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ABSTRACT

This paper presents a context-dependent hybrid con-
nectionist speech recognition system that uses a set of
generalized hierarchical mixtures of experts (HME) to es-
timate context-dependent posterior acoustic class prob-
abilities. The connectionist part of the system is or-
ganized in a modular fashion, allowing the distributed
training of such a system on regular workstations. Con-
text classes are based on polyphonic contexts, clustered
using decision trees which we adopt from our continu-
ous density HMM recognizer JANUS [8]. The system
is evaluated on ESST, an english speaker-independent
spontaneous speech database. Context dependent mod-
eling is shown to yield signi�cant improvements over sim-
ple context-independent modeling, requiring only small
additional overhead in terms of training and decoding
time.

1. INTRODUCTION

It was recently shown by a variety of researchers (eg.
[1, 2, 4]) that hybrid HMM systems which rely on con-
nectionist discriminative acoustic modeling can be com-
petitive with traditional mixtures of Gaussians based
HMM systems, yet requiring orders of magnitude less
parameters. Such systems are attractive, because they
are compact and o�er faster decoding speeds than stan-
dard systems. Also, they facilitate the incorporation of
additional knowledge sources into the process of com-
puting acoustical scores (e.g. using a window of input
frames). However, training the network(s) of hybrid sys-
tems generally requires parallel implementations and is
often reported to take several days, which is more than
one order of magnitude higher than the training time of
traditional systems.

We present a system based on modular neural net-
works, speci�cally generalized hierarchical mixtures of
experts (HME) [5, 6], where gates and experts in the
HME tree nodes can contain arbitrary classi�ers, as long
as they follow a multinomial probability model. The
modular aspect of HME's bears similarities to the Meta-
Pi paradigm [3] with the di�erence, that the training
data is not partioned a-priori among experts in an HME
- Instead, the network learns smooth feature space par-

tionings without supervision by maximizing the likeli-
hood of a generative statistical model. The HME ar-
chitecture and its underlying statistical framework o�er
faster training times than those observed in MLP and
recurrent neural network based hybrid systems. In fact,
it can be trained in a reasonable amount of time (approx.
2-3 times real-time for one of 2-5 training iterations) on
a set of regular workstations.

Modeling of subword units in context is a standard
technique which boosts performance of current state-of-
the-art HMM recognizers signi�cantly. Relatively sim-
ple context-independent hybrid systems were reported
to be competitive with more sophisticated context-
dependent mixture-of-Gaussian systems [4], but it was
shown that hybrid systems also bene�t from context
modeling [2, 7, 9]. In this paper, we report �rst results
of our ongoing work on connectionist context-modeling
for our hybrid HME/HMM system.

2. GENERALIZED HIERARCHICAL

MIXTURES OF EXPERTS

Jordan and Jacobs [5, 6] introduced the hierarchical mix-
ture of experts as a modular neural network for su-
pervised learning using the divide-and-conquer strategy.
The learning task is divided in sets of overlapping regions
by a tree-organized hierarchy of gating networks. Expert
networks at the leaves of the tree perform the learning
task in their speci�c region of the input space. Expert
outputs are blended by the gating networks and proceed
up the tree to yield the �nal output. Expert and gating
networks parameters are jointly estimated in order to
maximize the likelihood of a generative model, that is,
the construction of overlapping regions in which experts
act requires no supervision and is part of the learning
algorithm. It was shown, that an HME can model dis-
continuities in the input-output mapping much better
than traditional monolithic neural networks.

Fig. 1 shows the structure of a binary branching HME
of depth 2. The output vector of such an HME is com-
puted according to
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where gi(x) and gjji(x) are the outputs of gating net-
works and �ij(x) are the outputs of the expert networks.
In our case, HME's are being used in a hybrid NN/HMM
speech recognition framework as classi�ers, estimating
posterior class probabilities. For classi�cation, expert
and gating netorks in an HME compute multinomial
probability models and are therefore parameterized us-
ing the softmax non-linearity ('canonical link' in GLIM
theory):

zi(x) =
exp yi(x)P
j
exp yj(x)

In [5, 6] the yi(x) are parameterized as linear mod-
els, leading to an e�cient EM training algorithm (itera-
tively re-weighted weighted least squares) for the hierar-
chy. However, we discovered that it is sometimes advan-
tageous to use more complex parameterizations for gates
and experts, eg. multi-layer feed-forward architectures.
Such architectures can still be trained e�ciently using
generalized EM algorithms with on-line updates.
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Fig. 1: Hierarchical Mixtures of Experts

