convenience) are polygonal sections of the �rst interface. Plane 2 is the
re
ective surface. The normals of these planes are n1, n2, n3 all of which
could be in general positions (and not necessary aligned perpendicular to
the aperture). The ray O-A-B-C-D, is the main \skeleton" to be considered
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here for analysis. The segments OA and CD are in the �rst medium (with
propagation velocity C1) and AD and BC are in the second medium (with
propagation velocity C2). The shaded regions indicate that one half (OAB)
of the set of rays is in a di�erent plane than the other half (BCD). OA, n1
and AB are coplanar (by Snell's Law), while BC, n3 and CD form a di�erent
plane.

The incident wave at A (Figure 4.1) is a spherical wave, the outgoing
wave is distorted in shape due to refraction. The subsequent re
ection at
B does not change the waveform further (under ray-tracing approximation).
The path ABC is entirely in the second medium. Hence we can re
ect ray BC
about the Plane 2, refer to Figure 4.2 and imagine it as continuing along AB.
Then the CD part can also be re
ected about Plane 2, but there is a change
in the waveform again due to transfer to another medium again (medium 1).

The equivalent picture of the skeleton is given in Figure 4.2, where Plane
30 is the re
ected plane and normal about the plane n03 is the normal n3
re
ected about n2. C 0 and D0 are points C and D, re
ected about the Plane
2. We are interested in �guring out the �eld at the point D0, which represents
the equivalent point back at the aperture. Note that the length OA and C 0D0

are in �rst medium here while ABC 0 is in second.
We see that this is the same three-medium case considered in the last

chapter, Figure 3.1, except in this case, Medium 3 is the same as Medium
1. An important di�erence is that we have an additional factor R(�I) in
Equations 3.7 and 3.10 corresponding to the re
ection at the second interface
(plane B in Figure 4.2). This is a function of the incident angle �I . For a
perfect re
ector, this factor is unity. There are other obvious nomenclature
di�erences, such as L2+L3 is the segment of R2 in the second medium, and
was called L2 in the last chapter.

4.1.2 Independence of one ray-skeleton from another

In this section we explain why we can consider the ray-skeletons shown in
Figure 4.1 independently.

Here we consider the point C in Figure 4.1, for the explanation, but
similar arguments apply to point A as well.

Let us consider the point C and all the waves incident on it from the
source O as well as from below, after re
ection at the bone. This is shown in
Figure 4.3. In this �gure the solid lines represent the waves for the skeleton
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considered in Figure 4.1 while the dotted lines incident wave direct from the
source (which starts another skeleton at C). f 0I ; f

0

R; f
0

T denote the incident,
re
ected, refracted velocity potentials from below, and fI ; fR; fT are those
from above.

For an incident plane wave, continuity of the pressure and normal compo-
nent of velocity at a planar interface gives the re
ected plane wave (angle of
re
ection = angle of incidence) and the refracted plane wave (snell's law) as
derived in many books [2, 9] to cite a few. Now for the spherical wave, under
ray-tracing approximations, we can apply the boundary conditions ray-by-
ray to obtain the re
ected, refracted rays, as was done for the analysis in [2].
This is because the ray-tracing approximation essentially means that a com-
ponent plane wave (at an angle �) composing the spherical wave is e�ective
only locally, around the ray (at an angle �). This was discussed in Section
2.2.2.

Now we refer to Figure 4.3. First for each set of waves, fI ; fR; fT and
f 0I ; f

0

R; f
0

T by themselves have to satisfy the boundary conditions. This can
be seen simply as follows. If for example we could block out the incident
ray from above, the set of rays f 0I ; f

0

R; f
0

T (shown by the solid-rays) are by
themselves and have to satisfy the boundary conditions.

Hence by continuity of pressure condition, we would get, the following
two equations, as shown below,
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�2(fI + fR) = �1fT (4.1)

and,

�1(f
0

I + f 0R) = �2f
0

T (4.2)

Then, we add LHS of Equation 4.1 to RHS of Equation 4.2 and also add
RHS of Equation 4.1 to LHS of Equation 4.2, and equate the sums, to get,

�2(fI + fR + f 0T ) = �1(f
0

I + f 0R + fT ) (4.3)

Which essentially says that for the set of six rays in Figure 4.3, the bound-
ary condition is satis�ed, that is the total potential at the top (fI + fR+ f 0T )
is related to the total potential at the bottom (f 0I +f

0

R+fT ) with the inverse
ratio of the density.
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Chapter 5

Experimental Results with

Phantom and Comparison

with Simulations

We have performed validation experiments for the forward model for the spe-
cial case considered in the last chapter. We use \fat" and \muscle" mimick-
ing phantoms. These physical objects designed from water-agar-gel mixtures
mimick some ultrasound characteristics (such as propagation velocity) in hu-
man fat and muscle. We also used a steel-block about 5 cm thick. We place
the phantoms on top of the steel-block and obtain the pulse-echoes from the
fat-muscle interface as well as the muscle-steelblock interface. We simulate
the same conditions and compare the experimental results with the simu-
lations. For the purpose of simulations, we use the values for the velocity,
density and the attenuation coe�cient of the phantoms, that the manufac-
turers provide us with. We assume that the steel-block is a perfect re
ector.