3. CONNECTIONIST CONTEXT

MODELING

Consider an HMM based speech recognition system that
models sub-word units (eg. phones, clustered triphones
or polyphones) using m-state left-right topologies. Such
a multi-state HMM model requires the computation of
state, monophone and context dependent likelihoods
p(xjcj; !i; sk) for each frame x, where sk(1 � k � m)
denotes the HMM state, cj the context class and !i the
monophone of a context-dependent acoustic model.
In traditional HMM system, the above likelihoods are

modeled independently, estimating separate parametric
distributions, usually mixtures of Gaussians, for each
model. Applying Bayes' rule and factoring the condi-
tional probabilities, we can reformulate the problem in a
way that allows the discriminative estimation of scaled
likelihoods in terms of a-posteriori probabilities

p(xjcj; !i; sk) =
p(cj; !i; skjx)p(x)
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All the terms in the denominators are prior probabili-
ties, which can be estimated by relative frequencies. The
frame probability p(x) can be dropped, when seeking the
model with maximum likelihood. It remains to estimate
the posteriors in the numerators.
Starting from the right side, the posteriors p(sk jx) can

be computed by a single neural network, discriminating
between the states in an m-state HMM topology. There-
fore, we call such a network a state discriminating net-
work (SDN).

The posteriors p(!ijsk;x) are conditioned on the
HMM state and the input frame and can be computed
by a set of m networks, one for each HMM state. Given
a particular HMM state sk, the corresponding network
must be trained to discriminate between the monophones
!i, thus it'll estimate pk(!ijx).

The posteriors p(cjj!i; sk;x) are conditioned on the
input frame x, the HMM state sk and the monophone
!i. They can be computed by a matrix of networks con-
sisting of m times n networks (where n is the number of
monophones). Each of these networks discriminates be-
tween all the context classes of a speci�c monophone in a
speci�c state. The network for state sk and monophone
!i therefore computes pki(cjjx).
The following �gure gives an overview of the structure

of a set of posterior probability estimators (in our case
HME's) for a 3-state HMM topology. Each box repre-
sents a single HME:
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Fig. 2: Overview: Structure of HME set

In order to compute a speci�c context-dependent pos-
terior class probability for an m-state HMM topology,



a sequence of three HME evaluations is necessary (de-
picted as black boxes in the above �gure). The result-
ing network outputs are divided by the respective class
priors before being multiplied together to form an es-
timate of the scaled observation likelihood. Smoothing
factors might be introduced for the context-dependent
HME's, in order to accomodate di�erent dynamic ranges
of context-dependent and context-independent network
outputs.

4. POLYPHONE CONTEXT CLASSES

For each monophone in each state, we need to de�ne a
set of context classes which are to be modeled by the
method described above. As in [7], we use phonetic de-
cision trees to cluster phonetic contexts. However, our
work di�ers in two aspects: (1) our system clusters poly-
phone instead of just triphone contexts, (2) the decision
trees are adopted from a continuous density HMM sys-
tem. The splitting criterion for growing the decision trees
is based on weighted gain in entropy between the discrete
probability distributions (the mixture coe�cients in the
Gaussian mixtures) before and after a potential split.

D(p;pl;pr) = nlHl(pl) + nrHr(pr)� nH(p)

with Hl(pl) = �
X

i

pli log pli

Hr(pr) = �
X

i

pri log pri

H(p) = �
X

i

pi log pi

where p is the vector of mixture coe�cients before
and pl;pr are the vectors of mixture coe�cients result-
ing from the separate modeling in the two children nodes
after a split. Potential splits are generated by asking
phonetic questions in polyphonic contexts, with the re-
striction of only one phone across word boundaries. The
following �gure shows an example of such a cluster tree.
Internal nodes contain phonetic questions (numbers in
questions are positions relative to the current mono-
phone), leaves contain model names.

After the polyphone clustering decision tree has been
grown within the standard HMM system, a set of cor-
responding context expert HME's for the hybrid system
can be build and trained. In the case of the tree in Fig.
3, we would create and train an HME with 9 output
nodes (one for each context class).