In this chapter, we �rst explain the experimental procedure in detail. We
also explain how we obtain the transducer pulse needed for our simulations.
We then compare the experiments with the simulation result.
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5.1 Experimental Procedure and Equipment

Description

To obtain coupling between the phantom layers we wet them with water.
Then we stack on the steel-block so that the muscle-phantom lies on the
steel-block and the fat-phantom on top of the muscle. The purpose is to
create a highly re
ective interface under two layers (fat and muscle).

The ultrasonic transducer used is a 7.5 MHz, single element circular aper-
ture transducer. We use a RiTec control box with variable amplitude and
frequency to trigger the transducer. We excite the transducer with a short
square pulse of time-duration half of the time-period at resonance, (that is,
1=(2 � 7:5)�s or about 67 nano-secs). We place the transducer over the fat-
phantom and obtain the return-echoes. The echoes are captured, and �ltered
by a lowpass and a highpass �lter. The lowpass �ltered is set at 10 MHz.
The highpass �lter is set at 20 KHz, to remove the DC bias. The �ltered
signal is sampled at 25 MHz by an Analog to Digital Converter. A Sonix
board is used for this purpose. The bu�er length is 4096 samples. The Sonix
board is triggered by a synchronizing trigger source from the control box.

The experiment on fat-muscle-steel is repeated twice.
A typical return-echo signal is shown in Figure 5.1.
In Figure 5.1, the �rst very high-amplitude echo at the beginning (near

zero-time) is the echo o� the interface between the transducer backing and
the fat-phantom. The second echo is that from the fat-muscle interface. The
next higher echo is from the muscle and steel-block interface.

5.2 Simulations and comparison with exper-

iments

To be able to simulate the pulse-echo mechanisms, we have to determine the
transducer pulse �rst. The �rst pulse echoed from the backing would have
been a good candidate but its high amplitude saturated the electronics in the
control-box. Hence, the pulse appears chopped o� and is not useful. In the
present work, we do an additional experiment to determine the pulse. We
obtain an echo from the steel-block, under-water, placed far away (about 5
cm) from the transducer. This is to make sure that the delays experienced by
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Sample Experiment
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Figure 5.1: Sample Experiment: Echo Signals from fat-muscle and muscle-
steel interface
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the emitted-pulse in going through the ray-paths are roughly the same. This
is true if the distance from the transducer is far enough away in comparison
to the aperture diameter and the wavelength 1. This type of experimental
determination of pulse is a standard method to measure the pulse when the
transducers are tested by designers 2. The pulse obtained is observed to be
nearly a Gaussian. We �t a Gaussian curve using simplex algorithm. The
parameters �tted to the Gaussian are amplitude, mean, standard deviation,
and the center frequency of modulation. In the next section we show the
results.

5.2.1 Experimental determination of Transducer pulse

Figure 5.2 shows the pulse we obtained. We maximize the return echo from
the steel-block under water, about 5 cm from the 3 mm diameter transducer.

The parameters of the Gaussian �tted to the experimental data is tabu-
lated.

Parameters of the �tted Gaussian

Parameters
Amplitude 161.4234

Mean (samples) 9.2562
Sigma (samples) 2.2884
Frequency (MHz) 6.8748

It is noted that the pulse obtained by this experiment give estimates of
the transducer-pulse only to a scale. Therefore, we do not know the exact
amplitude scaling of the pulse just emitted out of the transducer. When
comparing simulations and experiments we use a scaling factor that matches
one of the echoes in the simulated and the experimental signals. Then we
can compare the amplitude and the shape of the other one.

1Strictly speaking, this experiment will give not give just the pulse emitted from the
transducer but that pulse, convoluted twice (forward and return) with the transducer
impulse response. However, that does not pose a problem and is in fact necessary. Because
all the echoes we are going to subsequently measure by the transducer are also going to be
convoluted twice with this impulse-response. Hence, we do need the emitted pulse after
twice convolution with the transducer impulse response.

2personal communication, Mr. Xue, Advanced Devices.
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Estimating Pulse emitted by transducer
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Figure 5.2: Transducer Pulse and the best �t Gaussian used for

simulations
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5.2.2 Parameters used in Simulation

A Gaussian pulse is used for simulation, with parameters as listed in the
table in last section.

The next table shows the medium parameters used for the simulations.
The phantoms are designed as 
at slabs with designated thicknesses. So
the geometry of the phantom surfaces are assumed planar and parallel to the
aperture for simulation purposes. The same is true for the steel-block surface
as well. The steel block is assumed a perfect re
ector.

Parameters used in simulations

Parameters Phantom 1 (fat) Phantom 2 (muscle)

Relative density (wrt water) 1.010 1.041
Velocity in mm=�s C1 = 1:508 C2 = 1:582

Attenuation in db=cm=MHz 0.067 0.188
Thickness in mm 15 20

The attenuation (due to loss) parameter is converted to db=cm by mul-
tiplying the listed attenuation values with the center frequency of the pulse,
6.8748 MHz. The attenuation (in db) is obtained by multiplying the indi-
vidual ray lengths in each medium by the given attenuation factor, in the
simulator. The factor is (after appropriately powered) multiplied to the in-
trinsic propagation amplitude calculated for each ray.

The simulator is written in C.

5.2.3 Simulation Results and Comparison with Ex-

periments

We compare the experiments with simulation results. For purpose of compar-
ison we show the simulated echoes superposed on the experimental echoes.
Additionally, we calculate relevant ratios and summarize them in a table.
The experiment is repeated twice.

The Figures 5.3-5.5 show the �rst experimental results and the simulation.
Since we do not know the amplitude scale of the emitted pulse, for purpose

of comparison, we have scaled the simulation data so that the RMS amplitude
of the �rst echoes match for the experiment and the simulation. Then we
compare the second echo in amplitude.
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Comparison of Experiment 1 with Simulations

Simulation
Experiment
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Figure 5.3: Experiment 1: Comparison of Experiment and Simulation
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Comparison of Experiment 1 with Simulations

Simulation
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Simulation & Experiment : First Echo (from fat−muscle surface)

Figure 5.4: Experiment 1: Comparison of close-up of the �rst echo
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Comparison of Experiment 1 with Simulations

Simulation
Experiment

44 45 46 47 48 49 50 51 52
−150

−100

−50

0

50

100

150

two−way times in microseconds −−−−−−−> 

Simulation & Experiment : Second Echo (from muscle−steel surface)

Figure 5.5: Experiment 1: Comparison of close-up of second echo
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The plot in Figure 5.3 shows the echoes o� the fat-muscle and the muscle-
steelblock interfaces. The red plot shows the experiments and the blue plot
simulations. In all these �gures, the �rst echoes of the experimental (red)
plot and the simulation (blue) plot are deliberately matched in amplitude.
That is, the simulation plot has been scaled such that the square root of the
sum of squares of the echoes match for the two cases. The RMS amplitude
ratio of the simulated second echo to the experimental one is calculated and
tabulated in the summary table.

The Figures 5.4-5.5 show the echoes close-up. There are small delay-
errors, in fractions of mm, of the echoes. We also tabulate these shifts in
mms. For the �rst pulse, the distance shifts, �x1 in terms of the (two-way)
time mismatch �t1 calculated from the simulated and the experimental echo,
is given by �x1 = C1�t1=2. For the second echo, after a few calculations the
shift in mm is �x2 = C1�t1=2 + C2(�t2 � �t1)=2. These values are tabulated
in the summary table.

Figures 5.6-5.8 shows the echoes and their close-ups for the second exper-
iment. The amplitudes and shift-errors for this set is also tabulated in the
next section.

Summary of Results

We summarize the comparison of experiments and simulations in following
table.

Comparison with Experiment 1 and Simulation

[RMS Echo1]/[RMS Echo2] - simulation 0.5670
[RMS Echo1]/[RMS Echo2] - experimental 0.6378
[Experiment Echo2]/[Simulation Echo2] 0.8890
Echo 1 shift-error (�x1) -0.6334 mm
Echo 2 shift-error (�x2) -0.5068 mm

The �rst two entries shows the relative RMS amplitude between the �rst
echo and the second echo for the simulation data and the experimental data
respectively. Ideally these ratios should have been the same. The next entries
gives some more comparisons. The third entry is the amplitude ratio of the
second echo between the experimental to the simulation data. This has been
obtained after we scaled the simulation so that �rst echoes match. Note that

47



Comparison of Experiment 2 with Simulations

Simulation
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Simulation (blue) vs. Experiment (red)

Figure 5.6: Experiment 2: Comparison of Experiment and Simulation
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Comparison of Experiment 2 with Simulations

Simulation
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Simulation & Experiment : First Echo (from fat−muscle surface)

Figure 5.7: Experiment 2: Comparison of close-up of the �rst echo
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Comparison of Experiment 2 with Simulations

Simulation
Experiment
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Figure 5.8: Experiment 2: Comparison of close-up of second echo
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this number (ideally unity) also gives us the ratio (or discrepancy) between
the numbers in the �rst two entries. The last two entries give the shifts-errors
(in mm) between the echoes of the experiments and simulations.

A second table presents results for the second experiment.