5. SMOOTHING CONTEXT POSTERIORS

In order to compensate di�erent dynamic ranges of
monophone and context posteriors, we are using a
smoothing method for context-dependent posteriors
based on a binomial model. The likelihood estimation
is modi�ed to include a monophone and state dependent
scaling factor ik with 0:0 � ik � 1:0:
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Fig. 3: Example: Polyphone Cluster Tree for middle state of

monophone AX
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In log-space, this method of smoothing simpli�es to
a linear interpolation between the two logarithmized
posterior estimates. A smoothing factor  = 0:5 cor-
responds to the original likelihood estimation, where
context-dependent and context-independent posteriors
are weighted equally. As  goes towards zero, the contri-
bution of the context-dependent HME's is reduced. For
 = 0:0 the system degenerates to a context-independent
system, context-dependent posterior estimates are fully
suppressed.
Weighting factors ik can be estimated iteratively us-

ing stochastic gradient descent to minimize a frame clas-

si�cation error function. Using MSE E(t) = 0:5[p(t)ijk �

q
(t)
ijk ]

2, one can derive the following update rule:
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where � is a small learning rate, q
(t)
ijk is the desired

output and p
(t)
ijk is the smoothed posterior estimate.

6. EVALUATION

The hybrid HME/HMM system was implemented as
part of the JANUS [8] HMM recognizer and evaluated
on the English Spontaneous Scheduling Task (ESST), a
2500 word spontaneous speech database containing over
25 hours of speech. The system uses 3-state left-right



HMM's and 51 monophones. The connectionist part
consists of one state discriminating HME, 3 monophone
HME's and 3x51 context expert HME's. To reduce train-
ing and testing complexity, our context HME's consist
of only one multinomial GLIM node. This allows us to
train the context HME's in about 4-6 hours on a stan-
dard workstation. For each CI system, we evaluated two
context systems with 500 and 1000 context classes, re-
spectively. For the CI systems, we experimented with
four di�erent architectures: Two GLIM-based HME sys-
tems, one with HME's of depth 1, branching factor 16,
the other with HME's of depth 2, branching factor 4,
and two MLP-based HME systems with HME's of depth
1, branching factor 4. Training of these HME's took be-
tween 24 and 40 hours, also on standard workstations.
The HME's were trained along labels which were gen-
erated by our continuous-density HMM recognizer. The
following table shows results for the di�erent systems,
numbers are word accuracies (WA). The system name
is encoded as [node-parameterization]-[depth]-[branching
factor] (GD denotes a gender-dependent system).

CI CD-500 CD-1000

GLIM-1-16 57.5% 60.6% 63.0%
#param 370k 420k 510k

GLIM-2-4 57.7% 60.8% 63.8%
#param 420k 500k 580k

MLP-1-4 60.8% 61.7% 64.1%
#param 962k 1.06M 1.14M

MLP-1-4-GD 63.2% 66.5% 68.3%
#param 2.0M 2.16M 2.32M

We achieved our best results with the GD-MLP-based
HME's. Note, that the additional context modeling im-
proves performance by as much as 10.3 %, relative to
the CI system. A continuous density HMM JANUS sys-
tem which models 5 times more context classes (5000)
achieves 73.1%WA on this task (containing 4.26M acous-
tic parameters) at the expense of higher decoding time
requirements. Decoding speed is about 2-5 times faster
for the hybrid system.
We started to investigate the e�ect of smoothing of

context-dependent posterior estimates as proposed ear-
lier. Here, we report �rst results, where we used a single
smoothing factor  = ik for all context HME's.
The e�ect of this kind of smoothing can be seen in Fig.

4, which shows the word accuracy for di�erent global
smoothing factors applied to the MLP-1-4 CD-1000 sys-
tem. A smoothing factor of  = 0:8 yielded an absolute
increase in WA of 1.1%.

7. CONCLUSIONS

We presented a highly modular context-dependent hy-
brid HMM system, which outperforms its context-
independent version signi�cantly. This encourages us to
further investigate and improve the hybrid system. The

60

61

62

63

64

65

66

0 0.2 0.4 0.6 0.8 1

W
or

d 
A

cc
ur

ac
y 

[%
]

smoothing factor

Smoothing of context-dependent scaled likelihoods
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ultimate goal is, to improve overall performance by com-
bining HME- and Gaussians-based scoring the same way,
expert networks are combined in an HME.
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