Comparison with Experiment 2 and Simulation

[RMS Echo1]/[RMS Echo2] - simulation 0.5670
[RMS Echo1]/[RMS Echo2] - experimental 0.6487

[Experiment Echo2]/[Simulation Echo2]y 0.8741
Echo 1 shift-error (�x1) 0.0603 mm
Echo 2 shift-error (�x2) -0.4459 mm

5.3 Conclusions

The amplitude matches are fairly good. The echoes from the steel-block be-
ing slightly lower than expected could be a result of the fact (1) that there is
a small amount of transmission into the steel-block whereas we assume that
the steel-block is a perfect re
ector in the simulations (2) there is an angu-
lar sensitivity of the transducer. Additionally there is a frequency-varying
attenuation. There is small but visible amount of downshift in frequency in
the second echo because the higher frequencies are attenuated more. For the
simulation we took the attenuation at the center-frequency.

There are small relative-shifts of the pulses. However, these shifts are
within the design errors of the phantoms. The phantom thicknesses are
correct to within a mm. We measured the phantoms with calipers at various
spots and there was some variation (< 1 mm).
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Chapter 6

Conclusions

In this work we have presented closed-form derivation of ultrasound �eld
under ray-tracing approximations for commonly occuring cases. We �rst
show by some preliminary calculations that the ray-tracing approximation is
not very restricting. Then we go on to discuss other assumptions.

6.1 How restricting is ray-tracing approxi-

mation ?

We discuss the applicability of the ray-tracing conditions. A check on the
limits of ray-tracing can be done using Equation 2.15 for the �eld under
two-layers for the nominal values of parameters for fat and muscle obtained
from [18], for imaging with a 3.5 MHz transducer. With C1 = 1:48mm

�s
,

C2 = 1:57mm
�s

, (that is n = 1:48
1:57 = 0:9427), we would get,

z >> 0:2017mm (6.1)

That is, for depths su�ciently more than 0:2017mm from the boundary,
the ray-tracing approximation is valid. This factor is inversely proportional
to the frequency used. For example, at 7.5 MHz, we need a depth more than
0:0941mm making the condition even less restricting.
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6.2 Other assumptions

The main other physical approximations apart from ray-tracing is that of
longitudinal propagation. However for soft-tissues, this assumption is not
very stringent. Transverse or shear-waves are not transmitted very e�ectively
through human soft-tissue [1]. However, for solid media such as bone, shear-
waves are also important 1.

In the current model, the re
ection o� the di�erent interfaces have been
considered specular. This is generally true of interfaces between organs.
However in some cases, there could be di�use re
ection as well [1].

We note that we ignored secondary and multiple levels of re
ection o�
the interfaces because they would be highly attenuated because of large path-
lengths and also have large delays. This is a standard assumption [3, 6, 19],
etc.

Absorption and backscattering loss in the media has been considered, but
for viscosity losses the wave-equation has to be modi�ed further.

Finally, we have assumed each of the medium to be homogeneous. A
more generalized model would take into account the within-tissue variations
of density and velocity. The ray-tracing approach would be still valid. The
rays would not be straight but bend within the medium. We also use a
bulk-measure to account for the back-scattering due to scatter-centers inside
medium. However there has been signi�cant amount of work on explicit
modeling of ultrasonic scattering [20, 21, 22, 23, 24], as well as the inversion
[25, 26, 19, 27, 28]. However, all these are added at the expense of complexity.
The magnitude of back-scattering e�ect is far smaller than the magnitudes
of specular and di�use re
ections from interfaces of organs [1].

The current model of assuming layered homogeneous media applies well
for a fairly wide cases, because the human body is layered with not so sig-

1For applications such as insoni�cation through solids such as skull-bone etc, just lon-
gitudinal propagation is not valid and we need to adopt a more re�ned model to take into
account shear-waves. More over the shear-wave and the longitudinal-waves cannot be ana-
lyzed independently, because the physical variables will have components due to both. For
example, considering an isotropic, homogeneous medium which can support shear-waves
as well as longitudinal-waves, the displacement vector u has a vector potential  as well
as the scalar longitudinal potential �. The displacement is given by [10], u = r�+r�  .
Deriving wave-equations of the form in Equation 2.1 in � as well as in  as given in [10]
and solving for them, all the other physical variables such as displacement, stress, strain
can be deduced from � and  .
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ni�cant variation of density, velocity of propagation within medium.
We can summarize the advantages of the model as follows. To a good

�rst approximation it would model the e�ect of layered media for common
cases where the layers are essentially homogeneous and support mainly lon-
gitudinal waves. Fat, muscle answer these criterion well. Hence as a good
�rst approximation (neglecting the in-medium variations), we can apply this
model. The layers should be more than orders of of mm thick when we use
transducers of medium frequencies (1-10 MHz). The advantage of the ray-
tracing approach is that it is highly parallelizable (each ray is independent of
another) and could be potentially very fast. This factor is useful for real-time
applications and is also essential if we attempt to invert the forward model.

It is a step forward from the state of the art scanner which uses a single
longitudinal velocity for soft-tissue.
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Appendix A

Derivation of Sides of

Cross-sectional Triangles For

Flux-Tube

In this chapter the goal is to derive the expressions of various di�erential
vectors (and their lengths) in the di�erent media. In the �rst section we
consider the di�erential vectors by varying in the d -direction. In a subse-
quent section we adapt these results for the d�-direction. Both these sections
consider only three media. In the last section we �nd the recursive equations
to extend to multiple media.

A.1 Di�erential vectors in d -direction for

three media

For convenience, we repeat Figure 3.3 in the main text here, shown in Figure
A.1.

The eventual goal is to obtain the ratios of the areas orthogonal to the
ray. In this appendix, we obtain the various sides of the relevant triangles in
order to obtain these areas.

The analysis in this section corresponds to the vectors obtained by varia-
tion of the main-ray through angle d (shown in Figure A.2). The di�eren-
tially shifted is in the plane of the z-axis and the original ray R1. We note
that R1, R2 and n1 are coplanar. And the di�erentially shifted ray, OA1,
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n1 and refracted ray thereofA1C1 are coplanar. However, we cannot say the
two refracted rays themseves R2 and A1C1 are not. This same observation
holds in subsequent stages.
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Figure A.2: Calculation of Di�erential Vectors

We want to derive the various di�erential lengths to the common mea-
sure d , so that when considering ratios, this quantity is cancelled. Similar
analysis holds for the vectors swept out by variation of main-ray through
angle d�, in an orthogonal direction (not shown here for convenience). The
equations would be the same in form, except that the variable is � and we
want to reduce the various di�erential lengths to the common measure d�.

We are interested in the lengths perpendicular to the points just above
the interfaces, vectors such as DS1, as shown in Figure A.2. Also the vec-
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tors perpendicular to the rays just below the interfaces, ie, vectors such as
aA1; cC1. We derive the vectors aA1 and DS1 because they are the most
relevant in the main text. But their derivation, (specially that of DS1) shows
how the vectors at any point can be arrived in general. This generalization
and extension to multiple media is derived at another section.

The vectors that are needed in the main text are marked in boxes.
The vector R1 is given by

R1 = L1R̂1 (A.1)

= L1

0
B@ sin cos �

sin sin �
cos 

1
CA (A.2)

(A.3)

The \hat" over the vectors denotes unit-vectors.
The change in direction of R1 is given by,

� R̂1 =
@R̂1

@ 
d 

= d 

0
B@ cos cos �

cos sin �
� sin 

1
CA (A.4)

= (d )x̂1 (A.5)

where the unit-vector x̂1 is given by

x̂1 =

0
B@ cos cos �

cos sin �
� sin 

1
CA (A.6)

The su�x  on � and other di�erential variables indicates that the deriva-
tive is with respect to  .
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The vector R̂1 is a directional change perpendicular to the ray R1 (along
x̂1 ) and is of length d . This vector and x̂1 is a key building block for the
others we want to derive.

The �rst vector we are interested in is aA1. From the Figure A.2, we see
that it is the di�erence of two vectors as follows,

aA1 = AA1 �Aa

= (� PA)� ((� PA) � R̂2)R̂2 (A.7)

where � PA is the vectorial shift in the point of intersection PA of ray
R1 and the �rst planar segment when the R1 is changed by angle d . We
have to derive R̂2 and � PA next to obtain aA1.

The unit-vector R̂2 is the refracted ray, co-planar with R̂2 and n1. It
can be derived as a linear sum of vectors R̂2 and n1. Following derivation of
refracted ray in terms of incident ray and the normal, given in [29], we get,

R̂2 =
1

n
R̂1 + [cos �1 � cos �

n
]n1 (A.8)

where n is the relative refractive index between the two media, � is the
angle of incidence (cos � = n1 � R̂1) and �1 is the angle of refraction (cos �1 =
n1 � R̂2). The two angles are related by Snells Law, sin � = n sin �1

We derive the � PA as follows. The point PA is given by

PA = R̂1t1 (A.9)

where t1 = L1 is the scale along R1.
Hence, � PA is given by,

� PA = R̂1dt1 + t1(� R̂1)

= R̂1dt1 + L1(d )x̂1 (A.10)

To �nd t1 we intersect the ray and the plane (with unit-normal n1). Any
point X on the plane satis�es the relation,
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n1 �X+D1 = 0 (A.11)

where D1 is the distance of the plane from the origin.
Then putting X = t1R̂1, we would get,

t1 = � D1

n1 � R̂1

(A.12)

dt1 =
D1(n1 � (� R̂1))

(n1 � R̂1)2

= �t1(n1 � (� R̂1))

(n1 � R̂1)

= �L1(d )(n1 � x̂1 )
(n1 � R̂1)

(A.13)

(where the last but one step is obtained from the previous Equation A.12
for t1). We note that this dt1 expression can be intuitively obtained geomet-
rically as well.

We can put this last Equation A.13 in Equation A.10 and get,

� PA = L1d [x̂1 � (n1 � x̂1 )
(n1 � R̂1)

R̂1] (A.14)

Hence we can arrive at the expression for the required vector aA1 in
terms of known quantities, and d by putting � PA in Equation A.7.

aA1 = L1d [x̂1 � (n1 � x̂1 )
(n1 � R̂1)

R̂1

�((x̂1 � R̂2)� (n1 � x̂1 )(R̂1 � R̂2)

(n1 � R̂1)
)R̂2] (A.15)

where R̂i are the ray-vectors, x̂1 is the direction perpendicular to R̂1,
given in Equation A.6. n1 is the normal to the �rst interface, and the length
L1 is the intercept of ray R̂1 at the �rst medium.
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The other vector of interest is DS1. From the reference Figure we see

DS1 = Ds1 + s1S1

= cC1 + L3(� R̂3) (A.16)

where we make use of the fact that Ds1 = cC1 (by construction, in
Figure A.2). The ray C1s1 is parallel to R3 and, therefore the vector s1S1
is the increment vector, L3(� R̂3). � R̂3 is the change in direction of the

unit-vector ray R̂3. Multiplication by the length L3 is needed to get the
arc-length swept by the ray.

This Equation shows that we have derive the vector cC1 (which can be
derived in similar way as was done for aA1) and (� R̂3). We tackle cC1

�rst.
The vector cC1 is given by,

cC1 = CC1 �Cc (A.17)

= � PC � (R̂3 � � PC)R̂3 (A.18)

First we derive vector CC1 as the di�erential of the point of intersection
of R2 and the second interface. The point PC is given vectorially by,

PC = PA + R̂2t2 (A.19)

where t2 = L2 denotes the scale.
Di�erentiating this, as we did before for PA, we get

� PC = � PA + t2(� R̂2) + R̂2dt2

= � PA + (L2)(� R̂2) + R̂2dt2

= � PA + L2(d )x̂2 + R̂2dt2 (A.20)

We know the �rst term from Equation A.14. The second two terms needs
derivation of � R̂2 and dt2.

Taking the derivative of Equation A.8, we get � R̂2 as

� R̂2 = [
d 

n
x̂1 + (� F )n1] (A.21)
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where F = cos �1 � cos �=n

� F =
@F

@ 
d 

= d (� sin �1
d�1
d 

+
sin �

n

d�

d 
) (A.22)

To �nd d�=d , we remember that cos � = n1 � R̂1.

Hence we get, sin � d�
d 

= �n1 � x̂1 .
We can di�erentiate the Snell's Law, to get the relation between d� and

d�1.
Thus we get, d�1

d 
= d�
d 

cos �
n cos �1

Substituting this in Equation A.22 after a little manipulation, we would
get,

� F = �d 
n
(1� tan �1

tan �
)(n1 � x̂1 ) (A.23)

Putting Equation A.23 in

� R̂2 =
d 

n
[x̂1 � n1(1 � tan �1

tan �
)(n1 � x̂1 )] (A.24)

= (d )x̂2 (A.25)

where (as was done for � R̂1), in the last step, we de�ne a vector corre-

sponding to � R̂2, given by

x̂2 =
1

n
[x̂1 � n1(1 � tan �1

tan �
)(n1 � x̂1 )] (A.26)

These vectors x̂1 , x̂2 etc, have a recursive relationship (as evident
from Equation A.26) which will help in generalizing the proof, as shown
later.
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To derive the last term dt2 in Equation A.20 we have to �nd t2 as the
point of intersection of the ray R2 and the second interface (normal n2) and
distance D2. As a similar derivation was shown earlier, the details are left
out.

t2 = �(n2 �PA) +D2

(n2 � R̂2)
(A.27)

Taking the derivative and after some manipulations, we get

dt2 = �(n2 � � PA)

(n2 � R̂2)
� t2(n2 � � R̂2)

(n2 � R̂2)

= �(n2 � � PA)

(n2 � R̂2)
� L2(d )(n2 � x̂2 )

(n2 � R̂2)
(A.28)

We note that this dt2 expression can be intuitively obtained geometrically
as well.

Substituiting Equation A.28 in Equation A.20 and rearranging we get,

� PC = � PA � R̂2[
(n2 � � PA)

(n2 � R̂2)
]

+L2(d )x̂2 � L2(d )R̂2[
(n2 � x̂2 )
(n2 � R̂2)

] (A.29)

This equation shows an useful recursive relation (� PC in terms of
� PA) to be used later.

We could get the full �nal form of � PC (in terms of d ) by substituting
� PA from Equation A.14 into the above equation and rearranging,
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� PC = (d )[L1(x̂1 � (n1 � x̂1 )
(n1 � R̂1)

R̂1)

�L1R̂2(
(n2 � x̂1 )(n1 � R̂1)� (n1 � x̂1 )(n2 � R̂1))

(n1 � R̂1)(n2 � R̂2)
)

+L2x̂2 � L2R̂2

(n2 � x̂2 )
(n2 � R̂2)

] (A.30)

We had set out to derive Equation A.18. We have almost got it except for
an expression for R̂3. We write the latter now. From the standard formula
for the refracted ray [29], we get,

R̂3 =
1

n0
R̂2 + [cos �t

0 � cos �t
n0

]n2 (A.31)

where n
0

= C2

C3

is the relative refractive index between Medium 2 and

Medium 3, �t is the angle of incidence and �t
0

is the angle of refraction. The
two angles are related by Snell's Law, sin �t = n

0

sin �t
0

Hence substituting Equation A.31 and A.30 in Equation A.18 we would
get the vector cC1.

The original goal was to deriveDS1 as given in Equation A.16, expanded
here in Equation A.32 for convenience.

DS1 = Ds1 + s1S1

= cC1 + L3(� R̂3)

= � PC � (R̂3 � � PC)R̂3 + L3(� R̂3) (A.32)

We derived � PC so far. But we see that we need another factor, the

di�erential change in the vector R̂3. We can derive this in the same identical
way as done before for R̂2 and get,
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� R̂3 =
d 

n0
[x̂2 � n2(1� tan �t

0

tan �t
)(n2 � x̂2 )] (A.33)

= (d )x̂3 (A.34)

where (as was done for � R̂1 and � R̂2), in the last step, we de�ne a

vector corresponding to � R̂3, given by

x̂3 =
1

n0
[x̂2 � n2(1� tan �t

0

tan �t
)(n2 � x̂2 )] (A.35)

We can therefore substitute Equations A.34 and A.30 in Equation A.32
to arrive at the vector DS1.

A.2 Di�erential vectors in d�-direction for

three media

The analysis for the d�-direction is similar to last section, except we take
the di�erentials with respect to d� and not d . The �gure in the main text
illustrating the 
ux-tube Figure A.1 is referred to when necessary instead
of drawing a separate diagram showing the d�-ray exclusively. We write
the �nal results here without detailed analysis, except when it is necessary
to explain and illustrate a point of di�erence, specially when deriving the
vector DS2.

The vector R1 is given in Equation A.3, reproduced here again for con-
venience.

R1 = L1R̂1 (A.36)

= L1

0
B@ sin cos �

sin sin �
cos 

1
CA (A.37)

(A.38)
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The \hat" over the vectors denotes unit-vectors as before.
The change in direction of R1 is given by,

��R̂1 =
@R̂1

@�
d�

= d�

0
B@ � sin sin �

sin cos �
0

1
CA (A.39)

= (d�)x̂1� (A.40)

where the unit-vector x̂1� is given by

x̂1 =

0
B@ � sin sin �

sin cos �
0

1
CA (A.41)

The su�x � on � and other di�erential variables indicates that the deriva-
tive is with respect to �.

The change in the point of intersection (of R1 and �rst interface) PA, is
given by

��PA = L1d�[x̂1� � (n1 � x̂1�)
(n1 � R̂1)

R̂1] (A.42)

The vector aa2 (refer to Figure A.3) is almost identical in length and
direction to a

0

A2 (drawn perpendicular to ray R2 from point A2). The dif-
ference between these two vectors, aa2 and a

0

A2 is of second order of length
(arc swept by a di�erential length in going through a di�erential angle).

Hence we can derive the vector aa2 as
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Medium
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A
a

Figure A.3: Vectors a
0

A2 and aa2

aa2 = a
0

A2

= AA2 �Aa
0

= (��PA)� ((��PA) � R̂2)R̂2

= L1d�[x̂1� � (n1 � x̂1�)
(n1 � R̂1)

R̂1

�((x̂1� � R̂2) � (n1 � x̂1�)(R̂1 � R̂2)

(n1 � R̂1)
)R̂2] (A.43)

The R̂2 is given in Equation A.8. Taking the derivative with respect to
d�, we would get,
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��R̂2 =
d�

n
[x̂1� � n1(1� tan �1

tan �
)(n1 � x̂1�)] (A.44)

= (d�)x̂2� (A.45)

where (as was done for ��R̂1), in the last step, we de�ne a vector corre-

sponding to ��R̂2, given by

x̂2� =
1

n
[x̂1� � n1(1 � tan �1

tan �
)(n1 � x̂1�)] (A.46)

The next step involves derivation of the change in the point of intersec-
tion (of R2 and second interface) PC. This follows, similar to derivation of
Equations A.29 and A.30. We would get, therefore,

��PC = ��PA � R̂2[
(n2 � ��PA)

(n2 � R̂2)
]

+L2(d�)x̂2� � L2(d�)R̂2[
(n2 � x̂2�)
(n2 � R̂2)

] (A.47)

And by substituiting ��PA from Equation A.42 we would get,

��PC = (d�)[L1(x̂1� � (n1 � x̂1�)
(n1 � R̂1)

R̂1)

�L1R̂2(
(n2 � x̂1�)(n1 � R̂1)� (n1 � x̂1�)(n2 � R̂1))

(n1 � R̂1)(n2 � R̂2)
)

+L2x̂2� � L2R̂2

(n2 � x̂2�)
(n2 � R̂2)

] (A.48)
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Next we attempt to derive the vector DS2 in Figure A.1.

C1C2
c

c

c2

n2R3

R2
C

C1

D

2
L 3 2s

S

Figure A.4: Construction of DS2

Parts of Figure A.1 are redrawn in Figure A.4 for clarity and further
construction. In Figure A.4 �cc2C1 is the triangle formed by the points
where the three-rays intersect the plane orthogonal to R3 passing through
C1. In the main text, we show that ignoring second order di�erentials, this
is a projection onto that orthogonal plane, passing through the point C1.
In Figure A.4, we similarly get the triangle at C2, orthogonal to the ray
R3, (extended backwards in dotted lines), meeting the other two rays at c

0

,
and C1

0

, respectively. This is also a projection, if we ignore second-order
di�erentials. Hence, the two triangles �cc2C1 and �c

0

C2C1

0

(shown in
dotted lines) are congruent (to �rst order of di�erentials).

To get the vector DS2 we concentrate on the dotted triangle, �c
0

C2C1

0

in Figure A.4.
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DS2 = Ds2 + s2S2

= c
0

C2 + L3(��R̂3) (A.49)

C2S2 is parallel to R3 and plane Ds2S2 is orthogonal to R3 and ��R̂3

is the di�erential change in direction of R̂3.
But, c

0

C2 is given by,

c
0

C2 = CC2 �Cc
0

(A.50)

= ��PC � (R̂3 � ��PC)R̂3 (A.51)

We know ��PC from Equation A.48 and R̂3 from Equation A.31.
Substituting Equation A.51 in the Equation for DS2 we would get,

DS2 = ��PC � (R̂3 � ��PC)R̂3 + L3(��R̂3) (A.52)

We are yet to derive the last term, in Equation A.52, involving ��R̂3.
We can proceed as in previous section and to get,

��R̂3 =
d�

n0
[x̂2� � n2(1 � tan �t

0

tan �t
)(n2 � x̂2�)] (A.53)

= (d�)x̂3� (A.54)

where (as was done for ��R̂1 and ��R̂2), in the last step, we de�ne a

vector corresponding to ��R̂3, given by

x̂3� =
1

n0
[x̂2� � n2(1� tan �t

0

tan �t
)(n2 � x̂2�)] (A.55)

We can therefore substitute Equation A.48 and A.31 and Equations A.54
in Equation A.52 to arrive at the vector DS2.
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A.3 Generalization to multiple media

The last two sections shows an underlying recursive pattern. We can derive
a vector in the i-the layer in terms of vectors related to the i � 1-th layer.
In this section we explicitly write the recursive relations. The details of the
analysis are the same as last two sections and hence left out. The di�erentials
are with respect to a general angle �.

L i

Ri-1

Pi

L i-1
Pi1

i1s

Pi2

i2p

n

D

Ri

i-1

p

i1

Pi-1 Mediumi-1

Medium
Si

i

i
Figure A.5: Rescursive Relations

Pi = Pi�1 + R̂i�1ti�1

= Pi�1 + R̂i�1Li�1 (A.56)
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Taking the derivative, we get

��Pi = ��Pi�1 + Li�1(��R̂i�1) + R̂i�1dLi�1

= ��Pi�1 + Li�1(d�)x̂i�1�

�R̂i�1[
(ni�1 � ��Pi�1)

(ni�1 � R̂i�1)
+ Li�1d�

(ni�1 � x̂i�1�)
(ni�1 � R̂i�1)

]

= ��Pi�1 � R̂i�1[
(ni�1 � ��Pi�1)

(ni�1 � R̂i�1)
]

+Li�1(d�)x̂i�1� � Li�1(d�)R̂i�1

(ni�1 � x̂i�1�)
(ni�1 � R̂i�1)

(A.57)

Where the vector xi is de�ned as follows and follows a recursive relation
as well.

��R̂i = (d�)x̂i� (A.58)

where x̂i� is given by

x̂i� =
1

ni�1
[x̂i�1� � ni�1(1 � tan �i�1

0

tan �i
)(ni�1 � x̂i�1�)] (A.59)

The �nal length we want can be obtained in terms of all these vectors as,

DSi1 = ��Pi � (R̂i � ��Pi)R̂i + Li(��R̂i) (A.60)
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